
Biostatistics (2021) 22, 2, pp. 331–347 R
doi:10.1093/biostatistics/kxz033
Advance Access publication on September 23, 2019

Adaptive empirical pattern transformation (ADEPT)
with application to walking stride segmentation

MARTA KARAS∗

Department of Biostatistics, Johns Hopkins University, 615 N Wolfe St, Baltimore, MD 21205, USA

mkaras2@jhu.edu

MARCIN STRĄCZKIEWICZ

Department of Biostatistics, Harvard University, 655 Huntington Avenue, Boston, MA 02115, USA

WILLIAM FADEL

Department of Biostatistics, Indiana University, 410 W 10th St, Indianapolis, IN 46202, USA

JAROSLAW HAREZLAK

Department of Epidemiology and Biostatistics, Indiana University Bloomington, 1025 E 7th St,
Bloomington, IN 47405, USA

CIPRIAN M. CRAINICEANU

Department of Biostatistics, Johns Hopkins University, 615 N Wolfe Street, Baltimore, MD 21205, USA

JACEK K. URBANEK

Division of Geriatric Medicine and Gerontology, Department of Medicine, Johns Hopkins University,
2024 E Monument St, Baltimore, MD 21205, USA

jurbane2@jhu.edu

SUMMARY

Quantifying gait parameters and ambulatory monitoring of changes in these parameters have become
increasingly important in epidemiological and clinical studies. Using high-density accelerometry mea-
surements, we propose adaptive empirical pattern transformation (ADEPT), a fast, scalable, and accurate
method for segmentation of individual walking strides. ADEPT computes the covariance between a
scaled and translated pattern function and the data, an idea similar to the continuous wavelet transform.
The difference is that ADEPT uses a data-based pattern function, allows multiple pattern functions, can
use other distances instead of the covariance, and the pattern function is not required to satisfy the wavelet
admissibility condition. Compared to many existing approaches, ADEPT is designed to work with data
collected at various body locations and is invariant to the direction of accelerometer axes relative to body
orientation. The method is applied to and validated on accelerometry data collected during a 450-m out-
door walk of 32 study participants wearing accelerometers on the wrist, hip, and both ankles. Additionally,
all scripts and data needed to reproduce presented results are included in supplementary material available
at Biostatistics online.
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1. INTRODUCTION

The purpose of this article is to introduce and evaluate a new class of methods for automatic pattern
segmentation from sub-second accelerometry data recordings. The problem was motivated by individual
walking stride segmentation from continuous walking in large observational studies as well as in clinical
trial settings. Obtaining individual strides from such data are important in scientific studies, because
it can provide a detailed estimation of walking characteristics including a number of steps, cadence,
acceleration, pattern, as well as the variability of these characteristics within- and between-days. Such
measurements have the potential to better characterize large populations (Studenski and others, 2011;
Urbanek and others, 2017), identify the disease onset and describe the pathophysiological cascade of a
particular disease or patterns of recovery after treatment. However, manual segmentation of individual
strides from very large accelerometry data is difficult, can only be applied in short time windows and
is not scalable. Therefore, fast, automated, and reliable procedures for automatic detection of strides are
needed.

1.1. Accelerometry data in physical activity monitoring

Technological advances led to an explosion in the popularity of wearable sensors in health research
(Matthews and others, 2008; Healy and others, 2011; Schrack and others, 2014; Xiao and others,
2015; Karas and others, 2019). Modern wearable accelerometers typically collect 10–100 observa-
tions per second along each of three orthogonal axes. To better understand the data, Figure 1a displays
the three-dimensional time series of raw acceleration values collected from 5 s of walking for two
different persons by sensors located at the four body locations (left wrist, left hip, left ankle, and
right ankle). Each row of Figure 1a corresponds to one of two individuals, while each column corre-
sponds to a body location: left wrist, left hip, left ankle, and right ankle, respectively. In the online
version of the article, a different color (red, blue, and green) corresponds to one of the three orthog-
onal axes of the device: up/down, left/right, forward/backward in the device’s frame of reference.
Figure 1b provides the acceleration vector magnitude (VM), computed as the square root of the
sum of squares of the three acceleration values at each time point. The panels in Figure 1b cor-
respond directly to the panels in Figure 1a. While the original data is three-dimensional, we will
work with the one-dimensional VM time series, which is easier to handle and is sufficient for stride
segmentation.

1.2. Challenges in stride identification from accelerometry data

Figure 1a and b display clear repetitive patterns characterized by high amplitude peaks in the data. While
these patterns are relatively clear to a human observer, identifying them algorithmically is, however,
more complicated. There are many reasons why this problem is challenging. First, there is variation in
the duration and shape of the repetitive patterns with substantial differences both within and between
subjects. Second, there are multiple local maxima and exact identification of the start and end of a stride
may depend on the position of the device. Third, the device can move, which further affects the time-series
characteristics. Fourth, the shape, duration, and intensity of the signal can change with the time of day and
energy level of the movement. Thus, any method that is designed to work well and reproducibly will need
to account for these challenges and provide evidence that it can work for different subjects in complex
environments. Below we describe the intuition and the main components of our idea.

1.3. Pattern definition and recognition

That brings us to the question: “what is a pattern and what does it mean to find patterns in the data?” We
propose that a pattern is a function, �(·), with mean zero, variance one and compact support in the same
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Fig. 1. (a) Three-dimensional acceleration time series from 5 s of walking for two different study participants (separate
row panels) at four body locations: wrist, hip, left, and right ankle (separate column panels). In the online version of
the article, a different color (red, blue, and green) corresponds to one of the three orthogonal axes of the device. (b)
Same as the (a) panels but showing the vector magnitude, a one-dimensional summary of the three-dimensional time
series.

domain as the data. For example, in our case, � : R → R because we are working with univariate time
series, �(t) = 0 if t /∈ [0, 1], ∫ 1

0 �(t)dt = 0, and
∫ 1

0 �2(t)dt = 1. The requirements that the mean of
the function is zero and variance is one is not necessary, but keeps pattern functions comparable. We also
propose that finding a pattern is maximizing a distance (e.g., covariance) between this function, translated
and scaled, and the original signal. More precisely, if the univariate VM time-series is denoted by x(t)
then we are interested in the following covariance function

W�(s, τ) =
∫ ∞

−∞
x(t)

1√
s
�

(
t − τ

s

)
dt. (1.1)

This is a simple formula, but it packs a powerful methodological punch that is worth watching again
in slow motion. Note that the s−1/2�{(t − τ)/s} is the function �(t) translated by τ and scaled by s,
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Fig. 2. First horizontal panel: vector magnitude signal derived from accelerometry data of continuous walking. Three
following horizontal panels: covariance (y-axis) between a stride pattern rescaled according to one of three scale
parameters, respectively, and a VM signal window that corresponds to particular translation parameter (x-asis) of a
pattern. Within each of three covariance horizontal panels, in the online version of the article, red and green colors
denote a pattern of the same scale but different translation (location) parameter values.

and its domain is [τ , τ + s]. Moreover, the function s−1/2�{(t − τ)/s} continues to have mean zero and
variance one. Of course, we can use the correlation between the original signal and the translated and
scaled patterns, which can be done by dividing by the standard deviation of the time-series x(t) in the
interval [τ , τ + s]. We could use other distance measures including L1, L2 or any other distance between
two vectors of the same length.

To visualize the translation and scaling operations on the data, Figure 2 displays four panels. The first
panel displays 6 s of VM accelerometry data during walking for one person. Panels 2, 3, and 4 display
the covariance between a pattern, scaled by a particular scale parameter s, and subsequent windows of
VM. The reason the covariance function is continuous is that the translation of the pattern is continuous in
the translation parameter τ . For each scale parameter s, we display two instances of the translated scaled
pattern; in the online version of the article, one appears in green and one in red. As one compares the
scaled patterns across scaling parameters (panels 2, 3, and 4), it should become clear what the effect of
scaling will be.

1.4. Related literature

The transformation we have discussed above is widely used in the continuous wavelet transform (CWT)
(Grossmann and Morlet, 1984), where the pattern �(·) is called the mother wavelet. In CWT, the pattern
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or mother wavelet function is fixed, with popular choices including the Haar (Haar, 1910), Daubechies
(Daubechies, 1988), and Biorthogonal (Cohen and others, 1992) mother wavelets. In statistics, discrete
wavelet transform (DWT) is typically more well known and allows only discrete scaling of the mother
movelet, s = 2j, where j is in the set of integers, N. DWT and CWT have been successfully used in a
variety of scientific studies that involve digital signal processing including respiratory patterns (Dupuis and
Eugene, 2000), cardiac rhythms (Madeiro and others, 2012), electromyography (Phinyomark and others,
2011), electroencephalography (EEG) (Gadhoumi and others, 2012), blood pressure measurements (Li
and others, 2013), DNA sequences (Jia and others, 2015), and electrocardiography (ECG) signals (Yochum
and others, 2016).

Our proposal is related to the large literature on estimation of activity type in health studies using
accelerometers. Bai and others (2012) defined movelets, a family of subsecond-level accelerometry data
patterns representing different types of physical activities and used them for activity classification. This
approach has been further expanded by He and others (2014) and Xiao and others (2016). Another part of
the literature has focused on activity type classification using minute level accelerometry data (Pober and
others, 2006; Staudenmayer and others, 2009; Attal and others, 2015). These approaches use a number of
accelerometry data features combined with supervised classification algorithms. There are many published
algorithms for the quantification of cumulative walking time and quality using sub-second accelerometry
data. The most basic ones are based on thresholding the signal amplitude (Dijkstra and others, 2008; Weiss
and others, 2013), zero-crossing analysis (Jayalath and Abhayasinghe, 2013), local periodicity estimators
(Kavanagh and Menz, 2008), and wavelet analysis (Nyan and others, 2006). More recent approaches have
focused on template matching (Soaz and Diepold, 2016) and Fourier transformations (Dirican and Aksoy,
2017; Kang and others, 2018; Urbanek and others, 2018).

Walking strides are often segmented based on landmark events within a stride (e.g., heel-strike, push-
off, or swing) (Willemsen and others, 1990; Selles and others, 2005; McCamley and others, 2012; Wang
and others, 2012; Godfrey and others, 2015). These approaches rely heavily on the location of the device
relative to the body, device orientation, and the assumption that the device is not moving during a task.
Therefore, they are not robust to observed changes in signals during quasi free-living environments and
are less likely to be extended to true free-living environment. Soaz and Diepold (2016) used template
matching and clustering for step detection from data collected from a waist-worn accelerometer.Ying and
others (2007) described an algorithm which uses a stride template derived dynamically from the data and
proposed to use the auto-correlation of data segments for stride segmentation. Müller (2007) proposed
dynamic time warping (DTW), where both the pattern and the signal are transformed non-linearly to
obtain an optimal match in a pre-defined family of warping functions. Barth and others (2015) used multi-
subsequence DTW to combine information from the different axes of the accelerometer and gyroscope.
While we thought that approaches by Ying and others (2007) and Barth and others (2015) can potentially
be robust to sensor location and orientation, we were unable to obtain the associated software from the
authors to compare our proposal with these approaches.

Here, we propose adaptive empirical pattern transformation (ADEPT), a fast, scalable, and accu-
rate method for segmentation of individual walking strides. ADEPT computes the covariance between
a scaled and translated pattern function and the data, an idea similar to the CWT. The difference is that
ADEPT uses a data-based pattern function, allows multiple pattern functions, can use other distances
instead of the covariance, and the pattern function is not required to satisfy the wavelet admissibility
condition. For completeness of the presentation, a function �(·) satisfies the admissibility condition if∫ ∞

−∞ |f̂ (ω)|2/|ω|dω < ∞, where f̂ (·) denotes Fourier transform of the function �(·). A square integrable
function that satisfies the admissibility condition can be used to recover the original signal without loss of
information (Sheng, 2000). Our approach does not require the complete recovery of the original signal,
which allows us to use a broader class of functions for �(·). Compared to many existing approaches,
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ADEPT is designed to work with data collected at various body locations and is invariant to the direction
of accelerometer axes relative to body orientation. We also provide open source software that imple-
ments ADEPT method, and make available both the data set and reproducible analysis code used in the
application example. Those resources are referenced in supplementary material available at Biostatistics
online.

The manuscript is organized as follows. Section 2 describes a continuous walking experiment conducted
and introduces the notation and definitions. Sections 3 and 4 describe the two components of ADEPT.
Section 5 presents the results of automatic segmentation of individual strides from accelerometry data
collected from the experiment. Section 6 provides validation of the approach, and Section 7 contains the
discussion.

2. DATA, NOTATION AND DEFINITIONS

2.1. Participants and data collection

Data were collected as a part of the study on identification of walking, stair climbing, and driving using
wearable accelerometers, sponsored by the Indiana University CTSI grant and conducted at the Department
of Biostatistics, Fairbanks School of Public Health at Indiana University. The study was led by Dr Jaroslaw
Harezlak, assisted by Dr William Fadel and Dr Jacek Urbanek (coauthors on this article) and enrolled
32 healthy participants between 23 and 52 years of age. In this article, we focus exclusively on the
task of self-paced, undisturbed, outdoor walking on the sidewalk, even though the experiment contained
additional tasks. During this task, participants were asked to walk outside on the pathway designed for the
purpose of the study (indicated as a blue line on the map in Figure 8 in Appendix A of the supplementary
material available at Biostatistics online). Each participant walked unaccompanied to maintain their own
pace, while the supervising person recorded the starting and stopping time of the task. The length of the
walking pathway was approximately 1500 feet and the duration of this task ranged between 2.5 and 4
min, depending on the pace of each participant. The pathway consists of smooth changes in elevation and
has no sharp turns, turnarounds, or physical obstacles. Each participant was equipped with four 3-axial
ActiGraph GT3X+ (ActiGraph LLC, Pensacola, FL, USA) accelerometers located on the left wrist, left hip,
and both ankles. Accelerometers collected the data along three orthogonal axes with a sampling frequency
of 100 Hz. Periods of walking were manually marked in the resulting dataset based on time markers
generated during clapping. The study was approved by the IRB of Indiana University; all participants
provided written informed consent.

2.2. Notation and definitions

We denote by Xi(t) = {Xi1(t), Xi2(t), Xi3(t)} the three-dimensional acceleration time-series for subject i
at time t corresponding to the three accelerometer device axes. For every time point, we define the VM
Vi(t) = √

X 2
i1(t) + X 2

i2(t) + X 2
i3(t). Figure 1b provides an example of how the one-dimensional VM data

are obtained from the three-dimensional accelerometry data displayed in Figure 1a. We propose to use
the high-resolution one-dimensional VM data to conduct segmentation of individual strides. A stride is
defined as a combination of two subsequent steps. We focus on strides as the information collected by
an accelerometer about subsequent steps may be asymmetric due to device placement; for example, an
accelerometer placed on the right hip will tend to record lower amplitude signals during a step with the
left leg.

We denote by τik , k = 1, . . . , Ki, the time when k-th stride of i-th subject is initiated, where Ki is the
total number of strides for subject i. We further define Tik , k = 1, . . . , Ki, to be the time duration for the
k-th stride of subject i. For simplicity, we will express Tik in seconds. The k-th stride of i-th subject is
defined as Sik(t) = Vi(t) for t ∈ Dik = {τik , . . . , τik + Tik}, where Vi(t) is the VM function and Dik is a

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxz033#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxz033#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxz033#supplementary-data
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discrete equally-spaced grid of time points at which the measurements were collected. The parameters τik ,
Tik , and Ki are a priori unknown. For continuous walking, the beginning of the next stride is the end of
the current stride, that is, τi(k+1) is the end of the k-th stride and the beginning of the (k + 1)-th stride. The
duration of a stride is hence given by Tik = τi(k+1) − τik and the remaining unknown parameters are τik ’s,
the times when strides are initiated. The notation provides the conceptual framework for partitioning the
walking VM accelerometry data into adjacent strides. We also introduce the cadence of walking, which
is number of steps per second. Cadence is related to the duration of the stride expressed in seconds, Tik ,
as cik = 2/Tik .

Figure 9 in Appendix A of the supplementary material available at Biostatistics online displays accel-
eration time series for two subsequent strides, where the beginning of a stride is marked by τi1 and τi2,
respectively. The duration of the first stride, expressed in seconds, is Ti1 = τi2 − τi1. The beginning of the
second stride is τi2 = τi1 + Ti1. In the figure, the first stride is initiated at τi1 = 0.6s and the second stride
is initiated at τi2 = 1.6s, yielding a duration of the first stride of 1.0 s and a cadence estimate equal to
2/1.0 = 2.0 steps per second for this segment of walking.

3. EMPIRICAL PATTERN ESTIMATION

As we described in Equation 1.1 of Section 1, we need to identify the pattern, �(·). Since we estimate the
pattern from the data, we refer to the estimated �̂(·) as an empirical pattern. For simplicity, we drop the hat
notation and continue to denote the empirical pattern as �(·). The estimating process is relatively simple
but requires some manual segmentation of patterns, which could be tedious. Figure 10a in Appendix A
of the supplementary material available at Biostatistics online displays 200 manually segmented strides;
these strides represent a random subset from the 642 strides we obtained from 30 individuals, for an
average of ≈ 20 strides per person. Figure 10a in Appendix A of the supplementary material available at
Biostatistics online shows quite a bit of variation in the length of the stride, with some strides taking as little
as 0.8 s and some strides taking 1.1 s or more. Some landmarks are de-synchronized across individuals;
note, for example, the peak acceleration in the middle of the strides, which corresponds to the heel strike.
To construct the empirical pattern we did something simple: (i) take every stride and stretch it or compress
it to the interval [0, 1]; (ii) interpolate every stride on an equally-spaced grid; (iii) standardize every stride
to have mean zero and variance one; (iv) average the standardized stride patterns; and (v) standardize
resulted average to have mean zero and variance one. Figure 10b in Appendix A of the supplementary
material available at Biostatistics online displays the 200 stretched, centered, and normalized strides (black
lines) and the normalized mean of all 642 such functions (red line). The red line represents the empirical
pattern obtained from the data.

If one empirical pattern is insufficient to capture the types of observed stride patterns, we propose
to incorporate additional empirical patterns. Figure 11a in Appendix A of the supplementary material
available at Biostatistics online displays the normalized strides, as described in Figure 10b in Appendix
A of the supplementary material available at Biostatistics online, but clustered into two groups using the
correlation similarity. Interestingly, the main difference between the two groups is the location of the peak
acceleration in the middle of the stride (heel strike). The first group of strides (top panel) corresponds
to a heel strike around 0.65, while the second group corresponds to a heel strike around 0.6. Taking the
averages of these two groups leads to two empirical patterns, �1(·) and �2(·) (shown as red lines.) Note
that these two empirical patterns are correlated but also subtly different. Such differences would be hard to
estimate by simply stretching the patterns, as the scaling of the empirical patterns does. We further pushed
the envelope on extracting three distinct groups of strides and results are shown in Figure 11b in Appendix
A of the supplementary material available at Biostatistics online. Results seem to be a further refinement
of the two-group clustering, but it seems that we have hit a point of diminishing returns. In practice one

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxz033#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxz033#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxz033#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxz033#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxz033#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxz033#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxz033#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxz033#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxz033#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxz033#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxz033#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxz033#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxz033#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxz033#supplementary-data
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may need to do this especially in cases when there are clearly defined subgroups (e.g., individuals who
suffered a stroke).

4. THE MAXIMIZATION-TUNNING PROCEDURE FOR ADEPT

Once the empirical pattern is estimated, we propose a two-step procedure to segment strides. The first
step consists of maximization of the covariance between the rescaled empirical pattern and the VM signal
in various time windows. This provides a good idea about where the stride is localized, but it can miss
the exact location by fractions of a second. The second step is designed to tune the stride segmentation to
better match the beginning and end of a stride.

4.1. Vector magnitude smoothing

In the maximization-tuning procedure, the raw VM signal is smoothed using an unweighted moving
window average. To understand the window size effect on smoothing, Figure 12 in Appendix A of the
supplementary material available at Biostatistics online displays three horizontal panels. The first horizon-
tal panel shows the VM data collected from the left wrist, left hip, and both ankles during 3 s of walking for
one person. Panels 2 and 3 display the smoothed version of theVM signal using a moving window of length
w equal to 0.15 (an example of moderate smoothing) and 0.25 s (an example of aggressive smoothing),
respectively. The blue vertical lines indicate the local maxima of the VM smoothed signal with a window
size of w = 0.25 s. For the first algorithm step (covariance maximization), we recommend moderate
smoothing which preserves the major features of the original signal. However, moderate smoothing may
leave the multiple local maxima present at the beginning and end of a stride (note the wiggles in the prox-
imity of the dominant peaks in the second row of panels). If this occurs, to avoid ambiguity in determining
which data peak corresponds to stride beginning/end, we recommend applying aggressive smoothing for
the second step (tuning) to smooth over neighboring local maxima. The aggressive smoothing used in the
tuning step may aid strides segmentation from wrist data in particular, where the stride beginning and end
are less well-defined compared to data from the hip and ankle.

4.2. Distance matrix computation

The first step of the procedure starts by calculating the covariance function, W�(s, τ), which was described
in equation (1.1). This function depends on two parameters, the scale s and the location τ and will
be calculated on a two-dimensional grid and stored as a matrix. Note that if cmin and cmax denote the
minimum and maximum walking cadence, respectively, the duration of strides is between Tmin = 2/cmax

and Tmax = 2/cmin. Therefore, we considering a grid of scaling factors, s, such that the rescaled versions
of the pattern function �(·) cover densely the interval {Tmin, . . . , Tmax}. Once the �(·) pattern is scaled
we use linear interpolation to match the sampling points with those of the observed data. The location of
stride patterns can be estimated by identifying the parameters τ and scale s that maximize the covariance
matrix.

Figure 13 in Appendix A of the supplementary material available at Biostatistics online provides the
visualization of theADEPT covariance matrix for a 4 s walking period for one individual; data are from the
left ankle monitor. The x-axis corresponds to time (the τ location parameter), while the y-axis corresponds
to the stride duration (the s scaling parameter.) The black dot indicates the point of the largest sample
covariance, which is equal 0.93. This value is attained for an empirical pattern �(·) rescaled to have a
duration of 1.06s that starts at time t = 1.42s from the beginning of the recording.A quick visual inspection
indicates that there are four different strides in this particular segment. So far, we have discussed the case
when only one empirical pattern is available. When there are multiple empirical patterns �j, j ∈ J, we first

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxz033#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxz033#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxz033#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxz033#supplementary-data
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compute the sample covariance matrix W�j (s, τ) for each of them separately and then calculate W�(s, τ)

as the entry-wise maximum across the pattern-specific covariance matrices. Matrix W�(s, τ) is then used
throughout the segmentation procedure.

4.3. Tuning procedure

The maximization of the covariance function provides an initial estimator of the stride location, but the
estimation can be off by fractions of a second. This is due to the large fluctuations of the VM signal toward
the beginning and end of the stride. Therefore, the exact location of the stride may be missed. Recall
that the covariance maximization procedure identifies a start point, τ ′

ik , and the scaling parameter, sik . The
scaling parameter corresponds to a specific length, T ′

ik , of a stride, Sik . Thus, the stride is estimated to be
Vi(t) for t ∈ {τ ′

ik , . . . , τ ′
ik + T ′

ik}. Once this is obtained we are interested in tuning both τ ′
ik and T ′

ik .
To do this we focus on estimating the largest local maximum in a neighborhood of τ ′

ik . In general,
the covariance maximization procedure does not ensure that τ ′

ik is a local maximum and the closest local
maximum may not be the largest local maximum in the signal. We start by building two neighborhoods of
a fixed length, centered at τ ′

ik and τ ′
ik + T ′

ik , respectively. The tuning procedure is simple: identify the local
maximum of (possibly smoothed) VM signal in each of these neighborhoods. This procedure is applied
after each k-th stride location and duration is estimated using the covariance matrix.

The left panel in Figure 14 in Appendix A of the supplementary material available at Biostatistics
online displays a small part of the raw VM signal collected from the left ankle (black line). The blue
vertical lines indicate τ ′

ik = 1.42s and τ ′
ik + T ′

ik = 1.42s + 1.06s = 2.48s, which were identified in the
covariance maximization step; refer to Figure 13 in Appendix A of the supplementary material available
at Biostatistics online. The blue shaded areas denote the symmetric neighborhoods of length 0.6 s around
τ ′

ik and τ ′
ik + T ′

ik , respectively. The right panel in Figure 14 in Appendix A of the supplementary material
available at Biostatistics online displays the same raw (black line) and smooth (red line) VM signal with
a moving average window of w = 0.25 s. The red vertical lines mark local maxima of the smoothed VM
signal, which are at τik = 1.43s and τik + Tik = 1.43s + 1.03s = 2.46s. These values are only slightly
different from the original ones, but it provides more reproducible estimates of the beginning and end of
a stride. The maximization tuning algorithm proceeds until all strides within the VM signal are identified.

5. STRIDES SEGMENTATION FROM RAW ACCELEROMETRY DATA

ADEPT was applied to automatically segment strides from accelerometry data collected from all the
32 study participants in the study. We focused on continuous walking periods and used all four sensor
locations: left wrist, left hip, and both ankles. The procedure was applied separately to every sensor
location; the algorithm smoothing and fine-tuning parameters were kept the same across sensor locations.

5.1. Estimation of the empirical patterns of strides

The procedure started with the manual segmentation of 642 strides from all 32 individuals (∼ 20 strides per
individual) conducted by a specialist in accelerometer signal processing (Dr Urbanek, a coauthor on this
article). Strides were defined as segments of the data between one heel-strike peak and the subsequent heel-
strike of the same leg. For manual segmentation, data from all body-locations were synchronized manually
to ensure that heel-strike peaks occur at the same time-points in all four time-series. This substantially
reduced manual segmentation time but introduced some small errors which are likely due to the clock
drift across devices (Karas and others, 2019). Next, five 5-s data segments were chosen randomly for
each individual and a time-index for the beginning and the end of each stride was manually marked using
identify base function in R statistical software. This was an extremely laborious process that took
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approximately 8 h and covered about 10% of the walking data. Thus, manual segmentation is impractical
even in small studies and impossible in moderately large studies. Moreover, manual segmentation has its
own imperfections, which we address using ADEPT.

For each sensor location, we estimated two empirical patterns based on the 642 manually segmented
strides; the sets of estimated patterns are showed in Figure 15 in Appendix A of the supplementary material
available at Biostatistics online, where each location corresponds to a panel column and a color. The left
wrist and left ankle, the empirical patterns are clearly distinct; note the middle of the stride differences
in the pattern shape for the left wrist (first panel column) and size of the local maximum for left ankle
(third panel column). The empirical patterns for the right ankle (fourth panel column) differ in terms of
the timing of the heel strike (local maximum in the middle of the stride) and intensity. These differences
are most likely due to differences between individuals. The empirical patterns for the left hip (second
panel column) are slightly different, especially at the beginning and end of the stride. They appear to be
the same, but phase-shifted, which is most likely due to manual segmentation artifacts.

5.2. Stride segmentation

Once the empirical patterns were obtained, we estimated the location of strides by maximization of
covariance function (1.1) and fine-tuned the location estimation. For the scale parameter, we used a 100-
dimensional grid to ensure that the stride pattern function, �(·), covers densely the interval {0.5, . . . , 1.75}
expressed in seconds. We used a smoothing window of length w = 0.15s in the covariance maximization
step, w = 0.25s in the fine-tuning step, and a window of length 0.6 s length to search for the local
maximum.

Table 1 in Appendix B of the supplementary material available at Biostatistics online summarizes the
number of segmented strides per person grouped by sensor location. On average, we identified 201 − 202
strides per person from data collected at each location; the minimum, maximum and three quartiles for
the number of strides are close, but not identical, across sensor locations. Table 2 in Appendix B of
the supplementary material available at Biostatistics online displays summaries of the estimated stride
duration time (in seconds) grouped by sensor location; on average, an estimated stride duration time was
between 1.0 and 1.02 s, with slight variations across sensor locations.

5.3. Cadence estimation

Once every individual stride is estimated, the walking cadence (number of steps per second) can be
estimated as a function of time. More precisely, for a stride estimated to occur between [τik , τik + Tik ] the
cadence is estimated as cik = 2/Tik . Figure 16 in Appendix A of the supplementary material available at
Biostatistics online provides these cadence estimates for the left ankle data. Each row (y-axis) corresponds
to one person, and each column (x-axis) corresponds to a 0.1 second window of walking. More intense
blue corresponds to lower cadence and more intense red corresponds to higher cadence. Rows are ordered
according to the median cadence, with lower median cadence displayed higher. The median cadence
was correlated (ρ = −0.35) with the average walking duration, with height (ρ = −0.52), and weight
(ρ = −0.45).

6. SEGMENTATION VALIDATION

We do not have a true, “gold standard” segmentation of strides, which raises important challenges when
it comes to validation. A good first step is to visually inspect the results and ensure that stride estimates
are not completely misaligned with the data. We have conducted this visual inspection and we could not
find any substantial discrepancies. This process is hard to illustrate in a article, though Figure 4 provides
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Fig. 3. Estimated start point (x-axis) and duration time (y-axis) of all estimated strides for one study participant across
four sensor locations. Each point represents a one estimated stride from particular sensor location. The size of a point
corresponds to covariance value between VM signal and empirical pattern that yielded the stride estimate and, in
the online version of the article, the color of a point denotes sensor location. Black line represents a nonparametric
regression fit curve.

a short snapshot of the process. A second visualization step is to compare the stride estimators obtained
from different sensor locations. If strides are consistently estimated across body locations, at least the
procedure is consistently right or wrong. For one person, Figure 3 provides the estimated stride duration
(y-axis) as a function of the estimated start point of the stride for all four locations (shown as different
color bubbles in the online version of the article). In the online version of the article, the color of points
corresponds to different sensor location: left wrist (red), left hip (green), left ankle (blue), and right ankle
(purple). The size of the point corresponds to the covariance between the VM signal and the empirical
pattern (see Section 4.2); the covariance values should be used to only compare estimates within the same
sensor location. The black solid line is a nonparametric smoother for the dots across all four body locations.
Figure 3 indicates that the stride duration and the beginning of the stride estimates are consistent across
the four sensors for most of the walking experiment time; note that most dots are, in fact, overlapping.
There are a few discrepancies, and they all correspond to the left wrist. This is important, as many current
studies suggest using the non-dominant wrist location for accelerometers.

6.1. Segmentation results consistency across sensor locations

Here, we formalize the idea suggested by Figure 3. The solid line provides a consensus estimator of the
stride duration across body locations. Denote by Lb

ik the estimated length of the k-th stride for subject i
using the location b = 1, . . . , B (here B = 4 because there are four body locations). Also denote by mik

the consensus estimator for the stride length; this was obtained by smoothing the data (tb
ik , Lb

ik), where
tb
ik is the estimated time when stride k was initiated for subject i according to location b. This is done
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for a fixed i and by combining points over locations, b. We define the percent absolute deviation for
stride k as PADb

ik = 100|Lb
ik − mik |/mik , which provides a measure of the error, |Lb

ik − mik |, relative
to the signal, mik . It could be viewed as a noise to signal ratio or an estimator of the coefficient of
variation. By averaging these values over k we obtain an individual percent absolute deviation for each
body location iPADb

i = ∑Kib
k=1 PADb

ik/Kib, where Kib is the estimated number of strides for subject i at
location b.

For subject 27, the iPAD for the left wrist, left hip, left ankle, and right ankle stride estimates were
4.49%, 0.75%, 0.95%, and 0.85%, respectively. The average iPAD across study participants was 6.55%,
1.44%, 1.24%, and 1.30%, respectively. All subject-specific iPAD values are showed in Table 3 in
Appendix B of the supplementary material available at Biostatistics online. Results indicate that the
errors are small relative to the signal for all body locations, though the left wrist has an error that is
roughly three to four times larger than for the other locations.

6.2. Consistency between ADEPT and manual segmentation

Manual segmentations were used primarily to estimate location-specific empirical patterns. Once empirical
patterns are estimated we can re-estimate these strides using ADEPT. Thus, we can compare the results
of the manual and ADEPT segmentations on all the 642 manually segmented strides. To do this, we split
randomly the 32 study participants into four equally sized groups, eight participants in each. In each
group, we used ADEPT to segment strides from data of the eight members of that group, using stride
patterns estimated from manually segmented strides of the remaining 24 participants. We repeated the
procedure for each four participant groups. For each manually-segmented stride, we identified the closest
ADEPT-segmented pattern by minimizing the start point distance. For each matched pair, we computed
the differences between the estimated start and end times, respectively.

For example, for Participant 27, the average estimated stride duration was 1.06 s. The stride start
difference values has a mean (standard deviation) summaries equal: −0.01 (0.01), 0.00 (0.01), and
0.00 (0.01) (in seconds) for left hip, left ankle, and right ankle, respectively. For the left wrist, the mean of
difference was −0.04 s, while the standard deviation was 0.06 s. Thus, the differences are roughly of the
order of 1–3% of the length of the stride. A similar result can be observed across subjects. The empirical
density distributions of these differences for all subjects combined are shown in Figure 17 inAppendixA of
the supplementary material available at Biostatistics online. They indicate excellent agreement for all body
locations, with slightly worse performance for the left wrist. The differences for all subjects combined are
summarized in Table 4 in Appendix B of the supplementary material available at Biostatistics online. For
comparison, in Table 5 in Appendix B of the supplementary material available at Biostatistics online, we
included the summary of differences obtained when ADEPT uses stride patterns derived from data of all
32 study participants. Results are almost identical with the results obtained using the partition into four
subgroups.

The differences between manual and ADEPT segmentations should not automatically be interpreted in
favor of the manual segmentation. For example, Figure 4 compares four strides of Participant 27, using the
manual (blue lines) and ADEPT (red lines) segmentation results using the validation procedure described
above (the color version of the plot is available in the online version of the article). Each horizontal plot
panel corresponds to a different accelerometry sensor location. Colored lines are the original VM signal,
and the gray lines are the smoothed VM signals. The largest observed discrepancy between ADEPT and
manual segmentation is for the left wrist, indicating a difference of 0.08 and 0.1 s between the estimated
stride start and end points, respectively. However, visual inspection seems to indicate thatADEPT estimates
the strides more accurately than the manual approach. For the other locations, the differences between
manual and ADEPT segmentations are visually indistinguishable.
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Fig. 4. Short segments of the vector magnitude and its smoothed version (gray line) for Participant 27. Comparing
stride segmentation using the manual (blue vertical lines) and ADEPT (red vertical lines) approaches for four different
body locations. The color version of the plot is available in the online version of the article.

6.3. Visualization of the estimated stride patterns

Visually inspecting results could be very difficult and subject to substantial observer bias and measurement
error. Instead, we propose to conduct a parallel visualization of the time series, by jointly plotting the
segmented strides. More precisely, for each study participant and location we registered the ADEPT
segmented stride to the [0, 1] interval using linear interpolation. Figure 5 displays these registered ADEPT
segmented strides for each location and three study participants. The color version of the plot is available
in the online version of the article. Each stride is displayed as a line colored according to the location,
while the solid black lines indicate the average of these strides. Participants 1 and 32 were selected because
they had the highest and the lowest median walking cadence among the 32 study participants, respectively.
Participant 18 was selected because he had the longest execution time of the walking component of the
study. Study participant 1 performed the walking exercise in the shortest time. Visual inspection of these
results does not trigger any particular red flag in terms of segmentation, though we could envision further
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Fig. 5. Individual strides segmented with the proposed automatic approach (thin colored lines) together with the
derived subject- and location-specific stride pattern (black line) for three study participants, across four sensor
locations. The color version of the plot is available in the online version of the article.

quantifying the location- and subject-specific variability or outlier detection methods for identifying
incorrect stride segmentations. Moreover, even though we started with population-specific patterns of
walking, after applying ADEPT we end up with subject-specific strides. These strides can be used to
extract subject-specific patterns, which could be used for further refinement of ADEPT at the subject
level.

7. DISCUSSION

We proposed ADEPT for precise identification of individual walking strides from high-resolution raw
accelerometry data. Our automated approach reduces strides segmentation time substantially, making
the approach feasible for moderate and large studies. ADEPT yields results visually indistinguishable
from manual segmentation for most locations, with some larger discrepancies for the non-dominant wrist.
ADEPT identifies maxima of the covariance (or other distances) between the scaled and translated stride
pattern and a data signal, a concept that has common characteristics with CWT. Unlike CWT, ADEPT
uses a data-based pattern function, allows multiple pattern functions, can use other distances instead of the
covariance, and the pattern function is not required to satisfy the wavelet admissibility condition. ADEPT
also contains a novel fine-tuning procedure. Compared to many existing approaches, ADEPT is designed
to work with data collected at various body locations and is invariant to the direction of accelerometer
axes relative to body orientation.

ADEPT can be used in various studies that require segmentation of strides from subsecond accelerom-
etry data collected during standardized walking tests (e.g., 6-min walk test (Salbach and others, 2015)).
The segmented strides can be used to estimate interval-specific walking cadence, derive subject- and
population-specific stride patterns, and stride-to-stride amplitude and phase deviation (Urbanek and oth-
ers, 2017). However, we expect that ADEPT approach will work well in a range of applications including



Adaptive empirical pattern transformation (ADEPT) 345

detection of other types of movements or even different biosignals, such as ECG and EEG. A particularly
challenging area is walking identification in the free-living environment. The current ADEPT approach
has several potential limitations. For example, the study participants consisted of healthy individuals,
with age ranging between 23 and 52 years. Whether ADEPT applies to older study participants or indi-
viduals with impaired walking remains an open problem. Moreover, we only investigated data collected
during continuous outdoor walking on a flat surface, which may not directly generalize to walking in
heterogeneous and complex environments.

SUPPLEMENTARYMATERIAL

Supplementary material is available at http://biostatistics.oxfordjournals.org.
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