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Abstract: The fibrinolytic system provides an essential means to remove fibrin deposits and blood
clots. The actual protease responsible for this is plasmin, formed from its precursor, plasminogen.
Fibrin is heralded as it most renowned substrate but for many years plasmin has been known
to cleave many other substrates, and to also activate other proteolytic systems. Recent clinical
studies have shown that the promotion of plasmin can lead to an immunosuppressed phenotype,
in part via its ability to modulate cytokine expression. Almost all immune cells harbor at least one
of a dozen plasminogen receptors that allows plasmin formation on the cell surface that in turn
modulates immune cell behavior. Similarly, a multitude of pathogens can also express their own
plasminogen activators, or contain surface proteins that provide binding sites host plasminogen.
Plasmin formed under these circumstances also empowers these pathogens to modulate host immune
defense mechanisms. Phylogenetic studies have revealed that the plasminogen activating system
predates the appearance of fibrin, indicating that plasmin did not evolve as a fibrinolytic protease but

check for perhaps has its roots as an immune modifying protease. While its fibrin removing capacity became
updates apparent in lower vertebrates these primitive under-appreciated immune modifying functions still
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1. Introduction
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The plasminogen activating (“fibrinolytic”) system is one of the most important

proteolytic cascades in all mammals and indeed in a variety of other species. While con-
ventionally associated with blood clot removal via the generation of the key protease,
plasmin, this system also performs a multitude of other important functions, some of which
are beginning to impact on clinical medicine. Some of these developments, notably on
the actions of plasmin on the immune response have been recently reviewed [1]. Direct
evidence is now emerging, not only from animal models, but also in humans that the
modulation of the plasminogen activating system does indeed impact on immune func-
tion. This review will discuss the link between the plasminogen activating system with
immune function and also argue the case that the evolution of this system may have been
initially directed at immune modulation but which subsequently became adapted for other

functions, including fibrin removal.
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2. Plasminogen Activation: A Universal System with a Broad Repertoire

For centuries, blood has been known to clot when outside the body. It was also
distributed under the terms and OPserved that clotted blood could also spontaneously dissolve and this was initially put
conditions of the Creative Commons  AOWN to being a result of putrefaction (i.e., just simple protein decay, see [2]). However,
Attribution (CC BY) license (https:// 1N 1893 biochemical studies on fibrin in clotted human blood revealed that the longer
creativecommons.org/licenses /by / blood rested on the bench, the lower the concentration of fibrin that was found [3]. Hence,
4.0/). fibrin was not simply rotting away, but was being removed via some apparent enzymatic
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process. This finding led to the first coining of the term “fibrinolysis” [3]. The biochemical
underpinnings of this newly discovered process were of clear academic interest, but
identifying the protease responsible for attacking the fibrin in the blood was not easy. In fact,
it took another 40 years before scientists stumbled upon an exogenous source of fibrinolytic
activity: the first in the saliva of blood feeding vampire bats by Otto Bier in 1932 [4] and
in the same year, Aoi described a “Fibrolytic” activity in isolates of staphylococcus [5]
that was subsequently identified as staphylokinase (see [6]). In 1933, a fibrinolytic activity
was found in the culture broth of $-haemolytic streptococci [7]. These bacteria were
also responsible for severe bleeding complications in patients and this newly identified
fibrinolytic activity was the likely culprit. The nuts and bolts of the fibrinolytic pathway
were largely revealed using these bacterial sources, mostly from streptococci. Initially the
entity found in streptococci was referred to as “fibrinolysin” but was eventually designated
as “streptokinase”. Critically important experiments revealed streptokinase (and also
staphylokinase) first needed to activate a plasma precursor as first reported by Milstone
in 1941 [8]. This plasma “zymogen” was referred to as “pro-fibrinolysin” (later renamed
as plasminogen) and the active fibrinolytic form as “fibrinolysin” (i.e., plasmin); see [9].
In the meantime, the elusive human-derived plasminogen activators were subsequently
described, the first in 1947 [10] that was detected in human cells (initially referred to as
tissue-cytofibrinolysin, and later as tissue-type plasminogen activator; t-PA) while a urinary
source (urokinase-type plasminogen activator; u-PA) was described in 1952 [11]. While
the fundamental studies using streptokinase and staphylokinase were ground breaking,
mechanistically these bacterial entities were later found to function very differently to the
renowned human plasminogen activators, t-PA and uPA. Indeed, neither streptokinase nor
staphylokinase are plasminogen activators nor kinases. In fact, they are not even proteases
but are rather plasminogen binding proteins: when complexed with plasminogen, the
resulting complex itself becomes a plasminogen activator [12].

During this important period in fibrinolysis research, it did not take long to consider
the possibility that harnessing this process might be of clinical use in patients with throm-
boembolic disease. Indeed, streptokinase was first used clinically in 1949 (in patients
with pleural exudates [13]) and continues to be used today being listed as an essential
medicine by the World Health Organisation (WHO). Staphylokinase was also pursued and
in later years was shown to have distinct benefits over streptokinase; see [14]. Both tPA
and uPA are also widely used agents and therapeutic thrombolysis is now mainstream in
clinical medicine.

On the other side of the coin, it had become apparent early on that excessive fibrinoly-
sis could promote the premature removal of blood clots and cause devastating bleeding.
This led to the development of anti-fibrinolytic agents [15], notably tranexamic acid (TXA)
in the early 1960's, that is also listed today as an essential medicine by the WHO. Therefore,
after the serendipitous finding that a fibrinolytic process existed in 1893 and the subsequent
laboratory studies that followed into the mid 1940’s, mainstream medicine eventually
exploited this enzymatic pathway for clinical benefit either to remove clots by forcibly
generating plasmin, or by blocking plasmin generation or activity to preserve blood clots
and stop bleeding, even to this day.

It would seem that this story could simply end here, and it probably could if not
for the fact that the plasminogen activating process did not evolve for the sole purpose
of removing fibrin. It also seems an anomaly that the renowned endogenous human
plasminogen activators (t-PA and u-PA) are relatively specific for plasminogen, yet the
formed plasmin is not at all solely specific for fibrin. Indeed, the promiscuous, trypsin-
like substrate specificity of plasmin has empowered it with the capacity to cleave many
targets. Hence, the target specificity of plasmin is derived from the plasminogen activators
themselves that decide on where plasmin is produced. However, depending on the location
and circumstances, plasmin has the potential to act upon numerous targets and in doing so
influence a variety of physiological and even pathological processes.
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Adding more complexity to this is that the list of plasminogen activators has expanded
quite impressively. Even in humans, plasminogen can be activated by other serine proteases
including kallikrein [16] and complement [17] while thrombin can have bidirectional effects
on plasminogen activation [18]. However, there is an even longer list of proteases that
activate human plasminogen from various pathogens as discussed below in Section 4.

Plasminogen itself is expressed at high concentration in human plasma (2 uM), but it is
also present in essentially every other compartment at varying levels, ranging from seminal
fluid [19] to the central nervous system [20] (and see [21]). The primary inhibitor of plasmin,
«2-antiplasmin, is also expressed in many of these locations [22,23]. Nonetheless, with the
range of plasminogen activators available from human and non-human sources (below),
plasmin has the potential to be produced and to be largely controlled by antiplasmin (and
by other molecules) almost anywhere, including locations where fibrin is not even present.

It is not surprising that the broad spectrum of plasmin substrates has implicated the
plasminogen activating system in many processes ranging from wound repair to synaptic
plasticity [24]. There is extensive literature that has summarized these non-canonical
activities in the early 2000's [25,26] and in more recent times [1,17,27-29]. However, one
key function that may underpin the broad role of this system is its effect on the immune
response. When reflecting on the early findings of the pioneers in this field, a link between
fibrinolysis and the immune response was evident at the very outset but its profound
effect at removing fibrin and the subsequent clinical development of fibrinolytic and anti-
fibrinolytic agents overshadowed any other possible role. Additionally, off-target effects
of fibrinolytic agents in clinical medicine were essentially only related to bleeding (which
was predicted), while side-effects of the use of anti-fibrinolytic agents were generally
negligible [30,31]. However, then again, any possible effects on immune function were not
on the radar anyway. Additionally, off-target effects may not necessarily be deleterious
anyway and would go undetected.

3. Plasminogen, Fibrinolysis and Immune Function

Plasmin(ogen) is now appreciated for its role as an immune modulator interacting
directly with numerous cells of the immune response including monocytes, macrophages
and dendritic cells [1]. Plasmin, formed on the surface of immune cells, is capable of
activating several pro-inflammatory pathways resulting in cytokine production [32]. Even
in healthy humans, simply administering an antifibrinolytic agent results in a significant
increase in pro-inflammatory cytokines within 2h of treatment [33] suggesting that inherent
plasmin formation provides a means to keep inflammation repressed, but this can quickly
change as soon as plasmin is inhibited. This further implicates the entire plasminogen
activation system as an essential part of an innate surveillance network geared to respond
to immune challenges. Much of this immune/inflammatory signalling is mediated by at
least 12 plasminogen receptors that are differentially expressed on the cell surface of almost
all immune cells [34]. For example, cell surface-bound plasmin(ogen) is required for the
efficient migration of macrophages to sites of inflammation [35]. Plasminogen has also
been shown to promote macrophage phagocytosis in mice, with plasminogen-deficient
mice exhibiting a 60% delay in clearing apoptotic thymocytes by spleen and an 85%
reduction in uptake of immunoglobulin opsonised bodies by peritoneal macrophages [36].
Phagocytosis of antibody-mediated erythrocyte clearance by liver Kupffer cells was also
reduced in plasminogen-deficient mice compared to Plg+/+ mice. Gene array studies
of tissues from these Plg—/— mice revealed downregulation of several genes involved
in phagocytosis, suggesting that plasminogen may be able to change the expression of
certain genes contributing to phagocytosis [36]. Plasmin also engages other elements
of innate immunity including the complement cascade, components of the extracellular
matrix as wells as cells of the vasculature including endothelial and smooth muscle cells [1].
In stark contrast to its pro-inflammatory properties, plasmin also exhibits several anti-
inflammatory and immunosuppressive responses. Plasmin(ogen) appears to regulate, via
its receptor, annexin A1, key aspects of inflammation resolution, in particular, macrophage
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reprogramming, neutrophil apoptosis and efferocytosis [37]. Plasmin-treated dendritic cells
for instance fail to undergo maturation following phagocytosis, exhibit reduced migration
to lymph nodes and also stimulate the release of significant amounts of transforming
growth factor-f3 (TGF-f3) which has immunosuppressive properties. These dendritic cells
also have reduced ability to induce allogeneic lymphocyte proliferation. These properties
of plasmin are important in maintaining tissue homeostasis where it aids in initiating a
response to tissue injury while preventing self-reactivity /autoimmunity [36,38].

Hence, it is apparent that pathogens, by harnessing the plasminogen activating path-
way, might gain an additional advantage by counteracting immune defense processes that
are initiated, at least in part, by cell-surface plasmin generation. While there is clearly an
argument that these pathogens would survive host defenses by clearing fibrin, there is
now looming evidence that also suggests that the hijacking of host plasminogen might aid
pathogen survival by using plasmin to disengage some of the key immune pathways as an
effective countermeasure.

4. Microorganisms, Plasmin Formation and Fibrinolysis

As mentioned above, streptokinase and staphylokinase were discovered as a key
molecule released from some strains of 3-haemolytic streptococci and staphylococcus,
respectively. However, this is not unique to these particular strains as similar molecules are
produced by many other bacteria (below). Even if a molecule is not produced endogenously,
bacteria almost universally have the capacity to bind plasminogen and to use the host
plasminogen activators as a means to generate localized plasmin. The formed plasmin
is harnessed by these pathogens not only to remove the confines of fibrin, but also to
suppress the host immune response and evade local immune attack [39]. Over 40 binding
proteins have been reported in bacterial species which target plasmin(ogen) [40]. For
example, Mycobacterium tuberculosis has 13 proteins with plasminogen binding potential
and Mycoplasma pneumoniae exhibits 6 [41,42].

Plasminogen binding to these proteins activates a variety of mechanisms aimed at
infiltrating host defences. These include for example the degradation of extracellular
matrix proteins by Leptospira, where urokinase (u-PA) activates bound plasminogen to
plasmin which then degrades fibronectin and laminin [43]. Remarkably, streptokinase of
the non-human streptococci show evolutionary species-specificity for the plasminogen
of the animal host they infect [44—46]. Staphylokinase, secreted by Staphyloccocus aureus,
exhibits high affinity binding to plasminogen in plasma, thus forming a complex that can
effectively activate plasminogen (akin to streptokinase) while also evading the inactivating
capacity of a2-antiplasmin by binding to fibrin [14]. Interestingly, Yersinia Pestis, the
causative pathogen of the plague, which killed a third of the European population in the
14th century, expresses a plasmid gene pla which encodes a surface plasminogen activator
protease with unusual kinetic properties. The expression of this protease increases the
virulence of Yersinia Pestis and is also likely to cleave and inactivate plasminogen activator
inhibitor-1 (PAI-1), increasing the conversion of plasminogen to plasmin and promote
virulence in the host [47-49].

Plasminogen-dependent extracellular matrix degeneration is utilised by the main pathogens
causing bacterial meningitis, H. influenzae, S. pneumonia and N. meningitides [44,50]. Further-
more, plasmin’s proteolytic role is harnessed by bacteria in degrading plasma proteins
and peptides, including complement and immunoglobulins, which are critical in antigen
presentation and processing within the host innate immune repertoire [51]. For example,
Leptospira surface protein Lsa23 not only has the ability to block activation of both the
alternative and classical complement pathways, but binds to and activates plasminogen to
plasmin which in turn degrades complement proteins C3b and C4b, together improving
the chances of evading host immunity [52].

Plasminogen receptors are also expressed on fungi including several Candida species,
Aspergillus, Cryptococcus neoformans and Prneumocystis carinii [53,54]. Many of the receptors
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on Cryptococcus have the ability to activate the host PA system to allow the fungus to cross
tissue barriers including the critical blood-brain barrier [55].

Plasminogen is also important in the invasiveness and pathogenesis of several par-
asites. Trypanosoma cruzi, Leishmania and the malarial parasites Plasmodium falciparum
are known to engage enolase-plasminogen binding as well as uPA in aspects of their
pathogenicity and replication [56,57]. More recently, the fibrinolytic system was reported
to be essential for parasite migration across the dermis and liver [58]. Helminth parasites
also exhibit multiple plasminogen binding proteins as they are in contact with fibrinolytic
proteins within the intravascular space. Recruitment of plasminogen on the worm'’s surface
appears to be one method of host immune evasion [40].

Most of the discussion above relates to the consequences of plasmin in modulating
immune surveillance and how this can be intercepted by pathogens. There is also evidence
that the plasminogen activators themselves, and independently of activating plasminogen,
can also modulate immune function. Indeed, catalytically inactive t-PA has been reported
to express inflammatory mediators by macrophages in vitro in a process dependent on LRP-
1 [59]. Another report from the same group implicated a key role for NMDA-1 receptor
signalling in this process and also reported that inactive tPA could block LPS toxicity
in vivo in mice [60]. This same group just recently indicated that enzymatically inactive
t-PA was also protective in a mouse model of inflammatory bowel disease [61].

A summary of the variety of effects of the fibrinolytic system on the immune and
inflammatory responses is presented in Table 1.

Table 1. Properties of plasmin(ogen) in inflammation and immunity.

Target Effects Properties of Plasmin(ogen) References
Proinflammatory ; oAt oAt ; ;
Macrophage and Interacts with macrophage migration and activation via plasminogen receptors. [32,35,62]

Monocyte effects

Dendritic Cell (DC)
effects

Other inflammatory
effects

Immuno-suppression
DC effects

Directly alters gene expression in macrophages by binding plasminogen receptors and

Promotes cytokine production in macrophages.

enhancing phagocytic capacity, efferocytosis and foam cell formation. [37,63,64]
Promote macrophage phagocytosis in mice [36]
Potent chemoattractant of monocytes, induces actin polymerisation. [65]
Activates 5-lipoxygenase pathway in monocytes and macrophages resulting in the synthesis [66]
of proinflammatory leukotrienes.
Stimulates JAK/STAT signalling in monocytes resulting in MCP-1 release, further promoting [67]

monocyte recruitment.
Increases phagocytic activity of DCs without causing activation. [38]
This interaction is involved in the chemoattraction of dendritic cells, T- and B cells.

Triggers chemotaxis of monocyte derived DCs and a T helper type-1 (Thl) phenotype in
CD4+ T cells.
Indirectly promotes neutrophil recruitment by binding to mast cells and stimulating release
of leukotrienes
Induce expression of CCR6-activating chemokine CCL20 in dermis via induction of NF-kB.
Stimulates NF-kB and AP-1, resulting in the production of tumor necrosis factor (TNF)-«,
interleukin (IL)-1«, IL-13, and tissue factor.

Activates phospholipase A2 in endothelial cells, releasing arachidonic acid and subsequent
production of prostacyclin, enhanced nitric oxide (NO)-mediated vasorelaxation and
chemotactic monocyte chemotactic protein (MCP)-1 release.

In pulmonary epithelial cells, plasmin induces cyclooxygenase (COX)-2, resulting in the
release of antifibrotic prostaglandin E-2 (PGE-2).

Promotes complement activation.

Binds to platelets via PAR-4 and dose-dependently activate or inhibit platelet activation and
aggregation. Interacts with extracellular matrix, endothelial cells, smooth muscle.
Plasmin can activate the Matrix Metalloproteinases, transforming growth factor (TGF)-3,
and neurotrophic factors.

Inhibition of DC maturation following phagocytosis thereby inducing a tolerogenic
phenotype.

Reduced migration of DCs to lymph nodes and increase release of TGF-f3. Reduction in DC
ability to induce allogeneic lymphocyte proliferation.

Suppression of proinflammatory cytokines
in vivo, reversed by tranexamic acid.

Inhibition of plasmin reduces post-surgical infection rates.

[68]

[69]
[70]
[71]

[39,72,73]

[74]
[17,75]
[76,77]

[78-80]

[38]

[33]
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5. Phylogenetic Links with Plasminogen Activation

Phylogenetic studies have further provided compelling evidence to suggest that
plasminogen and the plasminogen activators did not co-evolve but eventually became
brothers in arms perhaps as a matter of convenience. Although plasmin, t-PA and u-PA are
serine proteases, the codon usage used for the active serine in plasminogen (AGT) differs
at two position to that used to encode the serine in t-PA (TCG) and u-PA (TCA) [81]. This
strongly suggests that within the serine protease family, plasminogen evolved separately
(and earlier, see below) from u-PA and t-PA

It has also been reported that the primordial ancestor of plasminogen first appeared in
protochordates (e.g., amphioxus, sea squirt and related species) [82,83], animals that contain
hemolymph that does not even clot but which cross-reacts with anti-human plasminogen
antibodies and was localized to the hepatic diverticulum [84]. Plasminogen cDNA was
cloned from Amphioxus B. belcheri and expressed in E. coli. Studies on this recombinant
protein indicated that it contained two kringle domains in the N-terminus (not five as
in humans) and a serine protease domain in the N-terminus. This molecule also lacked
the PAN domain [85]. It also appeared that a lysine binding domain was conserved in
one of these kringles [85]. Moreover, the amphioxus plasminogen harboured the putative
t-PA/u-PA cleavage site (Arg-Val). The catalytic triad (His-Asp-Ser), critical for protease
function was also present and located at positions corresponding to human plasminogen.
Consistent with these finding the amphioxus plasminogen was shown to generate plasmin
when incubated with human uPA [85]. It is not clear what endogenous proteases were used
to activate plasminogen, since the classical plasminogen activators, t-PA and u-PA, only
appeared around 20 million years later in cartilaginous fish, together with PAI-1 (see [83]).
While protochordates cannot generate fibrin, they do contain a primitive yet full length
fibrinogen molecule that does not harbour thrombin cleavage sites [86]. Hence, the primary
function of this early plasminogen/plasmin molecule had nothing to do with fibrinolysis
per se, yet it remains possible that the co-existing primitive fibrinogen itself could have
been a substrate for this early plasmin. As cell clumping had been observed in sea squirts, it
was speculated by Russell Doolittle that this fibrinogen molecule may have been involved
in mediating cell-cell interactions and perhaps having some innate immune function [86].
It is possible that plasminogen had some regulatory function with fibrinogen that also may
have had some relationship with ancestral complement proteins that were also present in
these animals.

As biological complexity evolved with the appearance of vertebrates that included
a sophisticated clotting system, existing molecules gained new or additional enzymatic
functions (perhaps even re-purposed) to generate and to keep fibrin and other proteins in
check. It is acknowledged that caution is needed in extrapolating primitive functions and
the evolutionary time course of fibrin-targeted proteases using extant species. Nonetheless,
the finding that a bonafide plasminogen exists in an extant species that does not make
fibrin is indicative of another in vivo role of plasminogen, which may have been a primitive
immune function.

6. Conclusions, Clinical Implications and Future Potential

There is no doubt about the importance of the fibrinolytic system in the removal of
fibrin. Indeed, modulation of this process, either by increasing or decreasing plasmin
levels has critically important effects in clinical medicine in relation to the removal of
occlusive clots, or to reduce bleeding, respectively. It could be well argued that fibrin is the
most relevant substrate for plasmin in the setting of thrombosis simply due to the mass
of fibrin that accumulates and the risk that this poses. Under physiological conditions,
where fibrin formation is at background levels, plasmin formation still occurs. Plasmin is
a promiscuous protease, so while it might still be performing some degree of fibrinolysis
under normal conditions, its broad substrate specificity empowers it to cleave other targets,
some of which act in an immune surveillance capacity modulating inflammation. This is
apparent from studies on volunteers administered antifibrinolytic drugs where baseline
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levels of proinflammatory cytokines rapidly increase [33]. There are now many other
reports implicating plasmin, tPA and in fact the entire fibrinolytic system in the immune
response. These immune/inflammatory functions may indeed have been the original
role of this enzymatic system given that plasmin generation occurs in lower order species
(protochordates) where fibrin itself is absent. Understanding the evolutionary origins
of the plasminogen activating system and the realization that perhaps it is not as fibrin
centric as initially thought reveals opportunities to apply and harness these properties for
means not previously considered. Could thrombolysis in acute ischaemic stroke impair
the host immune response in a plasmin-mediated manner while also running the risk
of intracerebral haemorrhage? Could antifibrinolytic therapy in major surgery confer
an immune advantage in recovering patients while also avoiding excessive bleeding?
The answers to these questions are slowly emerging as is the potential for the wider
implications of plasmin(ogen) activation beyond just haemostasis, influencing scientific
research, clinical practice and ultimately patient outcomes. Further research aimed at
harnessing the plasminogen activating system for its immune modulatory properties may
potentially open doors to understanding this unique process further.
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