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Abstract
Both, decline of sensorimotor functions and cortical thickness are known processes in healthy aging. Physical activity has 
been suggested to enhance the execution of daily routine activities and to extend the time of functional independence in 
advanced age. We hypothesized that cortical thickness of motor areas in retired individuals could be related to physical 
demands of the profession carried out during working life. Depending on their former occupations, 69 cognitively healthy 
individuals (range 70–85 years) were divided into higher and lower physically complex occupations (HPCO n = 27 and 
LPCO n = 42) according to the international standard classification of occupations (ISCO-08). Participants underwent a 
high-resolution 3T T1-weighted MRI scan. Surface-based analysis revealed higher cortical thickness in the left precentral 
(P = 0.001) and postcentral gyrus (P < 0.001) and right postcentral gyrus (P = 0.001) for the HPCO relative to the LPCO 
group (corrected for multiple comparisons, sex, age and leisure activities in the past 20 years). Physical leisure activities 
associated with exertion were positively correlated with cortical thickness in the left pre- and postcentral gyrus (P = 0.037) 
of the LPCO group. Time since retirement was negatively associated with cortical thickness in the left postcentral gyrus 
(P = 0.004) of the HPCO group. Executing a higher physically complex occupation before retirement was related to relative 
higher cortical thickness in the primary motor and somatosensory cortex in later life, supporting the hypothesis that physi-
cal activity contributes to neural reserve in these regions. However, these benefits appear to vanish when physical activity 
is reduced due to retirement.
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Introduction

The concept of brain reserve (BR) means that variations in 
structural characteristics of the brain allow individuals with 
high BR to better tolerate brain aging and pathology than 
people with low BR and to better preserve cognitive abilities 
(Medaglia et al. 2017; Stern 2017; Stern et al. 2018). This 
model presumes individuals with high premorbid BR to be 
preserved from the development of early and severe cogni-
tive and functional impairments following brain pathology. 
Evidence in favor of this hypothesis has been obtained in 
several previous studies investigating cohorts of patients 
with Alzheimer’s disease (Graves et al. 1996; Stern 2002; 
Perneczky et al. 2010; Murray et al. 2011). The ability of 
the brain to learn and adapt continuously throughout life 
to the environment’s changing demands has been described 
for a broad range of cognitive activities as well as for physi-
cal- and environmental-dependent stimuli (Stern 2017). Age, 
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genetics, and past lifetime exposures including physical 
activity have been shown to induce structural brain changes 
and to slow down age-related brain decline, a phenomenon 
called brain maintenance (Nyberg et al. 2012; Steffener et al. 
2016).

Further to the effect of age on cognitive capabilities, sen-
sorimotor functions have also been reported to be altered 
when life advances (Seidler et al. 2010). Accumulating 
evidence from several brain MRI studies has revealed age-
related cortical decline of task-relevant motor areas as well 
as of brain areas that harbor sensorimotor functions such 
as the prefrontal cortex (for review Seidler et al. 2010; van 
Ruitenbeek et al. 2017). In this line, functional age-related 
dedifferentiation of neuronal presentation of both motor and 
sensorimotor systems has also been found by functional MRI 
(Cassady et al. 2020). These impairments include abilities 
of daily living such as motor control, gait and balance sta-
bility, which are all important to live an independent life. 
Individuals, in particular older ones, who carried out regular 
physical activities as a specific lifestyle component, have 
been shown to exhibit greater neural resources and to have 
an increased resilience against cortical decline and neuro-
degeneration (Gordon et al. 2008; Batouli and Saba 2017). 
Furthermore, higher neural reserves in motor regions may be 
expected to maintain functional independence and to result 
in a better quality of life. In this context, the physical com-
plexity of one’s occupation may be a determinant of cogni-
tive and functional health and may help the brain to avert 
the negative effects of aging and disease (Smart et al. 2014). 
Occupational attainment, education and leisure activities are 
known to share an underlying process that differently affect 
cognitive domains and induce neuronal reorganization pro-
cesses that remain measurable in later life (Foubert-Samier 
et al. 2012). In previous studies, that merely differentiated 
cognitively stimulating from non-stimulating activities, cog-
nitively complex occupations were associated with higher 
memory and greater executive functioning (Opdebeeck et al. 
2016). Thus, executing a physically complex occupation 
might provide an additive and independent source of neural 
reserve throughout life.

In consideration of the increasing proportion of older peo-
ple in the society, understanding which factors might impact 
structural brain changes during aging becomes increasingly 
important. Although advanced age is the strongest known 
risk factor for brain atrophy, few studies focused on the influ-
ence of occupation on neural reserve. To date, it is unknown 
whether executing a physical demanding job modifies cor-
tical thickness. Based on previous volumetric MRI stud-
ies that detected age-related gray matter (GM) decline in 
task-relevant cortical areas (van Ruitenbeek et al. 2017), we 
hypothesized that physical demands during an individual’s 
life occupation affect cortical thickness of motor areas in 
retirement. The objective of the present study was to assess 

morphological GM differences in a collective of cognitively 
intact (MMSE > 25), healthy participants in advanced age 
depending on the type of occupation performed before 
retirement. We further aimed to investigate the relationship 
between cortical thickness, physical activity at work and 
time since retirement in the overall cohort.

Methods

Study participants

Participants were independently living persons aged from 70 
to 85 years, who were recruited from the general population. 
All individuals were right-handed, native German speak-
ers and had normal or corrected-to-normal sight and hear-
ing. Participants were relatives of neurological patients or 
recruited by word of mouth. They did not receive any mon-
etary compensation. Inclusion criteria were a Mini-Men-
tal State Examination (MMSE; Folstein et al. 1975) score 
higher than 25 and a Geriatric Depression Scale (GDS, short 
form; Sheikh and Yesavage 1986) score lower than 5. Par-
ticipants who reported a neurological (e.g., stroke, traumatic 
brain injury, dementia, epilepsy), psychiatric (e.g., depres-
sion, schizophrenia, substance or alcohol abuse), major med-
ical disease (e.g., cancer, chronic pain etc.) or contraindica-
tions against conducting a MRI (e.g., cardiac pacemaker) 
were excluded from participation in the study. Following 
inspection of MRI scans, participants with confluent white 
matter lesions according to Fazekas score 3 were excluded. 
From a total of 85 study participants, 16 were excluded due 
to chronic vascular leukoencephalopathy (n = 9), previous 
neurological diseases that were not reported at the MRI 
time-point such as severe traumatic brain injury (n = 1), inci-
dental tumor finding (n = 1), neuropsychological test scores 
beyond 2 SD from the mean of standardized norms (n = 4) 
and movement artifacts (n = 1). The final study population 
consisted of 69 cognitively well-performing, healthy older 
participants (46 females, 23 males). The Edinburgh Hand-
edness Inventory measurement scale was used to assess the 
dominance of a person’s handedness in everyday activities 
(Oldfield 1971).

Institutional review board and written participant consent 
were obtained (Ethics Committee of the Medical University 
of Innsbruck, Austria).

Classification of occupations

The current version of the international standard classi-
fication of occupations (ISCO-08) was used for formal 
categorization. Based on the amount of motor demands 
in previous careers, we classified individuals into either 
lower physically complex occupations (LPCO) or higher 
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physically complex occupations (HPCO). The LPCO 
group included occupations that require interaction with 
people and data (including group 01: managers, 02: pro-
fessionals, and 03: science and associate professionals), 
office, sales and care professionals (including group 04: 
clerical support workers, subgroup 05.2: sales workers, 
and 05.3: care professionals). The HPCO group comprised 
service workers (subgroup 05.1) and other physically chal-
lenging jobs (including group 06: skilled agricultural, for-
estry and fisher workers, group 07: craft and related trades 
workers, 08: plant and machine operators and assemblers, 
and 09: elementary occupations), and armed forces. We 
further calculated the time since retirement defined as 
the time period between scan date and year of retirement. 
Lifetime education was defined as the number of years 
of formal education successfully attended over a person’s 
lifetime and inquired during the personal interview.

Leisure activities

Leisure activities were evaluated during a personal inter-
view on a self-reported basis. In detail, individuals were 
asked for the frequency and time period of any hobbies 
as well as for any physically demanding or not demand-
ing activities they had practiced over the past 20 years 
(Karp et al. 2006). Physical leisure activities associated 
with exertion included sports like walking, mountaineer-
ing, riding a bike, doing gymnastics or yoga and garden-
ing. Bimanual activities included handcraft work such as 
needlework, weaving and knitting, playing an instrument 
with the need of two hands, doing repair works where the 
use of both hands is obligatory. The sum of all regularly 
executed physical activities associated with exertion dur-
ing the last 20 years in hours per week was used for further 
statistical models.

Magnetic resonance imaging data acquisition

All participants underwent high-resolution T1-weighted 
MRI in a 3  T scanner (MAGNETOM Skyra, Siemens 
Healthcare). The MRI conventional protocol included 
a high-resolution T1-weighted 3D MPRAGE sequence 
in 1 mm isotropic resolution coverage (TR 1800 ms, TE 
2.22 ms, 192 contiguous coronal slices, in-plane field of 
view 192 × 256 mm, voxel resolution 1 × 1 × 1 mm; acqui-
sition time 5:53 min) and an axial T2-weighted FLAIR 
sequence (TR = 10,000 ms, TE = 90 ms, TI = 2500 ms). All 
MRI data were visually inspected for artifacts arising from 
motion or instrument failure passed this quality control as 
well as the homogeneity control implemented in the CAT12 
toolbox.

Surface‑based morphometry analysis

The estimation of the cortical surface was conducted using an 
automated processing pipeline implemented in the Computa-
tional Anatomy Toolbox (CAT, version 12.6) within SPM12 
while running MATLAB 9.5 (R2018b; MathWorks, Natick, 
MA, USA). Briefly, high-resolution T1 images were bias-field 
corrected, skull-stripped, aligned to a Montreal Neurological 
Institute standard space (MNI-152 template) and segmented as 
gray matter, white matter, and cerebrospinal fluid (Ashburner 
and Friston 2005). The cortical thickness and the central sur-
face were calculated in one step based on the projection-based 
thickness (PBT) approach, which also allowed partial volume 
information, sulcal blurring and sulcal asymmetries to be 
managed without explicit sulcus reconstruction via skeleton 
or thinning methods (Dahnke et al. 2013). Additionally, the 
surface stream included topological correction, spherical map-
ping, and spherical registration (Yotter et al. 2011). Finally, 
cortical thickness maps were re-sampled into a common coor-
dinate system and smoothed with a Gaussian kernel of 15 mm 
(FWHM). The pre-processing steps were visually inspected to 
ensure that no misalignment of brain structures had occurred.

Statistical analysis

Independent-sample t tests were performed to compare 
demographic variables and clinical characteristics between 
the LPCO and the HPCO group. A whole-brain surface-
based analysis was performed to assess categorical differ-
ences between the LPCO and the HPCO group using a full 
factorial model with age and sex as well as physical leisure 
activities associated with exertion in the last 20 years and 
education as covariates. In addition, the interaction of edu-
cation × group (LPCO, HPCO) on cortical thickness of the 
motor cortex was tested. Voxel-wise correlation analyses 
were performed by using the general linear model imple-
mented in SPM. The relationship between MRI voxel val-
ues and physical activity as well as time since retirement 
were examined with t-contrast. Age and sex were entered as 
covariates. SPM analyses were performed at height-thresh-
olds set to P < 0.001 for group comparisons and to P < 0.01 
for correlation analyses and were subsequently corrected 
for multiple comparison of the entire brain volume using 
by family-wise error (FWE) correction at the cluster level 
(P < 0.05).

Results

Demographics and clinical characteristics

The demographics and clinical characteristics of the partici-
pants are summarized in Table 1. A total of 69 cognitively 
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normal participants were included in this study with a 
mean age of 75.2 ± 3.5  years and a mean education of 
11.4 ± 3.3 years. The HPCO group consisted of 27 and the 
LPCO group of 42 participants. Significant higher education 
levels were found in the LPCO compared to the HPCO group 
(P < 0.001). There were no significant differences in other 
demographic variables including age and sex distribution.

Cortical thickness of higher vs. lower physically 
complex occupations

SPM localized significant higher cortical thickness in the left 
pre- (P = 0.001) and postcentral gyrus (P < 0.001) as well 
as in the right postcentral gyrus (P = 0.001) for the HPCO 
relative to the LPCO group (Table 2; Fig. 1). No significant 
regions of higher cortical thickness were found for the LPCO 
relative to the HPCO group at FWE-corrected thresholds 
set to P < 0.05. No significant interaction between the fac-
tors group and education on cortical thickness of the motor 
cortex was found.

Relationships between cortical thickness, time 
since retirement and physical activity associated 
with exertion

In the LPCO group, cortical thickness measurements of a 
voxel cluster within the left motor cortex were positively 
correlated with physical activity associated with exertion 
(P = 0.037, corrected for multiple comparisons; Table 3; 
Fig. 2). No correlation was found between physical activ-
ity and cortical thickness in the HPCO group. Longer time 
since retirement was negatively correlated with cortical 
thickness in the left sensorimotor cortex in the HPCO group 
(P = 0.004, uncorrected for multiple comparisons; Table 3; 
Fig. 2).

Discussion

In the present study comprising a cohort of 69 cognitive 
well-performing, healthy older individuals, we showed for 
the first time that executing a higher physically complex 

Table 1   Demographic and 
clinical characteristics of the 
entire cohort and the lower 
(LPCO) and higher physically 
complex occupation (HPCO) 
groups+

Raw values are represented as mean (± 1 standard deviation). The statistical tests are corrected for multiple 
comparisons (Holm-Sidak) in 5% significance level
*Significant (P < 0.001)

Whole cohort LPCO HPCO

Age in years 75.2 (3.5) 75.4 (3.3) 74.9 (3.7)
Time since retirement (years) 18.4 (9.8) 17.8 (7.8) 19.2 (11.8)
Sex, % female 46 (67%) 27 (64%) 19 (70%)
MMSE 29 (0.9) 29.2 (0.8) 28.8 (1.1)
GDS 0.7 (1) 0.6 (0.9) 0.93 (1.2)
Education (years) 11.4 (3.3) 12.7 (3.2)* 9.3 (2)*
Fazekas score 1 (0.6) 1 (0.6) 1.1 (0.6)
Occupations, number
 Intellectuals 19 –
 Office, sales and care professionals 23 –
 Service workers – 11
 Elementary occupations – 16

Bimanual activities per week, number
 None (0 h) 51 (74%) 36 (86%) 15 (56%)
 Low (1—4 h) 6 (9%) 2 (5%) 4 (15%)
 Moderate (5—9 h) 7 (10%) 3 (7%) 4 (15%)
 High (> 9 h) 5 (7%) 1 (2%) 4 (15%)

Physical activities associated with exertion per week, number
 None (0 h) 5 (7%) 3 (7%) 2 (7%)
 Low (1–4 h) 28 (41%) 17 (40%) 11 (41%)
 Moderate (5–9 h) 30 (43%) 20 (48%) 10 (37%)
 High (> 9 h) 6 (9%) 2 (5%) 4 (15%)

Physical activity associated with exertion 
(hours per week)

5 (5.3) 4.5 (5.4) 5.2 (4)

Total intracranial volume (TIV, mm3) 1451.8 (144) 1465.2 (154.4) 1431 (123.4)
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occupation before retirement is related to higher cortical 
thickness in specific brain areas in later life. After subclas-
sifying the cohort and controlling for age, sex and physical 

leisure activities associated with exertion, individuals who 
had occupations with higher physical complexity revealed 
significantly higher cortical thickness in the primary motor 

Table 2   Overview of clusters 
showing significant differences 
in cortical thickness between 
higher (n = 27) and lower 
physically complex occupations 
(n = 42) in healthy individuals

Cerebral region Cluster size MNI coordinates t value P value 
FWE-cor-
rected
at cluster 
level

Height threshold

X Y Z

Left postcentral gyrus 482 − 34 − 30 62 4.62 < 0.001 0.001
− 22 − 33 73
− 49 − 17 53

Left precentral gyrus 323 − 40 − 13 49 3.9 0.001
Right postcentral gyrus 300 26 − 33 70 3.93 0.001

37 − 29 59

Fig. 1   Areas of significant cortical thickness differences in the higher (27 participants) vs. the lower physically complex occupations group (42 
participants); P < 0.001, FWE-corrected at P < 0.05. Cranial and lateral view

Table 3   Locations of significant 
associations of cortical 
thickness in extracted clusters, 
physical activity associated 
with exertion and time since 
retirement in healthy individuals

* P value at uncorrected peak level

Cerebral region Cluster size MNI coordinates t value P value FWE-
corrected at cluster 
level

Height 
thresh-
oldX Y Z

Significant correlations of cortical thickness in extracted clusters and physical activity associated with 
exertion in healthy individuals

 Left pre- and postcentral gyrus 213 − 48 − 20 42 3.66 0.037 0.01
− 39 − 15 41
− 47 − 4 47

Significant correlations of cortical thickness in extracted clusters and time since retirement in healthy 
individuals

 Left postcentral gyrus 57 − 27 − 34 68 2.87 0.004* 0.01
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and somatosensory cortex relative to people with lower 
physically complex occupations. Consistently with previ-
ously reported findings (Batouli and Saba 2017), we also 
found that the execution of physically demanding leisure 
activities is associated with higher cortical thickness in pri-
mary motor and somatosensory regions in the LPCO group, 
supporting the hypothesis that exercise supports mainte-
nance of neural resources in these regions of retired indi-
viduals with lower physically complex occupations during 
working life.

Regions that are involved in movement and motor con-
trol, particularly the precentral cortex and the basal ganglia, 
were shown to be particularly vulnerable to aging processes 
(Seidler et al. 2010). Several studies have pointed out that 
cortical thickness in primary motor regions is correlated 
with the level of cardiorespiratory fitness (Weinstein et al. 
2012; Williams et al. 2017), even after 1 week of motor 
adaption training (Landi et al. 2011). Previous analyses 
have also shown that neuroplasticity in pre- and postcen-
tral cortices is modifiable through gymnastics (Huang et al. 
2018) and balance training (Taubert et al. 2016; Rogge et al. 
2018). Additional evidence comes from studies comparing 
groups executing bimanually activities to control cohorts. 
For instance, increased GM volume was found in motor as 
well as auditory and visuospatial brain regions in profes-
sional musicians (keyboard players) compared to amateur 
musicians and non-musicians (Gaser and Schlaug 2003). In 
a further study comprising a cohort of 44 naïve juggling 
participants, better performance was correlated with GM 
increases in the parietal and motor cortices suggesting that 
practice time and performance can modulate the degree of 

structural brain change evoked by long-term training regimes 
(Sampaio-Baptista et al. 2014). We assume that executing a 
physically demanding job initiates a similar training effect 
and results in higher cortical thickness in motor regions. 
Volume loss in task-relevant cortical areas was shown to 
be negatively associated with complex bimanual coordina-
tion performance (van Ruitenbeek et al. 2017). In this line, 
another study of elderly adults revealed increased activation 
of the somatosensory cortex which correlated with motor 
performance (Goble et al. 2010). Especially in individuals 
with advanced age, who were frequently affected by motor 
performance deficits, increased cortical thickness in the 
somatosensory cortex was suggested to represent greater 
proprioceptive information processing of the hands to main-
tain the desired coordination function (Goble et al. 2010).

It is important to mention that the rate of age-related 
decline varies between different brain areas. In this context, 
the precentral cortex was reported to degenerate more rap-
idly compared to other regions (Pfefferbaum et al. 2013). 
In the present study, time since retirement was significantly 
correlated with cortical decline in the HPCO group, but not 
in the LPCO group. This fits well with previous analyses that 
measured cortical decline in non-demented, healthy individ-
uals and detected age-related atrophy patterns prominently 
in primary motor cortices using larger cohorts (Salat et al. 
2004; Sowell et al. 2003) or a within-subject design (Pfef-
ferbaum et al. 2013; Raz et al. 2005). We assume that after 
retirement and the consequently absence of regular physical 
activity, higher neural reserve in the HPCO group decreases 
quicker to a similar level as in the LPCO group. In this line, 
it was observed that individuals with physically demanding 
occupations prefer physically more passive leisure activities 
and vice versa (Lakka et al. 1996; Finger et al. 1998). This 
inversion of preferences might mitigate the differences in 
cortical thickness following retirement. Frequent physical 
exercises may lower the steepness of this slope and help 
to maintain acquired structural reserves in motor regions. 
Concordantly, the results of a recent review demonstrated 
that physical activity is associated with a large network of 
brain areas comprising 82% of the total GM volume (Batouli 
and Saba 2017). Furthermore, physical exercise was shown 
to upregulate the expression of cytokine interleukin (IL)-10 
and attenuate levels of IL-ß and tumor necrosis factor alpha 
(TNFα) secreted from reactive astrocytes and microglia, 
which was hypothesized to result in an anti-inflammatory 
environment within the brain (Kelly 2018). The modulation 
of neuroinflammatory processes through physical exercise 
seems to induce a reversal of deficits in the adult neuro-
genesis and synaptic plasticity, and to slow down cellular 
and cognitive impairments (Shepherd et al. 2018). Physical 
activity appeared to be a propitious trigger to maintain over-
all GM volume in late adulthood, especially in frontal and 
temporal cortices (Bugg and Head 2011), the hippocampus 

Fig. 2   Areas of significant associations between cortical thickness 
in extracted clusters and a physical activity associated with exertion 
(P < 0.01, FWE-corrected at P < 0.05), and b time since retirement in 
healthy individuals (P < 0.01, uncorrected for multiple comparisons). 
Cranial view
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(Head et al. 2012) and the prefrontal cortex (Weinstein et al. 
2012; for review Erickson et al. 2014).

This study has some limitations. The categorization of 
occupations was based on the ISCO-08 classification and 
might not accurately reflect the unique physical demands 
of everyone’s occupation. Another limitation is that our 
study design did not include physical examinations, such 
as a bimanual tracking task, and therefore does not allow 
the assessment of functional correlates. Further longitudi-
nal studies in older adults with detailed physical testing are 
required to confirm our results and to determine potential 
protective and therapeutic effects of exercise on cortical 
thickness.

Conclusions

The present study provides for the first time evidence that 
people over the age of 70 differ in structural reserve depend-
ing on the physical complexity of their occupation during 
working life. Since individual’s occupation represents a large 
part of adult’s life, regular physical activity is strongly sug-
gested to maintain and strengthen cortical thickness in pri-
mary motor and somatosensory regions, which in turn may 
preserve motor abilities in older age. However, the protec-
tive effects appear to vanish if continuous physical activities 
were reduced as a consequence of retirement.
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