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Single-cell RNA sequencing (scRNA-seq) provides a powerful tool to determine expression patterns of thousands of individual
cells. However, the analysis of scRNA-seq data remains a computational challenge due to the high technical noise such as the
presence of dropout events that lead to a large proportion of zeros for expressed genes. Taking into account the cell heterogene-
ity and the relationship between dropout rate and expected expression level, we present a cell sub-population based bounded
low-rank (PBLR) method to impute the dropouts of scRNA-seq data. Through application to both simulated and real scRNA-seq
datasets, PBLR is shown to be effective in recovering dropout events, and it can dramatically improve the low-dimensional repre-
sentation and the recovery of gene–gene relationships masked by dropout events compared to several state-of-the-art methods.
Moreover, PBLR also detects accurate and robust cell sub-populations automatically, shedding light on its flexibility and general-
ity for scRNA-seq data analysis.
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Introduction
Single-cell RNA sequencing (scRNA-seq) has made a grand

advance on throughput and resolution, providing a promising
tool to study heterogeneous systems (Nawy, 2014). However,
the quantity of mRNA in a single cell is so tiny that a million-
fold amplification is often used. Therefore, only a fraction of
transcripts may be captured during library preparation and a
large amplification noise may be introduced during this stage.
The low RNA capture rate might lead to failure of detecting an
expressed gene, resulting in a false zero count observation,
which is called ‘dropout’ event (Kharchenko et al., 2014). Thus,
pervasive ‘dropout’ events exist in scRNA-seq data, in which
genes have false zero or near zero expression in some cells.

High ratio of ‘dropout’ may mislead downstream analyses
such as low-dimensional representation, cell sub-population
identification and cellular trajectory reconstruction. Several im-
putation methods have been developed to address such poten-
tial issue in scRNA-seq data (Zhang and Zhang, 2020). These
imputation methods have various model assumptions, and usu-
ally model the missing value of a given gene in a specific cell
according to the expression level of its co-expressed genes. For
example, MAGIC (van Dijk et al., 2018) reconstructs the gene ex-
pression profile by a Markov affinity graph. scImpute (Li and Li,
2018) divides values into ‘dropout’ ones that need to be im-
puted and ‘confident’ ones that are not affected by dropout
events with a mixture model, and then imputes ‘dropout values’
with a non-negative least square model in an individual cell.
SAVER (Huang et al., 2018) and BISCUIT (Prabhakaran et al.,
2016) are two Bayesian-based methods. Our comprehensive
comparison analyses (Zhang and Zhang, 2020) indicate that
scImpute may perform not very good on data with less collinear-
ity, and SAVER and BISCUIT often impute dropouts with near
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zero values. Most recently, several other imputation methods
have been proposed, such as deep learning-based method DCA
(Eraslan et al., 2019) and deepImpute (Arisdakessian et al.,
2019), matrix factorization-based method CMFImpute (Xu et al.,
2020), and low-rank-based method ALRA (Linderman et al.,
2018). Low-rank matrix recovery method that approximates a
low-rank matrix based on a few observable entries is a direct
and powerful imputation strategy, which has shown promising
performance in many fields (Candes and Recht, 2009). A recent
study suggests that taking advantages of the presence of low-
rank submatrices improves the performance compared to the
traditional low-rank recovery (Ruchansky et al., 2017). scRNA-
seq data exhibit high heterogeneity, implying the existence of
structured low-rank submatrices. Moreover, a previous study
showed that gene expression levels have distinct effects on the
dropout events (Kharchenko et al., 2014). Existing imputation
methods rarely take into account this particular structural fea-
ture of single-cell expression data. Thus, integrating these char-
acteristics into one framework to achieve an effective recovery
of gene expression level is of great potential.

To this end, we present a novel cell sub-population based
bounded low-rank (PBLR) method for scRNA-seq data imputa-
tion, which considers the cell heterogeneity and the effects of
gene expression on dropouts. Applications to both simulated
and real scRNA-seq data suggest that PBLR is an effective tool
to recover transcriptomic level and dynamics masked by drop-
outs, improve low-dimensional representation, and restore the
gene–gene co-expression relationship. Moreover, PBLR is also
able to accurately identify cell sub-populations.

Results
Overview of PBLR

PBLR aims to impute zeros using scRNA-seq data M with m
genes and n cells, where Mij is the expression value of gene i in
cell j. PBLR consists of two components: (i) an ensemble clus-
tering of the scRNA-seq data of the informative genes to deter-
mine g cell sub-populations; (ii) given the g corresponding
submatrices (M(k), k¼1, . . ., g) and the submatrix constructed
by the remaining genes (M(k), k¼ gþ 1), a bounded low-rank
matrix recovery model is performed on each submatrix M(k)

(Figure 1). Specifically, PBLR first extracts a set of highly vari-
ably expressed genes. PBLR then builds a consensus matrix by
employing either symmetric non-negative matrix factorization
(SymNMF) and incomplete NMF (INMF) on several affinity matri-
ces or Leiden algorithm (Traag et al., 2019) on shared nearest
neighbor (SNN) graph with various resolution values. This in-
ferred consensus matrix is further used as the input of hierar-
chical clustering to determine final cell sub-populations and
submatrices (see Materials and methods).

Let X(k) represent the imputed data submatrix corresponding
to the kth submatrix M(k). The low-rank recovery problem is
formulated as

minX ðkÞ kXðkÞk*
s:t: XX

ðkÞ ¼ MðkÞ;

where X represents the so-called observed space in M(k) (i.e.
the non-zero space), | � |*denotes the nuclear norm. Moreover, a
recent study has shown that the probability of each gene’s
dropout events varies across the expression magnitude, and
there is a negative correlation relationship between the drop-
outs’ expression and the ratio of zeros (Kharchenko et al.,
2014). Thus, the upper boundary of dropout values for a gene
could be estimated in advance based on its observed expres-
sion level in other cells, which will likely improve the recovery
accuracy. Therefore, by introducing upper boundaries for unob-
served variables, the bounded low-rank matrix recovery model
is formulated as

minX ðkÞ kXðkÞk*
s:t: XX

ðkÞ ¼ MðkÞ;0 � X ðkÞ
X?
� UðkÞ;

where X? represents the unobserved space or say zero space,
U(k) is a matrix in which each row denotes the upper boundary
of a gene expression in the kth submatrix M(k). This model is
solved by an efficient alternating direction method of multi-
pliers (ADMM) algorithm (Gabay and Mercier, 1976; Chen et al.,
2012). PBLR obtains the final imputed matrix X by merging
these imputed submatrices X(k).

PBLR recovers dropouts with superior accuracy on eight
synthetic datasets

To evaluate the imputation performance of PBLR, we gener-
ated eight synthetic datasets by Splatter (Zappia et al., 2017).
Each dataset was designed as one of the eight scenarios to ac-
count for different data properties, such as fixed or varied drop-
out rates, discrete or continuous cell states, and single or
multiple paths. Specifically, dataset 1 contains three cell sub-
populations with different dropout rates in each sub-
population; dataset 2 is a set of data with increasing dropout
rates; dataset 3 contains three cell sub-populations with the
same dropout rates in each sub-population; dataset 4 contains
six cell sub-populations with imbalanced proportions of cells;
dataset 5 describes a continuous cell trajectory with a single
path; dataset 6 describes a continuous cell trajectory with two
paths; dataset 7 describes a continuous cell trajectory with
multiple paths; and dataset 8 is a set of data with varied clus-
ter distance and degree of noise.

Compared to the typical low-rank discovery model, PBLR
considers the structured characteristics of the data and ex-
pression distribution reflected by the observed data to ac-
count for both cell- and gene-specific features of scRNA-seq
data. To demonstrate the superior performance of these
two key components, we used synthetic dataset 1 with
dropouts (Supplementary Table S1). By visualizing cells in
the low-dimensional space and quantifying the recon-
structed errors using two measures, i.e. sum of squared er-
ror (SSE) and Pearson correlation coefficient (PCC), our
results show that PBLR indeed improves imputation accu-
racy (Supplementary Figure S1).
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To further show the effectiveness of PBLR, we compared it
with six competing imputation methods, including scImpute,
SAVER, DCA, deepImpute, CMFImpute, and LARA, in terms of
the gene expression recovery and the low-dimensional repre-
sentation. To evaluate performance with respect to different
dropout rates, we simulated synthetic dataset 2 with the shape
parameters of dropout logistic function (ds) equaling �0.25,
�0.20, �0.15, �0.1, �0.05, which correspond to different ra-
tios of zeros varying from 0.6 to 0.71. We divided the entries of
raw expression data into zero space and non-zero space. In the
zero space, the imputed values of SAVER are much smaller
than the real ones, while scImpute gives much larger fluctua-
tions than PBLR (with ds ¼ �0.05 as an example in Figure 2A).
These results suggest that PBLR recovers more similar values
to the real ones than scImpute and SAVER. In the non-zero
space, scImpute treats many moderate expression values as
dropouts and imputes them by either larger or smaller values
than the real ones (Figure 2A). Moreover, we also evaluated
scImpute, SAVER, PBLR, DCA, deepImpute, CMFImpute, and
ALRA in terms of the reconstructed errors using SSE and PCC
(Figure 2B and C). As expected, the SSE values increase and

PCC values decrease with the increase in the ratios of zeros for
these imputation methods. All these imputed data improve the
performance of SSE and PCC relative to the raw data.
Attractively, PBLR and DCA show the smallest SSE values and
largest PCC values compared to other imputation methods.
Visualization by the first two t-SNE components show that the
three cell sub-populations are mixed together due to the exis-
tence of large amounts of zeros in raw data. SAVER has hardly
any effect on the raw data. scImpute leads to three fictitious
cell sub-populations in the t-SNE space, and it shows improved
performance in a dataset with a relative larger number of genes
(Figure 2D; Supplementary Figure S2A). However, the cell clus-
ters can be well separated after applying PBLR. In summary,
PBLR shows a strong ability in recovering dropouts compared
to other imputation methods on synthetic dataset 2 with vari-
ous dropout rates (Figure 2) and synthetic dataset 3 with a rela-
tive larger scale (Materials and methods; Supplementary Figure
S3). Cell sub-populations were well distinguished after imputa-
tion by PBLR and deepImpute on synthetic dataset 4 where the
distances between clusters were different (Supplementary
Figure S4). Moreover, the underlying cell trajectory was

Figure 1 Overview of PBLR. Given a gene expression matrix M as input, PBLR outputs an imputed data matrix X with the same size as M.
PBLR first extracts the data of the selected high variable genes and computes three affinity matrices based on Pearson, Spearman, and
Cosine metrics, respectively. Then, PBLR learns a consensus matrix by performing SymNMF of the three affinity matrices INMF of the sub-
matrix of selected genes. PBLR further infers cell sub-populations by performing hierarchical clustering of the consensus matrix. Finally,
PBLR estimates the expression upper boundary of the ‘dropout’ values, and recovers zero gene expressions by performing a bounded low-
rank recovery model on each submatrix determined by each cell sub-population. In this diagram, there are three cell sub-populations. M(1),
M(2), M(3) are the sub-matrices of the selected genes for each population, and M(4) is the sub-matrix of the remaining genes.
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Figure 2 Imputation performance of scImpute, SAVER, PBLR, DCA, deepImpute, CMFImpute, and ALRA on synthetic dataset 2 with various
dropout rates. (A) Density plot of the imputed values vs. true ones in the zero space (left) and the non-zero space (right), respectively.
Y-axis is log10(real value þ1), while x-axis is log10(imputed value þ1). (B) SSE values computed between the full data and the raw data,
as well as imputed ones, respectively. (C) PCC values computed between the full data and the raw data, as well as imputed ones by
scImpute, SAVER, PBLR, DCA, deepImpute, CMFImpute, and ALRA, respectively. (D) Visualization of cells on the first two t-SNE components
using the raw data and imputed ones by scImpute, SAVER, PBLR, DCA, deepImpute, CMFImpute, and ALRA, respectively. Each column repre-
sents data with one dropout rate. ds means the parameter of dropout.shape in splatter package, which controls the ratio of zeros and
larger value represents higher ratio of zeros in the data.
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revealed after imputation by SAVER and PBLR on synthetic
dataset 5 with a single path (Supplementary Figure S5A).
Correlations between the inferred pseudotime after imputation
by SAVER and PBLR and real path were higher than other impu-
tation methods (Supplementary Figure S5B and C).

We further evaluated the performance of recovering cell tra-
jectory on dataset 6 with two paths and dataset 7 with multiple
paths. To visualize data structure and transitions during differ-
entiation progression, we applied a diffusion-based manifold
learning method PHATE (Moon et al., 2019) to the raw data with
dropout, full data (i.e. golden standard data without dropout),
and imputed data, respectively. By projecting cells into the
PHATE space, we found that all methods except for DCA could
recover the trajectory structure on synthetic dataset 6

(Supplementary Figure S6A). Notably, PBLR exhibited the most
similar trajectory structure with the full data compared to other
methods (Supplementary Figure S6A). In addition, we quanti-
fied the ability of imputation methods in preserving trajectory
structure observed from the low-dimensional space of full data,
which was assessed by a manifold preservation score based
on the similarity of each cell’s neighborhood in low-
dimensional spaces (see Materials and methods). Compared to
other methods, scImpute and PBLR had higher preservation
scores, suggesting that cells distributed close together in the
low-dimensional space of full data show similar trend in the
low-dimensional space of imputed data (Supplementary Figure
S6B). On dataset 7 with multiple paths, PBLR and deepImpute
were able to preserve the global trajectory structure as ob-
served in the PHATE space from the full data. However, the tra-
jectory structure was lost when visualizing the imputed data
from other imputation methods (Supplementary Figure S7A).
This observation was further confirmed when we computed the
manifold preservation metric (Supplementary Figure S7B).
Taken together, PBLR consistently show superior performance
in recovering dropouts to preserve the trajectory structure and
the Euclidean distances among cells in the embedded space.

We used another set of simulation dataset 8 with varied
cluster distance and degree of noise to further test the robust-
ness of PBLR. As shown in the Uniform Manifold Approximation
and Projection (UMAP) space, PBLR, scImpute, and deepImpute
consistently produced similar between-cluster and inter-cluster
dispersions as observed in the full data with the increase in
cluster distance and degree of noise (Supplementary Figure
S8A). However, compared to the full data, SAVER and
CMFImpute explicitly decreased between-cluster dispersion,
producing less distinguishable clusters in the UMAP space. In
addition, we also evaluated the preservation of Euclidean
distances between cells by computing the manifold preservation
score (see Materials and methods). As expected, PBLR,
scImpute, and deepImpute consistently had higher scores than
other methods, suggesting the better preservation of cell–cell
distances in the imputed data (Supplementary Figure S8B).
Taken together, these results suggest that PBLR has a good con-
trol of over-imputation.

PBLR captures precise expression dynamics during human and

mouse embryonic development
First, to show whether the imputation values have biological

meaning, we used scRNA-seq data consisting of 88 cells from
seven stages (from oocytes to blastocyst) in human early em-
bryos (HEEs) (Yan et al., 2013). Hierarchical clustering of the im-
puted data with PBLR accurately reveals the similarity of cells in
each stage and cells in consecutive stages, and clearly captures

the cell sub-populations (Figure 3A). More interestingly, we
identified two cell sub-populations (denoted by G1 and G2) at
the late blastocyst stage. It has been reported that CDX2 is
highly expressed in trophectoderm (TE), SOX2, NANOG, and
KLF4 are highly expressed in epiblast (EPI) but lowly expressed

in primitive endoderm (PE), and FGFR4 and CLDN3 are highly
expressed in PE (Yan et al., 2013). Based on these marker
genes, we can see that TE and PE cells are enriched in G1 group,
while EPI cells are enriched in G2 group (Figure 3B). Some zero
values of these marker genes are imputed by scImpute, SAVER,

and PBLR. For example, CDX2 is imputed by scImpute and
SAVER. SOX2 is imputed by PBLR (Figure 3B). At the blastocyte
stage, two critical segregations take place: the segregations of
cells into inner cell mass (ICM) and TE cells, and further differ-

entiation of ICM cells into EPI and PE. Therefore, the expression
levels of CDX2 and SOX2 exhibit a negative correlation relation-
ship, while the expression levels of NANOG and SOX2 show
positive correlation relationship. After imputation, scImpute,
SAVER, and PBLR enhance the relationship of these two pairs of

marker genes in different degree (Figure 3C; Supplementary
Figure S9A). Attractively, PBLR significantly decreases the corre-
lation between CDX2 and SOX2 from �0.37 to �0.53, and
increases the correlation between NANOG and SOX2 from 0.44

to 0.65. To further systematically test the improvement of gene

interactions, we downloaded TE, EPI, and PE-enriched marker
genes (Supplementary Table S2) from a previous study (Yan
et al., 2013). Our results demonstrate that scImpute and SAVER
slightly enhance the gene–gene correlation relationships (P-
value >0.05, one-sided Wilcoxon rank-sum test), however,

PBLR is able to significantly enhance them including both posi-
tive and negative correlations (Figure 3D), indicating the effec-
tiveness of PBLR in capturing the subtle expression
relationships.

Next, to test whether PBLR can recover gene expression tempo-
ral dynamics, we applied Monocle 2 (Qiu et al., 2017) to the im-
puted data from the HEE development (HEE dataset) and the

reprograming from mouse embryonic fibroblasts (MEFs) to induce
neuronal (iN) cells (MEF dataset) (Figure 3E; Supplementary
Figure S9; Treutlein et al., 2016). The major developmental trajec-
tory can be detected on both raw data and PBLR-imputed data vi-
sually inferred by Monocle 2 (Figure 3E; Supplementary Figure

S9B). PBLR improves the inference performance distinctly com-
pared to that of raw data and scImpute and SAVER-imputed ones
in terms of pseudotime order score (POS) and Kendall’s rank cor-
relation (Figure 3F; Supplementary Figure S9D).
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PBLR exhibits high-quality imputation on large-scale datasets
We further applied PBLR to two large-scale scRNA-seq data-

sets to demonstrate its effectiveness and scalability. First, we
applied PBLR, scImpute, SAVER, DCA, deepImpute,
CMFImpute, and ALRA on a mouse retinal dataset consisting of
26830 cells from two batches (Shekhar et al., 2016). We com-
pared scalability of PBLR with other methods on speed and

memory usage (Supplementary Figure S10). PBLR with SNNs
strategy performed comparable with DCA, deepImpute, and
ALRA in computational speed, while scImpute and SAVER con-
sumed lots of time (for SAVER, we did not obtain the results
within one day with 12 cores when the number of cells
>10000). scImpute consumed the highest memory. Visually
well-separated cell sub-populations in the low-dimensional

Figure 3 PBLR captures precise expression dynamics of marker genes on the real data from human embryo development. (A) Hierarchical
clustering of the consensus matrix obtained by PBLR. Experimental stages of individual cells are indicated by different colors on the right.
The late blastocyst cells are divided into two groups G1 and G2. (B) Violin-plot of gene expression values of marker genes in G1 (orange)
and G2 (light blue) groups. (C) Scatter plots of the expression levels of marker genes in the raw and imputed data by PBLR, respectively.
The corresponding Spearman correlation coefficient (SCC) of expression values in the late blastocyst cells is shown on the top.
(D) Comparison of SCC values of gene pairs from any two enriched gene sets for TE, EPI, and PE (left) and gene pairs within EPI-specific
gene set (right) on imputed data and raw data. Each dot represents a gene pair. P-values are computed by one-sided Wilcoxon rank-sum
tests. (E) Scatter plots of the first two discriminative dimensions inferred by Monocle 2. Each dot represents one cell. (F) Bar plots of POS
and Kendall’s rank correlation after applying Monocle 2 to the raw and imputed data by scImpute, SAVER, and PBLR, respectively.

34 | Zhang and Zhang

https://academic.oup.com/jmcb/article-lookup/doi/10.1093/jmcb/mjaa052#supplementary-data


space are indicative of more meaningful biological conclu-
sions from the data. By projecting cells onto t-SNE using im-
puted data, PBLR, deepImpute, and CMFImpute provided
better mixing of batches in comparison of other methods
according to the local inverse Simpson’s index metric
(Korsunsky et al., 2019), which measures the local batch dis-
tribution based on local neighbors (Figure 4A; Supplementary
Figures S11 and S12). In addition, PBLR and CMFImpute well
revealed various cell types compared to deepImpute
(Supplementary Figure S12).

To further assess the cell sub-population separability, we
performed batch effect correction of the raw data and the im-
puted data using Combat, and again projected cells onto t-SNE
space, in which cells were colored by the pre-annotated sub-
populations (Supplementary Figure S13A–C; Shekhar et al.,
2016). Rod bipolar cells were still separated into two parts after
removing batch effects of the raw data using Combat

(Supplementary Figure S13A). More compact and clean cell
clusters were shown in the first two t-SNE dimensions using
PBLR-imputed data, compared to those from raw data and
scImpute and SAVER-imputed data (Supplementary Figure
S13B and C). The relatedness of cell clusters can be well
revealed by hierarchical clustering of PBLR-imputed data
(Figure 4B): the well separation between bipolar cell and non-
bipolar cell clusters, cone bipolar cell and rod bipolar cell
clusters, as well as on and off cone bipolar cell clusters.
However, both raw data and imputed data by other methods
cannot well capture the relatedness of BC5A, BC5B, BC5C, and
BC5D (Supplementary Figure S13D). In addition, SAVER cannot
well separate the on and off cone bipolar cell clusters. To
quantitatively assess cell sub-population separability in the 2D
space, we used the silhouette index, which is an unsupervised
metric to quantify how well each method groups and separates
the cells from various sub-populations. To test whether these

Figure 4 Performance of PBLR on two large-scale datasets. (A) Cells (n¼26830) are visualized on the first two t-SNE components using the
imputed Shekhar data by scImpute, SAVER, and PBLR. Cells are colored by batches (batch 1: Bipolar 1–4; batch 2: Bipolar 5 and 6).
(B) Hierarchical clustering of average gene signatures of clusters based on gene expression imputed by PBLR (Pearson correlation distance
metric, average linkage). (C) The average difference of silhouette values between each imputed data and raw Shekhar data. P-values are
computed by performing paired t-tests of the distribution of differences of silhouette values from individual cells. (D) The PCC values of
marker gene pairs from any two different cell types on raw Shekhar dataset and imputed data by scImpute, SAVER, and PBLR, respectively.
Each element in boxplot represents a gene pair. P-values are computed by one-sided Wilcoxon rank-sum tests. (E) The average difference
of silhouette values between each imputed data and raw Campbell data. P-values are computed by paired t-tests. (F) The PCC values of
marker gene pairs from any two different cell types on raw Campbell data and imputed data by scImpute, SAVER, and PBLR, respectively.
Each element in boxplot represents a gene pair. P-values are computed by one-sided Wilcoxon rank-sum tests.
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methods show significant improvement, we computed the dif-
ference of silhouette values between each imputed data and
raw data. PBLR had better performance than raw data, while
scImpute and SAVER were worse than raw data (Figure 4C).
scImpute and SAVER borrow information across cells to predict
missing expression values, both of them have been shown to
improve the gene structure and downstream analyses to some
degree on some datasets (Figures 2 and 3). However, the worse
low-dimensional representations using scImpute and SAVER
than raw data might be due to some unexpected false signals
or other biases that were introduced by imputation. Moreover,
PBLR can significantly enhance the negative relationships of
marker gene pairs from any two different cell clusters, with dis-
tinct better performance than those of scImpute and SAVER
(one-sided paired t-test) (Figure 4D; Supplementary Table S3).

Second, we also computed these quantitative metrics on an-
other dataset, which consists of 20921 cells (including 20 neu-
ron and non-neuron cell types) in and around the adult mouse
hypothalamic arcuate-median eminence complex (Campbell
et al., 2017). To test the robust ability of PBLR, we randomly
downsampled 50% cells. Most cell clusters are separated on
both raw and imputed data by PBLR, scImpute, and SAVER
(Supplementary Figure S14). Intriguingly, a rare neuron cluster
a13 (13 cells) is well separated from the large neuron cluster
a18 (10515 cells) after imputed by PBLR and SAVER, while it
cannot be distinguished from a18 in scImpute-imputed data.
Quantitatively, PBLR had higher silhouette value than raw data,
while scImpute and SAVER had smaller silhouette values than
raw data (Figure 4E). PBLR, scImpute, and SAVER all signifi-
cantly enhance the negative relationships of marker gene pairs
from any two different cell clusters (Figure 4F; Supplementary
Table S4).

PBLR improves the identification of cell sub-populations on real
scRNA-seq datasets

PBLR can not only impute dropout events, but also reveal cell
sub-populations directly from the raw data by an ensemble
clustering strategy (see Materials and methods). We applied
PBLR to five real scRNA-seq datasets and compared it with sev-
eral clustering methods including SC3 (Kiselev et al., 2017),
Seurat (Satija et al., 2015), SIMLR (Wang et al., 2017), and k-
means on the first two t-SNE dimensions. The ratios of zeros of
these datasets vary from 60.5% to 90.2% (Supplementary
Table S5). On these datasets, PBLR and SC3 perform better and
stable than other methods. PBLR exhibits the highest accuracy
than other clustering methods on raw data except for Darmanis
dataset (Figure 5A). On these datasets, the cluster membership
has minor change after imputation by PBLR due to the better
performance in identifying clusters in the first step of PBLR
(Supplementary Figure S15).

Moreover, visualization of cells from Darmanis and Treutlein
datasets using the raw data and the imputed data by PBLR,
scImpute, and SAVER in the first two t-SNE components demon-
strates that PBLR can make various cell sub-populations more

separable. AT1 and AT2 cell sub-populations are clearly distin-
guishable using PBLR-imputed data. Clara cluster is separated
from other ones, which is imputed by PBLR but masked by
dropouts on raw data (Figure 5B). However, other two methods
either separate cells from the same cluster into several small
groups (scImpute) or cannot distinguish different clusters accu-
rately (SAVER).

Discussion
We present a powerful computational method for scRNA-seq

data imputation. By case studies using available scRNA-seq
data from diverse investigations and synthetic data simulated
with a representative tool, we demonstrate that PBLR can re-
duce potential dropout events and biases by considering their
sub-populations and observed expression distributions, and
successfully derive biologically meaningful information from
data imputation. Due to the high dimension of scRNA-seq data,
dimension reduction is a powerful strategy for analyzing such
data. However, some meaningful low-dimensional representa-
tions are masked by dropouts. PBLR can accurately remove the
influence of dropouts in low dimensions on both synthetic and
real datasets. Moreover, PBLR accurately recovers gene–gene
relationship which may be influenced by dropouts than other
competing imputation methods.

One key component of PBLR is taking into account cell het-
erogeneity. Some imputation methods consider the cell hetero-
geneity such as scImpute, which detected similar cells based
on cell–cell distance. However, PBLR considers cell heteroge-
neity by first identifying the cell clusters using a custom
method, which was shown to accurately capture the cell hetero-
geneity in comparison with other clustering methods such as
SC3 and Seurat. There are also some other imputation methods
that do not consider cell heterogeneity such as SAVER and
ALRA. Both scImpute and PBLR select similar cells in advance
to account for the heterogeneity of scRNA-seq data. However,
SAVER imputes dropout values using the posterior mean and
the prior estimated by other genes’ expression across all cells.
To demonstrate the superior performance of this key compo-
nent, we compare the performance of SAVER on synthetic data-
set 2 with 10000 genes. When SAVER imputes the data with all
cells, the various cell sub-populations are mixed together in
the low-dimensional space. However, when SAVER imputes
each cell sub-population individually, the three cell sub-
populations are separated with only few mistakes
(Supplementary Figure S2A). Therefore, considering the hetero-
geneity of scRNA-seq data may improve the accuracy of SAVER.
Another key component of PBLR is taking into account struc-
tural effect of expression on dropout rate. scImpute divides
genes for each cell into two groups A and B, where genes in A
will be imputed based on genes in B of similar cells by non-
negative least square regression. In PBLR, low-rank method
solved by ADMM algorithm and truncated SVD regression
across similar cells was used for approximating imputed matrix
iteratively. Therefore, the variance of differential expression
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levels may be well imputed by PBLR. Moreover, PBLR considers
the relationship between expected expression level and drop-
out rate of genes, and pulls back the imputed values if they de-
viate from this constraint. We quantified the consistence of the
variation trend in differentially expressed genes between raw/
imputed data and real full data using Spearman correlation,
suggesting that imputed data by PBLR are more consistent with
the real full data (Supplementary Figure S2B). As expected,
considering the heterogeneity of cell sub-populations signifi-
cantly improves the accuracy of SAVER in terms of the struc-
tural expression of differentially expressed genes
(Supplementary Figure S2B, one-sided Wilcoxon rank-sum test,
P-value ¼ 7e�45). These results indicate that PBLR can not
only recover low dimension representation, but also recover
the variation in differential gene expression levels across cells.

PBLR consists of two main stages including identifying cell
sub-populations and imputing dropouts. In the first stage, PBLR

scales up well when the number of cells increases. In the
second stage, singular value decomposition thresholding is the
most time-consuming step. The computational efficiency will
improve if feature selection and partial singular value decom-
position method are used. Moreover, PBLR is an interactive
method, cluster number and boundary function can be
adjusted by users according to the characteristics of their
datasets. Identifying cell sub-populations is a co-product of
PBLR. Therefore, the utility of PBLR is very flexible that it can
also be used to achieve a sub-population identification task.
Comparison with existing clustering methods on real datasets
demonstrates that PBLR also has more accurate clustering
performance. Other efficient clustering methods in the first
stage also can be chosen by the users. Here the cluster number
is selected based on clustering stability. It definitely can be
used if the cluster number is known in advance in some
situations.

Figure 5 Clustering performance of PBLR and other competing methods on five real datasets. (A) SC3, Seurat, SIMLR, tK, and PBLR were ap-
plied to the five real scRNA-seq datasets, where cell cluster labels were known or validated in the original studies. tK represents k-means
on the first two t-SNE dimensions. Normalized mutual information (NMI) is used to quantify accuracy. (B) Cells are visualized on the first
two t-SNE components using the raw Darmanis (left) and Treutlein (right) data and imputed ones by PBLR, scImpute, and SAVER,
respectively.
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Taking together, PBLR can be used as a general method for
addressing the dropout events prevalent in scRNA-seq data
with the potential to reduce noise and correct biases. It serves
as a proof of principle that bias can be removed by such a clas-
sical matrix recovery methodology with more practical consider-
ations. Moreover, PBLR can be extended to impute data for
other single-cell omics data by adapting its practical boundary
observations. It provides a novel approach to omics data impu-
tation, an area that is becoming increasingly important for im-
proving big biological data in the single-cell biology era.

Materials and methods
Datasets and data preprocessing

The details of real datasets are shown in Supplementary
Methods. For each dataset, genes expressed in <3 cells and
cells with expressed genes <200 were removed. Then the data
was normalized by a global method, i.e. expression of each
gene was divided by the total expression for each cell, multi-
plied a scale factor (10000 by default) and log-transformed
with pseudo-count 1.

Gene selection
To account for technical noise in scRNA-seq data and select

the informative genes, a set of highly variable genes was identi-
fied by calculating the average expression and Fano factor for
each gene. We then bin the average expression of all genes into
20 evenly sized groups and normalize the Fano factor (Grun
et al., 2014) within each bin. Genes with a larger normalized
Fano factor value (0.05 by default) and its average expression
being in predefined range (0.01–3.5 by default) were selected.
Moreover, genes with larger Gini index values (Jiang et al., 2016;
Tsoucas and Yuan, 2018) can also be helpful to identify rare cell
sub-populations (as used in Treutlein dataset).

Sub-population and submatrix determination
The distance between each cell pair is computed by Pearson,

Spearman, and Cosine metrics, respectively. These distance
matrices (denoted by Dk) are transformed to affinity matrices as
follows: Ak ¼ e�Dk=maxðDkÞ. We then apply SymNMF (Kuang et al.,
2015) and INMF to the affinity matrices and raw scRNA-seq
data to determine the consensus map, respectively
(Supplementary Methods). Next, we adopt a consensus cluster-
ing method (Brunet et al., 2004) to identify cell sub-
populations (Supplementary Methods). Finally, we get g cell
sub-populations, and gþ 1 corresponding submatrices (M(k),
k¼1, . . ., gþ1) of the raw scRNA-seq data M by extracting the
sub-matrix M(k) (k¼1, . . ., g) of each cell population of selected
genes, and the sub-matrix M(gþ1) of the remaining genes across
all cells. An optimal low rank g can be selected from a given
range with the stability of clustering associated with each rank
(Brunet et al., 2004).

The size of affinity matrix is n by n, where n is the number of
cells. With the number of cells increasing, it will consume

much memory. We focus more on accuracy than computational
efficiency with the above strategy. Of course, the computa-
tional efficiency can be improved by GPU and other techniques.
Here, we provided the following more efficient strategy as an-
other option to consider cell heterogeneity on large datasets.
We first construct a SNN graph by calculating the k-nearest
neighbors (20 by default) for each cell on the data of the se-
lected high variable genes. Then the fraction of SNNs between
the cell and its neighbors is used as weights of the SNN graph.
Next, we build the consensus matrix based on the clusters
identified by applying the Leiden algorithm (Traag et al., 2019)
to the constructed SNN graph with a range of resolution values
(default: 0.1–0.5 with the step equaling 0.1). After that, the
cluster number g is determined according to the largest gap be-
tween singular values of the consensus matrix, which are com-
puted by random singular value decomposition. Finally, the
cell sub-populations are obtained by hierarchical clustering
with the cluster number equaling g. PBLR with this strategy
also performed well on the Shekhar dataset (Supplementary
Figure S16).

Boundary estimation
For the kth submatrix M(k), we first compute the average

expression gi of gene i in the observed space and the ratio
of zeros ri. We only use the genes with ri being not equal to
0 and 1 because these genes either have no dropout (i.e. ri

¼ 0) or are not expressed in all cells (i.e. ri ¼ 1). After re-
moving these genes, we estimate the upper boundary of
gene i in the following ways. One way is to fit the ratio of
zeros r vs. average expression level g withr ¼ e�kg2

, and
then the boundary of each gene is defined as the upper
one-sided 95% confidence bound. However, we find that
this exponential function does not fit well for some larger r
and overestimate the boundary (Supplementary Figure
S17). Therefore, we attempt to determine the boundary of
gene i by introducing a piecewise function Ui. First, to esti-
mate the boundary of gene i, we define its neighbor gene
set S ¼ fj j jrj–rij<cg using a radius c (default 0.05). Then,
we compute the boundary of gene i by

Ui ¼
minðgSÞ; ri � 0:8
maxðgSÞ; otherwise;

�

where gS ¼ fgjjj 2 Sg is the expression of the neighbor
gene set. Moreover, we define a more sophisticated
piecewise function,

Ui ¼

minðgSÞ; ri � 0:8
quantileðgS ;0:25Þ; 0:6 � ri < 0:8
quantileðgS ;0:75Þ; 0:4 � ri < 0:6
maxðgSÞ; otherwise:

8>><
>>:

The sophisticated piecewise function is used as default.
However, we also recommend choosing a proper boundary func-
tion by visually evaluating the scatter plot of ratio of zeros vs. aver-
age expression level on a sampled reference data (Supplementary
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Figure S17). We generate a reference data by dropping varying frac-
tions (relevant to the dropout rate) of the gene measurements in
the raw gene expression matrix. We simulate dropouts by setting
true values to zero by sampling from a Bernoulli distribution using
a dropout probability max (p0, 0.3), where p0 is the ratio of zeros in
the raw expression matrix. By comparing the estimated boundary
using both synthetic datasets and real datasets, our results indi-
cate that the sophisticated piecewise function usually can give
more accurate estimation. However, other two methods overesti-
mate the boundary, especially for larger ratios of zeros
(Supplementary Figure S17B and C).

Bounded low-rank imputation algorithm
We adopt an ADMM algorithm (Gabay and Mercier, 1976; Chen
et al., 2012) to solve the bounded low-rank matrix recovery
model. Specifically, it can be reformulated as follows,

minX ðkÞ kX ðkÞk*
s:t: XðkÞ � Y ¼ 0

Y 2 fV jVX ¼ MðkÞ;0 � VX? � UðkÞg:

The augmented Lagrangian function of the above function is

L X ðkÞ; Y ; Z; b
� �

¼ kX ðkÞk* � hZ; X ðkÞ � Yi þ b
2

kX ðkÞ � Yk2

F ;

where Z is the Lagrange multiplier, b is the penalty parameter. We
update the variables by alternatively updating X(k), Y, Z as follows,

Y tþ1 ¼ argminY2V LðX ðkÞ t ; Y ; Zt ; bÞ
X ðkÞtþ1 ¼ argminLðX ðkÞ; Y tþ1; Zt ; bÞ
Ztþ1 ¼ Zk � bðX ðkÞtþ1 � Y tþ1Þ

;

8<
:

where t is the iteration index. In more detail, we can update var-
iable Y by argminY LY ¼ b=2|X ðkÞt � Y |2F � hZt ; X ðkÞt � Yi. Note
that the partial derivative on Y of LY is equal to
Zt � bðX ðkÞt � Y tÞ, and thus it can be reformulated as
h Y � Y tþ1; Y tþ1 þ 1=bZt � X ðkÞt i � 0;8Y 2 V . The solution is
Y tþ1 ¼ PV ½X ðkÞt � 1=bZt �, where PV is the projection operator
onto V space. The solution can be written as follows,

Y tþ1 ¼

Mij ; if ði; jÞ 2 X
0; if ði; jÞ 2 X?; Btþ1ði; jÞ < 0

Uij ; if ði; jÞ 2 X?; Btþ1ði; jÞ > UðkÞij

Btþ1

ij ; otherwise

;

8>>><
>>>:

where Btþ1 ¼ X ðkÞt � 1=bZt . Then let Atþ1 ¼ Y tþ1 þ 1=bZt , and
Atþ1¼Vtþ1

1
Rtþ1V tþ1

2
;where Rtþ1¼ diagðrtþ1

1
;rtþ1

2
; . . . ;rtþ1

rtþ1Þ and
rtþ1

j is the eigenvalues of Atþ1. According to a traditional solu-
tion in previous studies (Cai et al., 2010; Ma et al., 2011), the
update rule for X is Xtþ1¼V tþ1

1
R̂

tþ1

Vtþ1

2
; where

R̂
tþ1¼diagfðrtþ1

j �1=bÞþg. Therefore, we only need to com-
pute the eigenvalues larger than 1/b and we use PROPACK
package to compute the partial SVD. Previous studies
(Glowinski, 1984; Glowinski and Le Tallec, 1989) have proved
that the step for updating the Lagrange multiplier can be gener-
alized into Ztþ1¼ Zt�cbðXðkÞtþ1�Y tþ1Þ;0 < c <

ffiffiffi
5

p
þ1=2. In

the proposed algorithm, we use the same parameter c¼1:6

and b¼ 2:5= ffiffiffiffiffimn
p as in a previous study (Chen et al., 2012). This

procedure is summarized in Algorithm 1 (Supplementary
Methods).

PBLR algorithm
The whole procedure for solving scRNA-seq imputation is

summarized in Algorithm 2 (Supplementary Methods).

Imputation accuracy evaluation on synthetic datasets
To quantify the difference between imputed data and full data, we

calculate two measures: SSE and PCC. SSE is defined as
SSE ¼

P
i

P
j ðFij � XijÞ2, where Fij represents the real expression of

gene i in cell j, and Xij represents the corresponding imputed value.
PCC is computed between each column pair (F.j and X.j) in F and X.

NMI
The true partition of m clusters and the inferred partition

given by PBLR are denoted by U ¼ fU1, . . ., Umg and V ¼ fV1,
. . ., Vng, respectively. Then the NMI is defined as
NMI ¼ 2IðU;VÞ=HðUÞ þ HðVÞ, where I(U, V) is mutual informa-
tion, H(U) is the entropy of partition U.

POS
To measure the accuracy of the reconstructed pseudotime,

we define POS ¼ C/(Nc þ C), where C and Nc represent the
number of concordant and disconcordant pairs of cells be-
tween the inferred pseudotime and golden standard (e.g. true
data collection time), respectively.

Manifold preservation score
The manifold preservation score is defined to quantify the

similarity of each cell’s neighborhood in a low-dimensional
space obtained from the full data without dropouts vs. the im-
puted data of each method (Welch et al., 2019). We first apply
a dimension reduction method to the full data and the imputed
data respectively, then build a k-nearest neighbor graph in
each low-dimensional space, and finally count how many of
each cell’s nearest neighbors in the low-dimensional space of
full data are also nearest neighbors in the low-dimensional
space of imputed data. High manifold preservation score indi-
cates the well preservation of manifold distance in the imputed
data compared to that in the full data.

Data access
Deng, Darmanis, Treutlein, and Zeisel datasets can be

obtained from Gene Expression Omnibus (GEO) with
GSE45719, GSE6785, GSE52583, and GSE60361, respectively.
Pollen dataset is available at Sequence Read Archive with
SRP041736. HEE, MEF, and Campbell datasets can be obtained
from GEO with GSE36552, GSE67310, and GSE90806, respec-
tively. Shekhar data are available from https://github.com/
broadinstitute/BipolarCell2016. The package of PBLR is
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available at https://github.com/amsszlh/PBLR or http://page.
amss.ac.cn/shihua.zhang/software.html.

Supplementary material
Supplementary material is available at Journal of Molecular

Cell Biology online.
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