Skip to main content
. 2021 Apr 2;21(7):2450. doi: 10.3390/s21072450

Table 3.

Classification performance (%) comparison using different approaches for the DRIVE dataset.

Approach/Metrics AUC ACC
Generative Models
Gaussian Mixture 0.70 84.01
Dirichlet Mixture 0.72 84.79
Scaled Dirichlet Mixture 0.75 84.99
Shifted Scaled Dirichlet Mixture 0.77 85.36
Hybrid Models
Gaussian Mixture + Fisher Kernel 0.81 87.84
Gaussian Mixture + Bhattacharyya Kernel 0.81 89.02
Gaussian Mixture + Kullback–Leibler Kernel 0.81 87.11
Dirichlet Mixture + Fisher Kernel 0.84 88.54
Dirichlet Mixture + Bhattacharyya Kernel 0.86 90.67
Dirichlet Mixture + Kullback–Leibler Kernel 0.84 88.01
Scaled Dirichlet Mixture + Fisher Kernel 0.87 90.87
Scaled Dirichlet Mixture + Bhattacharyya Kernel 0.90 91.33
Scaled Dirichlet Mixture + Kullback–Leibler Kernel 0.85 88.14
Shifted Scaled Dirichlet Mixture + Fisher Kernel 0.88 91.13
Shifted Scaled Dirichlet Mixture + Bhattacharyya Kernel 0.91 91.65
Shifted Scaled Dirichlet Mixture + Kullback–Leibler Kernel 0.91 88.98
Other Methods
Fleming et al. [61] 89.80
Garcia et al. [62] 73.55
Li and Chutatape [63] 85.50
Wang et al. [64] 85.00