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SUMMARY

We propose a computationally and statistically efficient divide-and-conquer (DAC) algorithm to fit sparse
Cox regression to massive datasets where the sample size n0 is exceedingly large and the covariate
dimension p is not small but n0 � p. The proposed algorithm achieves computational efficiency through
a one-step linear approximation followed by a least square approximation to the partial likelihood (PL).
These sequences of linearization enable us to maximize the PL with only a small subset and perform
penalized estimation via a fast approximation to the PL. The algorithm is applicable for the analysis
of both time-independent and time-dependent survival data. Simulations suggest that the proposed DAC
algorithm substantially outperforms the full sample-based estimators and the existing DAC algorithm with
respect to the computational speed, while it achieves similar statistical efficiency as the full sample-based
estimators. The proposed algorithm was applied to extraordinarily large survival datasets for the prediction
of heart failure-specific readmission within 30 days among Medicare heart failure patients.
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1. INTRODUCTION

Large datasets derived from health insurance claims and electronic health records are increasingly available
for healthcare and medical research. These datasets are valuable sources for the development of risk
prediction models, which are the key components of precision medicine. Fitting risk prediction models to
a dataset with a massive sample size (n0), however, is computationally challenging, especially when the
number of candidate predictors (p) is also large and yet only a small subset of the predictors is informative.
While it is statistically feasible to fit a full model with all p variables, deriving parsimonious risk prediction
models has the advantage of being more clinically interpretable and easier to implement in practice. In such
a setting, it is highly desirable to fit a sparse regression model to simultaneously remove non-informative
predictors and estimate the effects of the informative predictors. When the outcome of interest is time-to-
event and is subject to censoring, one may obtain a sparse risk prediction model by fitting a regularized
Cox proportional hazards model (Cox, 1972) with penalty functions such as the adaptive least absolute
shrinkage and selection operator (LASSO) penalty (Zhang and Lu, 2007).

When n0 is extraordinarily large, directly fitting an adaptive LASSO (aLASSO) penalized Cox model to
such a dataset is not computationally feasible. To overcome the computational difficulty, one may employ
the divide-and-conquer (DAC) strategy, which typically divides the full sample into K subsets, solves
the optimization problem using each subset, and combines the subset-specific estimates into a combined
estimate. Various DAC algorithms have been proposed to fit penalized regression models. For example,
Chen and Xie (2014) proposed a DAC algorithm to fit penalized generalized linear models (GLMs). The
algorithm obtains a sparse GLM estimate for each subset and then combine subset-specific estimates by
majority voting and averaging. Tang and others (2016) proposed an alternative DAC algorithm to fit GLM
with an extremely large n0 and a large p by combining de-biased LASSO estimates from each subset.
While both algorithms are effective in reducing the computation burden compared to fitting a penal-
ized regression model to the full data, they remain computationally intensive as K penalized estimation
procedures will be required. In addition, the DAC strategy has not been extended to the survival data
analysis.

In this article, we propose a novel DAC algorithm using a sequence of linearizations, denoted by DAClin,
to fit aLASSO penalized Cox proportional hazards models, which can further reduce the computation
burden compared to the existing DAC algorithms. DAClin starts with obtaining an estimator that maximizes
the partial likelihood (PL) of a subset of the full data, which is then updated using all subsets via one-
step approximations. The updated estimator serves as a

√
n0-consistent initial estimator for the aLASSO

problem and approximates the full sample-based maximum PL estimator. Subsequently, we obtain the
final aLASSO estimator based on an objective function applying the least square approximation (LSA)
to the PL as in Wang and Leng (2007). The LSA allows us to fit the aLASSO using a pseudo-likelihood
based on a sample of size p. The penalized regression is only fit once to a p × p dimensional psuedo data
in the proposed DAClin algorithm and the improvement in computation cost is substantial if n0 � p. Our
proposed DAClin algorithm can also accommodate time-dependent covariates.

The rest of the article is organized as follows. We detail the DAClin algorithm in Section 2. In Section 3,
we present simulation results demonstrating the superiority of DAClin compared to the existing methods
when covariates are time-independent and when some covariates are time-dependent. In Section 4, we
employ the DAClin algorithm to develop risk prediction models for 30-day readmission after an index
heart failure hospitalization with data from over 10 million Medicare patients by fitting regularized Cox
models with (i) p = 540 time-independent covariates and (ii) pind = 575 time-independent covari-
ates and pdep = 5 time-dependent environmental covariates. We conclude with some discussions in
Section 5.
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2. METHODS

2.1. Notation and settings

Let T denote the survival time and Z(·) denote the p×1 vector of bounded and potentially time-dependent
covariates. Due to censoring, for T , we only observe (X , �), where X = min(T , C), � = I (T ≤ C),
and C is the censoring time assumed to be independent of T given Z(·). Suppose the data for analysis
consist of n0 subjects with independent realizations of D = (X , �, Z(·)T)T, denoted by Dfull = {Di =
(Xi, �i, Zi(·)T)T, i = 1, ..., n0}, where we assume that n0 � p.

We denote the index set for the full data by �full = {1, ..., n0}. For all DAC algorithms discussed in this
article, we randomly partition Dfull into K subsets with the k-th subset denoted by Dk = {Di, i ∈ �k}.
Without loss of generality, we assume that n = n0/K is an integer and that the index set for the subset k is
�k = {(k − 1)n + 1, ..., kn}. For any index set �, we denote the size of � by n� with n� = n0 if � = �full

and n� = n if � = �k . Throughout we assume that K = o

(
n

1
2
0

)
such that n−1 = o

(
n

− 1
2

0

)
and n � p.

We aim to predict T based on Z(·) via a Cox model with conditional hazard function

λ(t|Z(t)) = λ0(t) exp
(
βT

0 Z(t)
)

, (2.1)

where λ0(t) is the baseline hazard function. Our goal is to develop a computationally and statistically
efficient procedure to estimate β0 using Dfull under the assumption that β0 is sparse with the size of the
active set A = {j : β0j �= 0} much smaller than p. When n0 is not extraordinarily large, we may obtain an
efficient estimate, denoted by β̂ full, based on the aLASSO penalized PL likelihood estimator as proposed
in Zhang and Lu (2007). Specifically,

β̂ full = argmax
β

{
�̂�full

(β) − λ�full

p∑
ι=1

|βι|
|β̃ι,init|γ

}
(2.2)

where for any index set �,

�̂�(β) = n−1
�

∑
i∈�

�i(β), �i(β) = �i

[
βTZi(Xi) − log

{∑
i′∈�

I (Xi′ ≥ Xi)e
βTZi′ (Xi′ )

}]
, (2.3)

β̃ init = (β̃1,init, · · · , β̃p,init)
′ is an initial

√
n0-consistent estimator of model (2.1), λ�full

≥ 0 is a tuning
parameter, and γ > 0. A simple choice of β̃ init is β̃�full

, where for any set �,

β̃� = argmax
β

�̂�(β).

Following the arguments given in Zhang and Lu (2007), when n
1
2
0 λ�full

→ 0 and n(1+γ )/2
0 λ�full

→ ∞, we
can show that β̂ full achieves the variable selection consistency, i.e. the estimated active set Âfull = {j :
β̂ full ,j �= 0} satisfies P(Âfull = A) → 1 and that the oracle property holds, i.e.

n
1
2
0 (β̂

A
full−βA

0 ) = Â
A
�full

(β0)
−1n

1
2
0 ÛA

�full
(β0)+op(1) = A

A(β0)
−1n

1
2
0 ÛA

�full
(β0)+op(1)

D−→ N (
0, AA(β0)

−1
)

,
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where GA = {Wl , l ∈ A} if G is a vector and GA = [Wll′ ]l∈A,l′∈A if G is a matrix,

Û�(β) = n−1
�

∑
i∈�

Ûi,�(β), Ûi,�(β) =
∫

{Zi(t) − Ŝ1,�(t, β)/Ŝ0,�(t, β)}dMi(t, β),

Ŝr,�(t, β) = n−1
�

∑
i∈�

Zi(t)
⊗rI (Xi ≥ t), Â�(β) = −∂2�̂�(β)/∂β∂βT,

A(β) =
∫ S2(t, β)S0(t, β) − S1(t, β)⊗2

S0(t, β)2
dE{Ni(t)}, Sr(t, β) = E{Zi(t)

⊗rI (Xi ≥ t)},

Ni(t) = I (Ti ≤ t)�i, Mi(t, β) = Ni(t) − ∫ t
0 I (Xi ≥ u)eβTZi(u)λ0(u)du, and for any vector a, a⊗0 = 1,

a⊗1 = a, a⊗2 = aaT.
When n0 is not too large, multiple algorithms are available to solve (2.2) with time-independent

covariates, including a coordinate gradient descent algorithm (Simon and others, 2011), a least angle
regression-like algorithm (Park and Hastie, 2007), a combination of gradient descent-Newton Raphson
method (Goeman, 2010), and a modified shooting algorithm (Zhang and Lu, 2007). Unfortunately, when
n0 is extraordinarily large, existing algorithms for fitting (2.2) are highly computationally intensive and
subject to memory constraints. These algorithms may even be infeasible to compute in the presence of
time-dependent covariates as each subject contribute multiple observations in the fitting.

2.2. The DAClin algorithm

The goal of this article is to develop an estimator that achieves the same asymptotic efficiency as β̂ full but
can be computed very efficiently.

Our proposed algorithm, DAClin, for attaining such a property is motivated by the LSA proposed in
Wang and Leng (2007), with the LSA applied to the full sample-based PL. Specifically, it is not difficult
to show that β̂ full is asymptotically equivalent to β̂ full,lin, where

β̂ full,lin = argmin
β

1

2
(β̃�full

− β)T
Â�full

(β̃�full
)(β̃�full

− β) + λn0

p∑
ι=1

|βι|
|β̃ι,�full

|γ

That is, β̂ full,lin will also achieve the variable selection consistency as β̂ full and β̂
A
full,lin has the same limiting

distribution as that of β̂
A
full. This suggests that an estimator can recover the distribution of β̂ full if we can

construct accurate DAC approximations to β̃�full
and Â�full

(β̃�full
). To this end, we propose a linearization-

based DAC estimator, denoted by β̂DAC, which requires three main steps: (i) obtaining an estimator for the

unpenalized problem β̃
[0]
DAC based on a subset, say D1; (ii) obtaining updated estimators for the unpenalized

problem through one-step approximations using all K subsets; and (iii) constructing an aLASSO penalized
estimator based on LSA. The procedure also brings a ÂDAC(β̃DAC) that well approximates Â�full

(β̃�full
).

Specifically, in step (i), we use subset D1 to obtain a standard maximum PL estimator,

step (i) β̃
[0]
DAC ≡ β̃�1

= argmax
β

�̂�1(β).

In step (ii), we obtain a DAC one-step approximation to β̃�full
,

step (ii) for ι = 1, ..., I, β̃
[ι]
DAC = K−1

K∑
k=1

β̃�k ,lin
(β̃

[ι−1]
DAC )
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where

β̃�k ,lin
(β) = β + ÂDAC(β)−1Û�k (β) and ÂDAC(β) = K−1

K∑
k=1

Â�k (β). (2.4)

Let β̃DAC = β̃
[I]
DAC be our DAC approximation to β̃�full

. In practice, we find that it suffices to let I = 2.

Finally, we apply the LSA to the PL and approximate β̂ full using β̂DAC, where

step (iii) β̂DAC = argmin
β

{
1

2
(β̃DAC − β)T

ÂDAC(β̃DAC)(β̃DAC − β) + λ�full

p∑
j=1

|βj |
|β̃DAC,j |γ

}
.

The optimization problem in step (iii) is equivalent to

β̂DAC = argmin
β

{
1

2
(Ỹ0(β̃DAC) − X̃0(β̃DAC)β)T(Ỹ0(β̃DAC) − X̃0(β̃DAC)β) + λ�full

p∑
j=1

|βj |
|β̃DAC,j |γ

}
(2.5)

where Ỹ0(β̃DAC) = ÂDAC(β̃DAC)
1
2 β̃DAC is a p×1 vector and X̃0(β̃DAC) = ÂDAC(β̃DAC)

1
2 is a p×p matrix. The

linearization in step (iii) is exactly the same as that in Zhang and Lu (2007), which allows us to solve the
penalized regression step using a pseudo likelihood based on a sample of size p.The computation cost of this
step compared to solving (2.2) reduces substantially when n0 � p. In the Appendix of the supplementary

material available at Biostatistics online, we show that n
1
2
0 (β̃DAC − β̃�full

) = op(1). It then follows from

the similar arguments given in Wang and Leng (2007) that if n
1
2
0 λn0 → 0, n(1+γ )/2

0 λn0 → ∞, the estimated
active set using DAClin ÂDAC achieves the variable selection consistency, i.e. P(ÂDAC = A) → 1 and the
oracle property holds, i.e. β̂

A
DAC and β̂

A
full have the same limiting distribution.

2.3. Tuning and standard error calculation

The tuning parameter λ�full
is chosen by minimizing the Bayesian information criteria (BIC) of the fitted

model. Volinsky and Raftery (2000) showed that the exact Bayes factor can be better approximated for
the Cox model if the number of uncensored cases, d0 = ∑

i∈�full
�i, is used to penalize the degrees of

freedom in the BIC. Specifically, for any given tuning parameter λ�full
with its corresponding estimate of

β, β̂λ�full
, the BIC suggested by Volinsky and Raftery (2000) is defined as

BICV ,λ�full
= −2

∑
i∈�full

�i(β̂λ�full
) + (log d0)dfλ�full

, (2.6)

where dfλ�full
= ∑p

j=1 I (β̂λ�full
,j �= 0). With the LSA, we may further approximate BICV ,λ�full

by

BICVL ,λ�full
= n0(β̂DAC − β̂λ�full

)T
ÂDAC(β̃DAC)(β̂DAC − β̂λ�full

) + (log d0)dfλ�full
. (2.7)

For the estimation of β̂DAC, we chose a λ�full
such that BICVL ,λ�full

is minimized. The oracle property
is expected to hold in the setting where n0 � p and n0 is extraordinarily large. We may thus estimate

the variance-covariance matrix for n
1
2
0 (β̂

A
DAC − βA

0 ) using {ÂA
DAC(β̃DAC)}−1. For j ∈ A, a (1 − α) × 100%

confidence interval for β0j can be calculated accordingly.

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxz036#supplementary-data
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3. SIMULATIONS

3.1. Simulation settings

We performed two sets of simulations to evaluate the performance of β̂DAC for the fitting of sparse Cox
models, one with only time-independent covariates and the other with time-dependent covariates. For
both scenarios, we focused primarily on n0 = 106 and K = 100. We consider the number of iterations
I = 1, 2, and 3 to examine the impact of I on the proposed estimator.

3.1.1. Time-independent covariates We conducted extensive simulations to evaluate the performance of
the proposed estimator β̂DAC relative to (a) the performance of the full sample-based aLASSO estimator for
the Cox model β̂ full and (b) a majority voting-based DAC method for the Cox model, denoted by β̂MV also
with K = 100, penalized by a minimax concave penalty (MCP), which extends the majority voting-based
DAC scheme for GLM proposed by Chen and Xie (2014). The reason of choosing β̂MV as a comparison is
that there is no other DAC method available for the Cox model and only Chen and Xie (2014) considered
a similar majority voting-based DAC method for the penalized GLM with non-adaptive penalties. We set
a priori that β̂MV sets the estimate of a coefficient at zero, if at least 50% of the subset-specific estimates
have a zero estimate for that coefficient. In addition, we compared the performance of the DAC estimator
β̃DAC relative to the full sample maximum PL estimator β̃�full

.
For the penalized procedures, we selected the tuning parameter based on the BIC discussed in Section

2.3. The aLASSO procedures were fit using the glmnet function in R package glmnet (Friedman and
others, 2010; Simon and others, 2011; R Core Team, 2017) with γ = 1; the MCP procedures were fit
using the ncvsurv function in R package ncvreg (Breheny and Huang, 2011; R Core Team, 2017).
When there are ties among failure times, we used the Efron’s method within each data subset (Efron,
1977).

For the covariates, we considered p = 50 and p = 200. We generated Z from a multivariate normal
distribution with mean 0T

p and variance-covariance matrix V = [I (l = l′) + vI (l �= l′)]l′=1,...,p
l=1,...,p , where aq

denotes a q × 1 vector with all elements being a and we considered v = 0.2, 0.5, and 0.8 to represent
weak, moderate, and strong correlations among the covariates. For a given Zi, i = 1, · · · , n0, we generated
Ti from a Weibull distribution with a shape parameter of 2 and a scale parameter of {0.5 exp(βT

0Zi)}−0.5,
where we considered three choices of β0 to reflect different degrees of sparsity and signal strength:

β
(I)
0 = (0.8T

3 , 0.4T
3 , 0.2T

3 , 0T
p−9)

T,

β
(II)
0 = (0.4T

4 , 0.2T
4 , 0.1T

4 , 0.05T
4 , 0T

p−9)
T, and

β
(III)
0 = (1, 0.5, 0.2T

2 , 0.1T
2 , 0.05T

2 , 0.035T
3 , 0p−11)

T.

For censoring, we generated C from an exponential distribution with a rate parameter of exp(0.5), resulting
in 68% ∼ 76% of censoring across different configurations.

We additionally considered n0 = 105, 106, 2 × 106 and 9 × 106 to evaluate how different choices of n0

impact the relative performance of different procedures.

3.1.2. Time-dependent covariates We also conducted simulations for the settings where time-dependent
covariates are present to evaluate the performance of β̂DAC. Since neither glmnet nor ncvsurv allows
time-dependent survival data, we used β̂ full,lin as a benchmark to compare β̂DAC with. In addition, we
compared the performance of β̃DAC relative to β̃�full

.
We considered p = 100 consisting of pind = 50 time-independent covariates and pdep = 50 time-

dependent covariates. The simulation of the survival data with time-dependent covariates extended the
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simulation scheme of Austin (2012) from dichotomous time-dependent covariates to continuous time-
dependent covariates. We considered four time intervals R1 = [0, 1), R2 = [1, 2), R3 = [2, 3), and
R4 = [3, ∞), where the time-dependent covariates are constant within each interval but can vary between
intervals. We generated Z = (ZT

ind, Zdep(t ∈ R1)
T, Zdep(t ∈ R2)

T, Zdep(t ∈ R3)
T, Zdep(t ∈ R4)

T)T from
a multivariate normal distribution with mean 0T

pind+4pdep
and variance-covariance matrix V = [I (l =

l′) + vI (l �= l′)]l′=1,...,pind+4pdep
l=1,...,pind+4pdep

, where Zind are the time-independent covariates and Zdep(t ∈ Rj ) are the
time-dependent for t ∈ Rj . We similarly considered v = 0.2, 0.5, 0.8 to represent weak, moderate, and
strong correlations.

We generated Ti from a Weibull distribution with a shape parameter of 2 and a scale parameter of

{0.05 exp(βT
0Zi(t))}−0.5, where β

(IV)

0 = (β
(IV)T

ind,0 , β(IV)T

dep,0)
T,

β
(IV)

ind,0 = (0.08T
3 , 0.04T

3 , 0.02T
3 , 0T

pind−9)
T, and β

(IV)

dep,0 = (0.08T
3 , 0.04T

3 , 0.02T
3 , 0T

pdep−9)
T.

We considered an administrative censoring with Ci = 4, leading to 44% censoring under the three scenarios
represented by weak, moderate, and strong correlations of the design matrix.

3.1.3. Measures of performance For any β̂ ∈ {β̂DAC, β̂ full, β̂ full,lin, β̂MV}, we report (i) the average com-
putation time for β̂; (ii) the global mean squared error (GMSE), defined as (β̂ − β0)

T
V(β̂ − β0); (iii)

empirical probability of j �∈ Â; (iv) the bias of each individual coefficient; and (v) mean squared error
(MSE) of each individual coefficient. For β̂DAC and β̂ full,lin, we also report the empirical coverage level of
the 95% normal confidence interval with standard error estimated as described in Section 2.3. For any
β̃ ∈ {β̃DAC, β̃�full

}, we report (i) the average computation time for β̃; (ii) the global mean squared error

(GMSE), defined as (β̃ − β0)
T
V(β̃ − β0).

When only computing time is of interest, we calculate the average computation time for each configu-
ration by averaging over 10 simulated datasets performed on Intel® Xeon® CPU E5-2697 v3 @ 2.60GHz.
The average computation time for each configuration in the time-dependent settings is based on simu-
lations using 50 simulated datasets performed on Intel® Xeon® E5-2620 v3 @2.40GHz. The statistical
performance is evaluated based on 1000 simulated datasets for each configuration. Although the DAC
algorithms can be more efficiently implemented via parallel computing, we report the computational time
for DAC algorithms carried out without parallelization for fair comparisons to other algorithms, and for
each simulation, we run a single-core job including all the methods under comparison.

3.2. Simulation results

We first show in Table 1, the average computation time and GMSE of unpenalized estimators β̃DAC and
β̃�full

. The results suggest that β̃DAC with two iterations (I = 2) attains a GMSE comparable to the full

sample-based estimator β̃�full
and reduced the computation time by more than 50%. The DAC estimator

β̃DAC with two iterations (I = 2) has a similar GMSE to I = 3. Across all settings, the results of β̂DAC are
nearly identical with I = 2 or I = 3, and hence we summarize below the results for β̂DAC only for I = 2
unless noted otherwise.

3.2.1. Computation time The computation time is summarized in Tables 2 and 3 for β0 = β
(I)
0 and β

(II)
0 ,

and Tables S1 and S2 of supplementary material available at Biostatistics online for β0 = β
(III)
0 for time-

independent survival data. There are substantial differences in computation time across methods. Across
different settings, the average computation time of β̂DAC ranges from 9.2 to 10.2 s for p = 50 and from

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxz036#supplementary-data
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19.1 to 58.0 s for p = 200, with virtually all time spent on the computation of the unpenalized estimator
β̃DAC. On the contrary, β̂ full requires a substantially longer computation time with average time ranging
from 443 to 500 s for p = 50 and from 607 to 1080 s for p = 200. This suggests that the computation
time of β̂DAC is about 2% of the full sample estimator when p = 50 and about 5% when p = 200. On
the other hand, β̂MV has a substantially longer average computation time than β̂ full. This is because the
MCP procedure, requiring more computational time than the aLASSO, needs to be fitted K = 100 times.
As shown in Table S3 of supplementary material available at Biostatistics online, when the sample size
varies from n0 = 105 to n0 = 9 × 106, the computation time increases for all methods but the increase
is more drastic for β̂ full and β̂MV. The full sample estimator β̂ full can only be calculated when requesting
a very large memory (150GB) when n0 = 9 × 106 while β̂DAC can be computed with a much smaller
memory.

In the presence of time-dependent covariates, Table 4 shows that β̂DAC has an average computation time
of 112–121 s for pind = 50 and pdep = 50; β̂ full,lin has an average computation time of 254–264 s. Virtually
all computation time for β̂DAC and β̂ full,lin is spent on the computation of the unpenalized initial estimator
β̃DAC, which has more observations and requires substantially more computation time compared to the
setting with time-independent covariates given the same n0 and p.

3.2.2. Statistical performance The results for the simulation scenarios with only time-independent
covariates are summarized in Tables 2 and 3 for β0 = β

(I)
0 and β

(II)
0 , and Tables S1 and S2 of supplementary

material available at Biostatistics online for β0 = β
(III)
0 . In general, β̂DAC is able to achieve a statistical

performance comparable to β̂ full, while β̂MV generally has a worse performance, with respect to the GMSE
and variable selection, bias, and MSE of individual coefficient. For example, as shown in Table 2, the
GMSEs (×10−5) for β̂DAC, β̂ full, and β̂MV are respectively 4.27, 4.24, and 5.61 when p = 50 and v = 0.2;
4.1, 4.08, 5.5 when p = 200 and v = 0.2. The relative performance of different procedures has similar
patterns across different levels of correlation v among the covariates. When the signals are relatively strong
and sparse as for β0 = β

(I)
0 or β

(II)
0 , β̂DAC and β̂ full have small biases and achieved perfect variable selection,

while β̂MV substantially excludes the β0j = 0.05 signal when p = 200. For the more challenging case of
β0 = β

(III)
0 where some of the signals are weak, the variable selection of β̂DAC and β̂ full is also near perfect.

Both penalized estimators for the weakest signal (0.035) exhibit a small amount of bias when v = 0.2
and 0.5 and an increased bias when v = 0.8. Such biases in the weak signals are expected for shrinkage
estimators (Menelaos and others, 2016), especially in the presence of high correlation among covariates.
However, it is important to note that β̂DAC and β̂ full perform nearly identically, suggesting that our DAClin

procedure incurs negligible additional approximation errors. On the other hand, β̂MV has difficulty in
detecting the 0.05 and 0.035 signals and tends to produce substantially higher MSE than β̂DAC.

The empirical coverage levels for the confidence intervals are close to the nominal level across all
settings except for the very challenging setting with very weak signals when the correlation is v = 0.8.
This again is due to the bias inherent in shrinkage estimators. The relative performance of β̂DAC, β̂ full and
β̂MV remains similar across different sample sizes. When n0 varies from 105 to 9 × 106, β̂DAC remains
the best performing estimator with precision comparable to β̂DAC while maintaining substantial advantage
with respect to computational efficiency.

The results for the time-dependent survival are summarized in Table 4. We find that β̂DAC also generally
has a good performance in estimating β

(IV)

0 for both time-independent and time-dependent covariates. The
variable selection consistency holds perfectly for all parameters of interest. The coverage of the confidence
intervals also has similar patterns as the case with time-independent covariates.

The proposed DAC approach was implemented as an R software package divideconquer, which is
available at https://github.com/michaelyanwang/divideconquer.

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxz036#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxz036#supplementary-data
https://github.com/michaelyanwang/divideconquer
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Table 1. Comparisons of β̃DAC I = 1, 2, 3 and β̃�full
with respect to average computation time in seconds

and global mean squared error (GMSE ×10−5) for the estimation of β
(I)
0 , β

(II)
0 , β

(III)
0 , and β

(IV)

0

(a) Time-independent

β0 = β
(I)
0 β0 = β

(II)
0 β0 = β

(III)
0

v Estimator Time GMSE Time GMSE Time GMSE

p = 50
0.20 I = 1 5.2 19.3 4.5 21.1 4.3 21.2

β̃DAC I = 2 10.1 19.3 8.7 21.1 8.4 21.2
I = 3 15.1 19.3 12.9 21.1 12.4 21.2

β̃�full
26.1 19.2 24.0 21.0 24.2 21.1

0.50 I = 1 6.3 18.1 5.8 19.5 5.5 20.4
β̃DAC I = 2 10.3 18.1 9.8 19.5 9.3 20.4

I = 3 14.3 18.1 13.7 19.5 13.2 20.4

β̃�full
32.9 18.0 31.3 19.4 30.3 20.4

0.80 I = 1 5.3 17.9 5.2 18.7 5.1 19.7
β̃DAC I = 2 9.2 17.8 9.0 18.7 8.9 19.7

I = 3 13.1 17.8 12.9 18.7 12.8 19.7

β̃�full
30.3 17.7 29.6 18.6 29.2 19.7

p = 200
0.20 I = 1 10.2 74.9 13.9 83.8 17.1 85.0

β̃DAC I = 2 19.0 74.5 26.4 83.4 32.7 84.6
I = 3 27.8 74.5 38.8 83.4 48.2 84.6

β̃�full
62.0 74.3 83.1 83.2 102 84.4

0.50 I = 1 20.5 69.0 22.8 76.5 24.7 80.6
β̃DAC I = 2 39.3 68.3 43.9 76.1 47.7 80.3

I = 3 58.0 68.3 64.8 76.1 70.5 80.3

β̃�full
126 68.1 142 75.9 151 80.1

0.80 I = 1 26.9 66.0 28.6 72.0 30.0 77.3
β̃DAC I = 2 51.9 65.0 55.2 71.5 57.9 76.9

I = 3 76.8 65.0 81.7 71.5 85.7 76.9

β̃�full
169 64.9 180 71.3 190 76.7

(b) Time-dependent

β0 = β
(IV)
0

v Estimator Time GMSE
0.2 I = 1 62.0 17.9

β̃DAC I = 2 121 17.9
I = 3 179 17.9

β̃�full
262 18.0

0.5 I = 1 58.0 17.9
β̃DAC I = 2 112 17.9

I = 3 166 17.9

β̃�full
263 17.9

0.8 I = 1 58.3 18.0
β̃DAC I = 2 114 18.0

I = 3 169 18.0

β̃�full
254 17.9
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4. APPLICATION OF THE DAC PROCEDURE TO MEDICARE DATA

We applied the proposed DAClin algorithm to develop risk prediction models for heart failure-specific
readmission or death within 30 days of discharge among Medicare patients who were admitted due to
heart failure. The Medicare inpatient claims were assembled for all Medicare fee-for-service beneficiaries
during 2000 − 2012 to identify the eligible study population. The index date was defined as the discharge
date of the first heart failure admission of each patient. We restricted the study population to patients
who were discharged alive from the first heart failure admission. The outcome of interest was time to
heart failure-specific readmission or death after the first heart failure admission. Because readmission
rates within 30 days were used to assess the quality of care at hospitals by the Centers for Medicare and
Medicaid Services (CMS) (CMS, 2016), we censored the time to readmission at 30 days. For a patient who
was readmitted or died on the same day as discharge (whose claim did not indicate discharge dead), the
time-to-event was set at 0.5 days. Due to the large number of ICD-9 codes, we classified each discharge
ICD-9 code into disease phenotypes indexed by phenotype codes according to Denny and others (2013).
A heart failure admission or readmission was identified if the claim for that admission or readmission had
a heart failure phenotype code at discharge.

We considered two sets of covariates: (i) time-independent covariates including baseline individual-
level covariates collected at time of discharge from the index heart failure hospitalization, baseline area-
level covariates at the residential ZIP code of each patient, and indicators for time trend including dummy
variables for each year and dummy variables for each months, and (ii) time-dependent predictors that vary
day-by-day. Baseline individual-level covariates included age, sex, race (white, black, others), calendar
year, and month of the discharge, Charlson comorbidity index (CCI) (Quan and others, 2005) which
described the degree of illness of a patient, and indicators for nonrare comorbidities (defined as prevalence
> 0.1 among the study population). Baseline area-level covariates included socioeconomic status variables
(percent black residents [ranging from 0 to 1], percent Hispanic residents [ranging from 0 to 1], median
household income [per 10 000 increase], median home value [per 10 000 increase], percent below poverty
[ranging from 0 to 1], percent below high school [ranging from 0 to 1], percent owned houses [ranging
from 0 to 1]), population density (1000 per squared kilometer), and health status variables (percent taking
hemoglobin A1C test [ranging from 0 to 1], average BMI, percent ambulance use [ranging from 0 to
1], percent having low-density lipoprotein test [ranging from 0 to 1], and smoke rate [ranging from 0 to
1]). The time-dependent covariates included daily fine particulate matter (PM2.5) predicted using a neural
network algorithm (Di and others, 2016), daily temperature with its quadratic form, and daily dew point
temperature with its quadratic form. There were 574 time-independent covariates and five time-dependent
covariates.

There were n0 = 9 567 752 eligible patients with a total of d0 = 2 079 436 heart failure readmissions or
deaths, among which 1 453 627 were readmissions and 625 809 were deaths. After expanding the dataset
by accounting for time-dependent variables which vary day-by-day, the time-dependent dataset contained
245 623 834 rows of records.

We fitted cause-specific Cox models for readmission due to heart failure or deaths as a composite
outcome, considering two separate models: (i) a model containing only time-independent covariates and
(ii) a model incorporating time-dependent covariates. In both cases, the datasets were too large for glmnet
package to analyze as a whole, demonstrating the need for DAClin.

4.1. Time-independent covariates only

We applied DAClin with K = 50 and paralleled DAClin on 25 Authentic AMD Little Endian @2.30GHz
CPUs. Computing β̂DAC with I = 2 took 1.1 h, including the time of reading datasets from hard drives
during each iteration of the update of the one-step estimator. Figure 1a shows the hazard ratio of each
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Cerebrovascular disease
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Type 2 diabetes with renal manifestations
Other specified gastritis
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Pain in joint
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Urinary complications NEC

Disorders of magnesium metabolism
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Allergy/adverse effect of penicillin
Cerebral atherosclerosis
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Abdominal aortic aneurysm
Poisoning/allergy of sulfonamides

Psoriasis vulgaris
Macular degeneration (senile) of retina NOS

Bladder neck obstruction
Nonrheumatic pulmonary valve disorders

Duodenitis
Disease of tricuspid valve

Tuberculosis
Dyspepsia and other specified disorders of function of stomach

Injury, NOS
Heart failure NOS

Vascular dementia
Iatrogenic hypotension

Heart failure with preserved EF [Diastolic heart failure]
Regional enteritis
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Osteoarthrosis, generalized
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Other upper respiratory disease
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Atherosclerosis
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Alcoholism

Gastric ulcer
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Thyrotoxicosis with or without goiter
Stricture of artery

Epistaxis or throat hemorrhage
Dual eligibility

Premature beats
Acquired absence of breast

Fracture of ribs
Aneurysm and dissection of heart

Cellulitis and abscess of arm/hand
Postoperative infection

Ulcer of esophagus
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Fig. 1. Hazard ratios of each covariate in estimating hazard of heart failure readmissions or death within 30 days
after the first admission using DAClin. (a) time-independent variables, (a) time-independent variables (continue),
(b) time-dependent variables, and (b) time-dependent variables (continue).
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End stage renal disease
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Symptoms involving respiratory system and other chest symptoms

Major depressive disorder
Acute and subacute necrosis of liver

Pleurisy; pleural effusion
Nonrheumatic aortic valve disorders
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Secondary malignant neoplasm of digestive systems

Gram positive septicemia
Jaundice (not of newborn)

Intestinal infection due to C. difficile
Mitral valve disease
Cardiogenic shock

Dysphagia
Secondary malignancy of bone

Hypercalcemia
Arterial embolism and thrombosis of lower extremity artery

Non−Hodgkins lymphoma
Myeloproliferative disease

Other acute and subacute forms of ischemic heart disease
Acute renal failure

Fracture of neck of femur
Protein−calorie malnutrition

Chronic passive congestion of liver
Secondary malignancy of respiratory organs

Cardiac arrest
Occlusion of cerebral arteries, with cerebral infarction

Idiopathic fibrosing alveolitis
Endocarditis

Respiratory insufficiency
Liver abscess and sequelae of chronic liver disease

Myocardial infarction
Multiple myeloma

Atherosclerosis of native arteries of the extremities with ulceration or gangrene
Cancer of esophagus

Cancer of bronchus; lung
Respiratory failure

Hemiplegia
Acute, but ill−defined cerebrovascular disease

Secondary malignancy of brain/spine
Decubitus ulcer

Pneumonitis due to inhalation of food or vomitus
severe protein−calorie malnutrition

Malignant neoplasm, other
Cachexia

Ascites (non malignant)
Renal failure NOS

Subdural hemorrhage
Other conditions of brain

Hyperosmolality and/or hypernatremia
Pancreatic cancer

Cerebral artery occlusion, with cerebral infarction
Nutritional marasmus

Secondary malignant neoplasm of liver
Adult failure to thrive

Gangrene
Subdural hemorrhage (injury)

Intracerebral hemorrhage
Myeloid leukemia, acute

Population density

Hazard ratio
a(4)

Fig. 1. Continued. a(3) and a(4) time-independent variables.
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Myalgia and myositis unspecified

Month 10 vs 1
Cancer of kidney and renal pelvis

GERD
Supraventricular premature beats

Fever of unknown origin
Angina pectoris

Reflux esophagitis
Glaucoma

Disorders of esophageal motility

Hazard ratio
b(1)

0.
95

1.
00

Month 11 vs 1
Pernicious anemia

Second degree AV block
Year 2005 vs 2000
Gouty arthropathy

Complications of surgical and medical procedures
Other abnormal glucose
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Type 2 diabetes with renal manifestations
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Nonrheumatic pulmonary valve disorders

Macular degeneration (senile) of retina NOS
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Hazard ratio
b(2)

Fig. 1. Continued. b(1) and b(2) time-dependent variables.
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Chronic ulcer of leg or foot
Hypotension
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Secondary malignant neoplasm

Other symptoms involving urinary system
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Encephalopathy, not elsewhere classified
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End stage renal disease
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Symptoms involving respiratory system and other chest symptoms
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Debility unspecified
Secondary malignant neoplasm of digestive systems
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Jaundice (not of newborn)

Intestinal infection due to C. difficile
Mitral valve disease

Cardiogenic shock
Secondary malignancy of bone
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Hypercalcemia

Arterial embolism and thrombosis of lower extremity artery
Non−Hodgkins lymphoma
Myeloproliferative disease

Acute renal failure
Other acute and subacute forms of ischemic heart disease

Protein−calorie malnutrition
Fracture of neck of femur

Secondary malignancy of respiratory organs
Chronic passive congestion of liver

Cardiac arrest
Occlusion of cerebral arteries, with cerebral infarction

Idiopathic fibrosing alveolitis
Endocarditis

Respiratory insufficiency
Liver abscess and sequelae of chronic liver disease

Myocardial infarction
Multiple myeloma

Atherosclerosis of native arteries of the extremities with ulceration or gangrene
Cancer of esophagus

Cancer of bronchus; lung
Respiratory failure

Hemiplegia
Acute, but ill−defined cerebrovascular disease

Secondary malignancy of brain/spine
Decubitus ulcer

Pneumonitis due to inhalation of food or vomitus
severe protein−calorie malnutrition

Malignant neoplasm, other
Ascites (non malignant)

Cachexia
Renal failure NOS

Other conditions of brain
Hyperosmolality and/or hypernatremia

Pancreatic cancer
Cerebral artery occlusion, with cerebral infarction
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Adult failure to thrive
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Barrett’s esophagus
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Population density

Hazard ratio
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Fig. 1. Continued. b(3) and b(4) time-dependent variables.
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covariate based on β̂DAC with I = 2 predicting heart failure-specific readmission and death within 30
days.

Multiple comorbidities are associated with an increased risk of 30-day readmission or death with
the leading factors including renal failures, cancers, malnutrition, subdural or intracerebral hemorrhage,
myocardial infarction, endocarditis, respiratory failure, and cardiac arrest. CCI is also associated with
an increased hazard of the outcome. These findings are generally consistent with those reported in the
literature. For example, Philbin and DiSalvo (1999) reported that ischemic heart disease, diabetes, renal
diseases, and idiopathic cardiomyopathy were associated with an increased risk of heart failure-specific
readmission within a year. Leading factors negatively associated with readmissions include virus infec-
tions, asthma, and chronic kidney disease in earlier stages. These negative association findings are reflective
of both clinical practice patterns and the biological effects, as most of the negative predictors are generally
less severe than the positive predictors.

Some socioeconomic status predictors are relatively less important in predicting the outcome after
accounting for the phenotypes, where percentage of black people, median household income, and percent
below poverty are dropped and dual eligibility, median home value, percent below high school has a
small hazard ratio. By comparison, Philbin and others (2001) reported a decrease in readmission as
neighborhood income increased. Foraker and others (2011) reported that given comorbidity measured
by CCI, the readmission or death hazard was higher for low socioeconomic status patients. The present
article considered more detailed phenotypes in addition to CCI suggesting a relatively smaller impact of
socioeconomic status. The difference in results is possibly because comorbidity may be on the causal
pathway between socioeconomic status and readmission or death. Adjusting for a detailed set of co-
morbidities partially blocks the effect of socioeconomic status. Percent Hispanic residents is negatively
associated with readmission or death. Percent occupied houses increase the risk of readmission or death,
which is consistent with the strong positive prediction by population density. Most ecological health
variables showed a small hazard ratio.

Black and other race groups have a lower hazard than white. Females have a lower hazard than males,
which is consistent with Roger and others (2004) that females had a higher survival rate than males after
heart failure. Age is associated with an increased hazard of readmission or death, as expected.

The coefficient by month suggests a higher risk of readmission or death in cold seasons than warm
seasons, with a larger negative hazard ratio for summer indicators. The short-term readmission or death
rate is decreasing over time, which is suggested by the negative hazard ratio of later years. The later
calendar year being negatively associated with readmission risk may be an indication of improved follow-
up care for patients discharged from heart failure. Consistently, (Roger and others, 2004) also suggested
an improved heart failure survival rate over time.

4.2. Incorporating time-dependent covariates

The analysis in Section 4.2 has two goals. First, the covariates serve as the risk predictors of the haz-
ard of heart failure-specific readmission. Second, all covariates other than PM2.5 serve as the potential
confounders of the association between PM2.5 and readmission, particularly time trend and area-level
covariates. The DAClin procedure is a variable selection technique to drop non-informative confounders
given the high dimensionality of confounders. This goal aligns with Belloni and others (2014), which
constructs separate penalized regressions for the propensity score model and outcome regression model to
identify confounders. We, herein, focused on building a penalized regression for the outcome regression
model.

We applied DAClin algorithm with K = 200 to this time-dependent survival dataset. The procedure
was paralleled on 10 Authentic AMD Little Endian @2.30GHz CPUs. The estimation of β̂DAC with I = 2
took 36.5 h, including the time of loading the datasets into memory. The result suggests each 10 μg m−3
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increase in daily PM2.5 was associated with 0.5% increase of risk (95% confidence interval: 0.3–0.7)
adjusting for individual-level, area-level covariates, and temperature. Because there is rare evidence on
whether air pollution is associated with heart failure-specific readmission or death among heart failure
patients and it is rare to estimate the health effect of daily air pollution using a time-dependent Cox model,
this model provides a novel approach to address a new research question. While evidence is rare on the
association between daily PM2.5 and heart failure-specific readmission, some studies used case-crossover
design to estimate the effect of short-term PM2.5 on the incidence of heart failure admissions. Pope and
others (2008) found that a 10 μg m−3 increase in 14-day moving average PM2.5 was associated with a
13.1 (1.3–26.2) increase in the incidence of heart failure admissions among elderly patients; Zanobetti
and others (2009) reported that each 10 μg m−3 increase in 2-day averaged PM2.5 was associated with
a 1.85 (1.19–2.51) increase in the incidence of congestive heart failure admission. There is also a large
body of literature suggesting that short-term exposure to PM2.5 is associated with an increased risk of
death. For example, Di and others (2017) shows among the Medicare population during 2000–2012 that
each 10 μg m−3 increase in PM2.5 was associated with an 1.05% (0.95–1.15) increase in mortality risk. In
addition, Figure 1b shows the covariate-specific estimates of the hazard ratio for all the covariates, with
the estimates consistent with the analysis of time-independent dataset.

5. DISCUSSION

The proposed DAClin procedure for fitting aLASSO penalized Cox model reduces the computation cost,
while it maintains the precision of estimation and accuracy in variable selection with an extraordinarily
large n0 and a numerically large p. The use of β̃DAC makes it feasible to obtain the

√
n0-consistent estimator

required by the penalized step (e.g. when there is a constraint in RAM) and shortens the computation time
of the initial estimator by > 50%. The improvement in the computation time was substantial in the
regularized regression step. The LSA converted the fitting of regularized regression from using a dataset
of size n0 to a dataset of size p.

The majority voting-based method β̂MV with MCP (Chen and Xie, 2014) had a substantially longer
computation time than β̂ full. The difference primarily comes from (i) the fact that the Cox model with MCP
is fitted K times and (ii) the computational efficiency between glmnet algorithm which is more efficient
than the MCP algorithm in ncvsurv (Breheny and Huang, 2011).

The difference in variable selection between β̂DAC and β̂MV (Chen and Xie, 2014) is primarily due to the
majority voting. The simulations in Chen and Xie (2014) have shown that an increase in the percentage for
the majority voting decreased the sensitivity and increased the specificity of variable selection. Similarly
in the simulations of the present study with a 50% of the majority vote, Chen and Xie’s procedure showed
a high specificity but the sensitivity was low for weaker signals as demonstrated in the simulation studies.

For non-weak signals, the oracle property appears to hold well as evidenced by the simulation results
for β

(I)
0 and β

(II)
0 shown in Tables 2 and 3. For weak signals such as 0.035 in β

(III)
0 , the oracle property

does not appear to hold even with n0 = 1 000 000 and the bias in the shrinkage estimators results in
confidence intervals with low coverage. This is consistent with the impossibility result shown in Potscher
and Schneider (2009), which suggests difficulty in deriving precise interval estimators when aLASSO
penalty is employed.

When parallel computing is available, a larger K may be preferable for our algorithm as it can reduce

the overall computational time provided that K = o(n
1
2
0 ). When n is not large relative to p, we may increase

the stability of the algorithm by replacing β̃
[0]
DAC with β̃�1∪···�d

for some d such that nd � p. Potential
approaches to further reduce the computation burden for large p settings include employing a screening
step or employing DAC in the second step of the algorithm. However, deriving the statistical properties
of DAC algorithms in the large p setting can be more involved and warrants further research.
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