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Abstract: Neurodegenerative diseases, for example Alzheimer’s, are perceived as driven by heredi-
tary, cellular, and multifaceted biochemical actions. Numerous plant products, for example flavonoids,
are documented in studies for having the ability to pass the blood-brain barrier and moderate the
development of such illnesses. Computer-aided drug design (CADD) has achieved importance in
the drug discovery world; innovative developments in the aspects of structure identification and
characterization, bio-computational science, and molecular biology have added to the preparation
of new medications towards these ailments. In this study we evaluated nine flavonoid compounds
identified from three medicinal plants, namely T. diversifolia, B. sapida, and I. gabonensis for their in-
hibitory role on acetylcholinesterase (AChE), butyrylcholinesterase (BChE) and monoamine oxidase
(MAO) activity, using pharmacophore modeling, auto-QSAR prediction, and molecular studies, in
comparison with standard drugs. The results indicated that the pharmacophore models produced
from structures of AChE, BChE and MAO could identify the active compounds, with a recuperation
rate of the actives found near 100% in the complete ranked decoy database. Moreso, the robustness of
the virtual screening method was accessed by well-established methods including enrichment factor
(EF), receiver operating characteristic curve (ROC), Boltzmann-enhanced discrimination of receiver
operating characteristic (BEDROC), and area under accumulation curve (AUAC). Most notably, the
compounds’ pIC50 values were predicted by a machine learning-based model generated by the Auto-
QSAR algorithm. The generated model was validated to affirm its predictive model. The best models
achieved for AChE, BChE and MAO were models kpls_radial_17 (R2 = 0.86 and Q2 = 0.73), pls_38
(R2 = 0.77 and Q2 = 0.72), kpls_desc_44 (R2 = 0.81 and Q2 = 0.81) and these externally validated
models were utilized to predict the bioactivities of the lead compounds. The binding affinity results of
the ligands against the three selected targets revealed that luteolin displayed the highest affinity score
of −9.60 kcal/mol, closely followed by apigenin and ellagic acid with docking scores of −9.60 and
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−9.53 kcal/mol, respectively. The least binding affinity was attained by gallic acid (−6.30 kcal/mol).
The docking scores of our standards were −10.40 and −7.93 kcal/mol for donepezil and galan-
thamine, respectively. The toxicity prediction revealed that none of the flavonoids presented toxicity
and they all had good absorption parameters for the analyzed targets. Hence, these compounds can
be considered as likely leads for drug improvement against the same.

Keywords: Alzheimer’s; pharmacophore modeling; QSAR; molecular docking; bioactive compounds;
neurodegenerative diseases

1. Introduction

Tithonia diversifolia (Hemsl.) A. Gray is recognized as a curative herb employed in
treating many infections [1]. It is commonly known as Mexican sunflower (in English),
bush helianthus or sepeleba (in Yoruba). Numerous reports exist of its anti-Alzheimer,
anti-diabetic, anti-inflammatory, antimicrobial, antimalaria, and anticarcinogenic effects [1].
The leaves contain active anti-inflammatory constituents including diversifolin and tiro-
tundin [2] and gallic acid, chlorogenic acid, caffeic acid, p-coumaric acid, and apigenin
active against cognitive dysfunction [3]. Furthermore, inhibitory and antioxidant properties
of T. diversifolia extract on certain pro-oxidant mediated lipid peroxidation effects in the
brain of rats was documented [4].

Blighia sapida K.D. Koenig, usually referred to as ‘Akee apple’, belongs to Sapindaceae
plant family. B. sapida is a therapeutic herb generally employed by traditional medical
practitioners and extremely appreciated in Africa for the treatment of numerous disor-
ders [5]. It was reported to contain alkaloids, saponins, cardiac glycosides, reducing sugars
and starches [6,7]. The extracts of B. sapida have been documented to show anti-microbial
activity towards S. aureus and B. subtilis, antidiabetic and anti-Alzheimer’s activities, re-
spectively [5,8–11].

Irvingia gabonensis (Aubry-Lecomte ex O’Rorke) Baill. (Irvingiaceae) is an ancestral
fruit tree predominant in Africa and recognized primarily as a domesticated plant [12]. In
Nigeria, it is referred to as bush mango. In some parts of Africa, the plant occurs freely
and is a commonly used tropical African tree. Local names include Ogbono (Igbo) and
Goron biri (Hausa). The seed is used as a food substitute. The stem bark is used in herbal
medicine albeit without any scientific justification in managing numerous neurodegen-
erative disorders after macerating in dry gin [13]. It has been revealed that I. gabonensis
extract could play a key part in the reduction of the neurotoxicological damage triggered
by heavy metals. It also has pharmacological activities that include hepatoprotective [14],
nephroprotective properties and anti-Alzheimer’s activity [15,16].

Alzheimer’s disease (AD) is exemplified by cognitive decline and several other intellec-
tual damage symptoms. It is presently the most challenging advanced neurodegenerative
diseases to manage [17–19]. Over the years, numerous hypotheses on the pathogene-
sis of AD have been suggested, including the amyloid cascade, tau protein, oxidative
and cholinergic hypothesis [20]. Amongst these hypotheses, the cholinergic one indi-
cating that reduced levels of the neurotransmitter acetylcholine in explicit areas of the
cerebrum trigger learning and memory dysfunctions has become the most generally ac-
cepted hypothesis. A possible way to treat AD is thus to restore the levels of acetylcholine
via reversible inhibitors to hinder acetylcholinesterase (AChE) and butyrylcholinesterase
(BuChE) [16,20,21]. Besides, monoamine oxidases (MAO) perform an important physio-
logical function in neurotransmitter metabolism. Specific MAO inhibitors are employed
for the management of depression and neurodegenerative disorders like Alzheimer’s and
Parkinson’s disorders. Thus, a controlled breakdown of monoamines guarantees the apt
working of neurotransmission at the synaptic cleft which is crucial for the regulation of the
cerebral and other brain roles in the sensory system [22,23]. Presently, the U.S. Food and
Drug Administration and European Medicines Agency approved drugs include donepezil,
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rivastigmine, tacrine, and galantamine. These medications are vital for the treatment of
AD, though their efficacy is restricted because of their poor bioavailability, selectivity, and
severe effects on the nervous system. Hence, the quest for new cholinesterase inhibitors
and monoaminergic inhibitors is of importance [10,24–26].

Computational approaches such as quantitative structure-activity relationships (QSARs)
have been effectively utilized to classify vital characteristics for specific inhibitory action.
The QSAR is an approach to locate an association between the bioactivity of a compound
and its fundamental chemical properties [27]. There are diverse relapse and design recog-
nition methods that could be utilized for the variable determination and QSAR design [27].
The established procedures for QSAR are utilized predominantly in cheminformatics, drug
discovery and to estimate the biological processes of unique biochemical principles, besides
the pharmacokinetic assessments of specific chemicals [27,28]. There are several computa-
tional analyses documented for the detection of new components in the management of
AD [29–32], but there is still no precise treatment for AD [29]. Previously, QSAR models
have been developed for inhibitors targeting AChE, BChE and MAO enzymes. These
models, though, were based on a 2-D QSAR and 3-D QSAR [33–36]. Islam et al. [37]
developed a QSAR model utilizing quercetin as acetylcholinesterase enzyme inhibitor.
Khatkar et al. [38] performed a QSAR model employing p-coumaric acid derivatives as
AChE inhibitors. Mahmoodabadi et al. [39] developed a QSAR model with molecular
dynamic studies using polyphenolic compounds as inhibitors of β-amyloid aggregation.
Dhiman et al. [40] developed QSAR studies utilizing a large series of flavonoid deriva-
tives (apigenin, kaempferol, luteolin and quercetin) as monoamine oxidase inhibitors.
Das et al. [41] developed a QSAR model utilizing 21 known inhibitors of acetylcholinesterase.
Mukesh and Dharmendra [42] reported a QSAR model for antioxidant and antimicrobial
activity utilizing 18 flavonoid derivatives. Kondeva-Burdina et al. [43] reported a QSAR
model utilizing nine flavonoids and two flavoalkaloids for hepto- and neuroprotective
activity. Chakraborty et al. [44] developed a QSAR model utilizing a straight heuristic tech-
nique and built up a model utilizing 30 mixtures with defined BACE1 enzyme inhibitory
action. In the current investigation, we have used a dataset of 74, 47 and 71 mixtures
with AChE, BChE and MAO enzyme inhibitory properties for QSAR model development,
utilizing simple meaningful and effectively interpretable descriptors. The created model
is aimed toward giving measurable predictions for the AChE, BChE and MAO inhibitory
properties of the compounds, expressed as the negative log of half maximal inhibitory activ-
ity (pIC50). Furthermore, [45] reported a QSAR model, molecular docking and simulation
techniques for anti-Alzheimer’s agents.

In this study, we developed an in silico auto-QSAR and pharmacophore model that
can be utilized to screen the bioactivity of a dataset of nine compounds identified from
T. diversifolia, B. sapida, and I. gabonensis that can repress the enzymatic functions of AChE,
BChE, and MAO. Furthermore, we performed molecular docking studies as well as toxicity
predictions with these active compounds.

2. Results

The 2D structures of the nine test compounds, namely gallic acid, chlorogenic acid,
caffeic acid, p-coumaric acid, apigenin, ellagic acid, quercetin, luteolin, and kaempferol
were modeled and used as a target for docking studies against three target proteins (AChE,
BuChE and MAO) (Figure 1). They were selected based on compounds identified in the
studied three medicinal plants from the literature.
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Figure 1. 2D structures of studied ligands.

A pharmacophore protocol which integrates the areas of structure-based and ligand-
based procedures for AChE, BChE and MAO was explored in this study. Before energy-
based site selection, the amount of pharmacophore sites for every ligand and the optimized
hypothesis for AChE, BChE and MAO were determined (Table 1, Figures S1 and S2).
Figure S1 reveals the last e-pharmacophores for every one of the nine ligands consid-
ered. The nine compounds generated 26 pharmacophore model hypotheses, each with a
corresponding hypothesis score, the top ranked score being the best for each model.

Table 1. Statistic variations of the pharmacophore model.

ID Phase Hypo
Score EF1% BEDROC160.9 ROC AUAC Average Outranking

Decoys
Total

Actives
Ranked
Actives Matches Excluded

Volumes

ADRR_1 0.83 36.76 0.58 0.45 0.69 3.2 11 5 4 of 4 No
AARR_1 0.82 36.76 0.58 0.45 0.66 3.4 11 5 4 of 4 No
AADRR_3 0.81 36.76 0.58 0.45 0.7 3 11 5 5 of 5 No
AARR_2 0.81 36.76 0.57 0.45 0.64 5.6 11 5 4 of 4 No
AADRRR_1 0.8 36.76 0.57 0.36 0.67 0 11 4 6 of 6 No
ADDRRR_1 0.8 36.76 0.57 0.36 0.68 0 11 4 6 of 6 No
AAARRR_1 0.8 36.76 0.57 0.36 0.67 0 11 4 6 of 6 No
AADRRR_2 0.79 36.76 0.57 0.36 0.68 0 11 4 6 of 6 No
AAADRR_1 0.79 36.76 0.57 0.36 0.66 0 11 4 6 of 6 No
ADRRR_1 0.78 36.76 0.57 0.36 0.66 0 11 4 5 of 5 No
AAADRR_2 0.78 36.76 0.57 0.36 0.66 0 11 4 6 of 6 No
AADDRR_1 0.78 36.76 0.57 0.36 0.67 0 11 4 6 of 6 No
AADRR_1 0.77 36.76 0.57 0.36 0.63 0 11 4 5 of 5 No
AADRR_2 0.77 36.76 0.57 0.36 0.64 0 11 4 5 of 5 No
ADRRR_2 0.77 36.76 0.57 0.36 0.64 0 11 4 5 of 5 No
AARRR_1 0.77 36.76 0.57 0.36 0.64 0 11 4 5 of 5 No
DDRRR_1 0.77 36.76 0.57 0.36 0.67 0 11 4 5 of 5 No
AARRR_2 0.77 36.76 0.57 0.36 0.63 0 11 4 5 of 5 No
AADR_1 0.77 36.76 0.57 0.45 0.66 15.6 11 5 4 of 4 No
ADRRR_3 0.77 36.76 0.57 0.36 0.66 0 11 4 5 of 5 No
AARRR_3 0.77 36.76 0.57 0.36 0.64 0 11 4 5 of 5 No
ADRR_2 0.76 36.76 0.57 0.36 0.61 0 11 4 4 of 4 No
DRRR_1 0.76 36.76 0.57 0.36 0.61 0 11 4 4 of 4 No
ARRR_1 0.75 36.76 0.57 0.36 0.59 0 11 4 4 of 4 No
ADRR_3 0.75 36.76 0.57 0.36 0.55 0 11 4 4 of 4 No
ARRR_2 0.75 36.76 0.57 0.36 0.59 0 11 4 4 of 4 No
ARRR_3 0.75 36.76 0.57 0.36 0.59 0 11 4 4 of 4 No

Legend: EF1% = Enrichment factor; BEDROC160.9 = Boltzmann-enhanced discrimination of receiver operating characteristic;
ROC = Receiver operating characteristic curve; AUAC = Area under accumulation curve; A = hydrogen bond acceptor; D = hydro-
gen bond donor; R = Aromatic ring.
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These twenty-six models demonstrated three sorts of characteristics: A: Hydrogen
Acceptor, D: Hydrogen Donor, and R: Aromatic ring. The hypothesis with six features was
obtained from the crystal structure which indicated three aromatic rings (R) in contrast
with different models (Table 1). The least featured pharmacophore with four points were
acquired with four crystal structures (ADRR_1, AARR_1, AARR_2, AADR_1, ADRR_2,
DRRR_1, ARRR_1, ADRR_3, and ARRR_2), among which ADRR_1, ADRR_2 and ADRR_3
revealed similar features, while ARRR_1 and AARR_1 had an additional ring and an
additional acceptor individually instead of a hydrogen donor feature. The other five struc-
tures (AADRR_3, ADRRR_1, AADRR_1, AADRR_2, ADRRR_2, AARRR_1, DDRRR_1,
ADRRR_3, AARRR_3 and AARRR_2) gave five-point pharmacophore hypotheses in which
AADRR_3 and AADRR_2 displayed similar features, while ADRRR_1, ADRRR_2 and
ADRRR_3 also showed similar features. In view of the most dynamically promising
sites, we selected 4–6 features which were tried for performance for enhancing the active
molecules utilizing a decoy set database. The enrichment results for all the targets utiliz-
ing the pharmacophore protocol method were contrasted for the enrichment factor (EF),
BEDROC (α = 160.9), in light of the recovery rate of actives against the ranked decoys
as shown in Table 1. The average EF 1% value from all 26 models was 36.76, while the
average BEDROC value (α= 160.9) was ≥ 0.57. The e-pharmacophore method showed
good enrichment of 1% (EF 1%) resulting in an EF (1%) of 36.76. The ROC plot (Figure S3)
and % screen plot ROC plot (Figure S4) demonstrate that the used technique was subtle
and precise in identifying the active compounds. Further, the ROC plots between percent
screen and percent actives found were plotted and are portrayed in the Figure S3. These
models are found to be sensitive and specific. Similarly, all the active compounds were
identified early, signifying the robustness of the predicted models. The outcome shows that
the models created from AChE, BChE and MAO could identify the actives, with a recovery
rate of the actives found near 100% in the total ranked decoy database.

The automated model divided the dataset arbitrarily into a 77% training set, and a
23% test set for AChE, BChE and MAO. Models are built on each training set from all
possible combinations of machine learning methods, and sets of independent variables
that are supported by each machine learning method. The algorithm created three best
models and the outcomes are presented in Tables S1–S3. The pharmacophore models reveal
moderately decent correlations between observed and predicted activities (Tables S1–S3) as
indicated by the R2 and Q2 correlations. The best model kpls_radial_17 was recorded for
AChE with a standard deviation (S.D) of 0.47, R2 of 0.86, root mean square error (RMSE)
0.58 and Q2 of 0.73 while the best model pls_38 recorded for BChE had a S.D of 0.51, R2 of
0.77, RMSE of 0.54, and Q2 of 0.72 and best model kpls_desc_44 recorded for MAO had a
S.D of 0.64, R2 of 0.81, RMSE of 0.62, and Q2 of 0.81. The scatter plots showing predicted
pIC50 versus observed pIC50 tests, respectively, for the best generated models are presented
in Figures 2–4. From the plots, it is observed that the QSAR model is able to predict the
activity of training and test sets, respectively, expressed as the negative logarithm of the
50% inhibitor concentration (pIC50), to a large extent well; this is demonstrated in the
fact that most points, especially in Figures 2 and 4, are close to the regression line. The
equations of the obtained models of QSAR analysis are as follows;

Q2 = 1 − PRESS
SSY

= 1 − Σ (Yobs(training)− Ypred (training)x2

Σ (Yobs(training)− y(training)x2 (1)
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In the equation above, ytraining represents the average activity value of the training set,
while Yobs (training) and Ycal (training) represent observed and predicted activity values,
respectively, of training set compounds. Often, a high Q2 value (Q2 > 0.5) is considered as
a proof of the high predictive ability of the model:

R2 = 1 − Σ (Yobs(test)− Ypred (test)x2

Σ (Yobs(test)− Y(training)x2
(2)

In the equation above, Ypred (test) and Yobs (test) signify the predicted and observed
values, respectively, of the test set compounds and ytraining represents the mean activity
value of the training set compounds. The value of R2 pred for an acceptable model should
be more than 0.5.

The binding affinity results of the ligands against the three selected targets of Alzheimer’s
disease are presented in Table 2. The docking scores of the compound were between
−6.10 and −10.40 kcal/mol. Luteolin achieved the highest binding affinity score of
−10.40 kcal/mol, closely followed by apigenin and ellagic acid with docking scores of
−10.20 and −9.80 kcal/mol for AChE, ellagic acid with a docking score of −9.90, lute-
olin and quercetin with scores of −9.70 and −9.60 kcal/mol for BChE and chlorogenic
acid with a score of −9.90, followed by luteolin and ellagic acid with scores of −9.30 and
−8.90 kcal/mol for MAO, respectively. The docking scores of donepezil and galanthamine
were −10.70 and −7.5 kcal/mol for AChE, −9.70 and −8.60 for BChE and −10.80 and
−6.10 for MAO, respectively.
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Table 2. Binding affinity (kcal/mol) of test compounds against selected Anti-Alzheimer’s target.

Compounds 6u3p_AChE 3o9m_BChE 2bk5_MAO

Apigenin −10.2 −9.4 −9.2
Caffeic Acid −7.2 −6.7 −7.8

Chlorogenic acid −9.6 −8.6 −9.9
(R)-Donepezil −10.7 −9.7 −10.8

Ellagic acid −9.8 −9.9 −8.9
Galantamine −7.5 −8.6 −6.1

Gallic acid −6.5 −6.1 −6.3
Kaempferol −9.6 −9.4 −8.4

Luteolin −10.4 −9.7 −9.3
p-Coumaric acid −7.1 −6.6 −7

Quercetin −9.4 −9.6 −8.8

The molecular interactions of the amino acid residues of AChE, BChE, and MAO with
the standards (donepezil and galanthamine), apigenin, luteolin, quercetin, chlorogenic acid
and ellagic acid were determined and the results are presented in Figures 5–7 The molecular
docking study shows that the compounds interacted with several amino residues including
HIS A:447, PHE A:338, PHE A:297, PHE A:295, VAL A:294, ARG A:296, SER A:293, GLU
A:202, GLY A:448, GLY A:121, LEU A:289, ASP A:74, TRP A:86, PHE A:338, PHE A:297, HIS
A:447, SER A:203, GLY A:121 and GLY A:122. The compounds interacted with the amino
residues via numerous forces such as conventional hydrogen bonding, carbon-hydrogen
bonds, π-interactions (e.g., π-alkyl bonds, π-sulfur, amide-π stacking, alkyl, π-π stacking
and π-π-T-shaped stacking).

The molecular bonding of the amino acid residues of acetylcholinesterase (AChE)
with the standards (donepezil and galanthamine), apigenin, luteolin and ellagic acid are
depicted in Figure 5A–E and Table S4.

The molecular bonding of the amino residues of butyrylcholinesterase (BChE) with the
standards (donepezil and galanthamine), quercetin, luteolin and ellagic acid are reported
in Figure 6A–E and Table S5.

The molecular interactions of the amino residues of monoamine oxidase (MAO) with
the standards (donepezil and galanthamine), chlorogenic acid, apigenin and luteolin are
represented in Figure 7A–E and Table S6.
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molecules, three ligands (apigenin, luteolin and ellagic acid) were chosen as the best ligands
on the basis of their binding affinity against the selected targets (Table 2).
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Druglikeness prediction were performed for the test ligand molecules Lipinski’s RO5
shows the satisfactory scopes of the finest drug compound that are: molecular weight
(MWt): ≤500, number of hydrogen bond donors: ≤5, number of hydrogen bond acceptors:
≤10, lipophilicity (expressed as LogP): ≤5 and molar refractivity (MR) from 40 to 130. All
the nine ligands obeyed the RO5. Apigenin, luteolin, and ellagic acid have MWt ≤500
(270.24, 286.24, and 302.19 g/mol, respectively). The consensus logP values of apigenin,
luteolin, and ellagic acid were 2.11, 1.73, and 1, respectively (Table 3). Furthermore, the
MR of apigenin, luteolin, and ellagic acid were 73.99, 76.01, and 75.31, respectively. The
values of LogS produced by apigenin, luteolin, and ellagic acid are −4.4, −3.82, and
−3.35 (Table 4). Although, all of the compounds obeyed the Ghose, Veber, Egan and
Muegge rules and revealed comparable bioavailability score of 0.55. Apigenin, luteolin, and
ellagic acid produced synthetic accessibility (SA) scores of 2.96, 3.02, and 3.17, respectively.
Furthermore, both apigenin and luteolin showed TPSA score of 90.90 and 111.13 Å. The
rotatable bond for apigenin and luteolin are 1 and 4 while ellagic acid did not any. The
standard drug donepezil and galantamine also revealed fairly worthy outcomes with
no disobedience to all the rules. Donepezil and galantamine have MWt of 379.49 and
287.35 g/mol, respectively.

Table 3. Predicted lipophilicity (Log P) values.

Compounds iLOGP XLOGP3 WLOGP MLOGP Silicos-IT Log P Consensus Log P

Apigenin 1.89 3.02 2.58 0.52 2.52 2.11
Caffeic Acid 0.97 1.15 1.09 0.7 0.75 0.93

Chlorogenic acid 0.87 −0.42 −0.75 −1.05 −0.61 −0.39
(R)-Donepezil 3.92 4.28 3.83 3.06 4.91 4

Ellagic acid 0.79 1.1 1.31 0.14 1.67 1
Galanthamine 2.67 1.84 1.32 1.74 2.03 1.92

Gallic acid 0.21 0.7 0.5 −0.16 −0.2 0.21
Kaempferol 1.7 1.9 2.28 −0.03 2.03 1.58

Luteolin 1.86 2.53 2.28 −0.03 2.03 1.73
p-Coumaric acid 0.95 1.46 1.38 1.28 1.22 1.26

Quercetin 1.63 1.54 1.99 −0.56 1.54 1.23

Table 4. SwissADME predicted bioavailability and water solubility (Log S) values of test compounds.

Compounds ESOL
Log S

ESOL
Solubility
(mg/mL)

ESOL
Class Ali Log S

Ali
Solubility
(mg/mL)

Ali Class Silicos-IT
LogSw

Silicos-IT
Solubility
(mg/mL)

Silicos-IT
Class

Bio-
Availability

Score

Apigenin −3.94 3.07 × 10−2 Soluble −4.59 6.88 × 10−3 Moderately
soluble −4.4 1.07 × 10−2 Moderately

soluble 0.55

Caffeic
Acid −1.89 2.32 × 100 Very

soluble −2.38 7.55 × 10−1 Soluble −0.71 3.51 × 101 Soluble 0.55

Chlorogenic
acid −1.62 8.50 × 100 Very

soluble −2.58 9.42 × 10−1 Soluble 0.4 8.94 × 102 Soluble 0.55

(R)-
Donepezil −1.481 5.87 × 10−3 Soluble −4.81 5.92 × 10−3 Moderately

soluble −6.9 4.78 × 10−5 Poorly
soluble 0.56

Ellagic acid −2.94 3.43 × 10−1 Soluble −3.66 6.60 × 10−2 Soluble −3.35 1.36 × 10−1 soluble 0.55
Galanthamine −2.93 3.41 × 10−1 Soluble −2.34 1.31 × 100 Soluble −2.96 3.17 × 10−1 soluble 0.55

Gallic acid −1.64 3.90 × 100 Very
soluble −2.34 7.86 × 10−1 Soluble −0.04 1.55 × 102 Soluble 0.56

Kaempferol −3.31 1.40 × 10−1 Soluble −3.86 3.98 × 10−2 soluble −3.82 4.29 × 10−2 Soluble 0.55

Luteolin −3.71 5.63 × 10−2 Soluble −4.51 8.84 × 10−3 Moderately
soluble −3.82 4.29 × 10−2 Soluble 0.55

p-
Coumaric

acid
−2.02 1.58 × 100 Soluble −2.27 8.73 × 10−1 Soluble −1.28 8.67 × 100 Soluble 0.56

Quercetin −3.16 2.11 × 10−1 Soluble −3.91 3.74 × 10−2 Soluble −3.24 1.73 × 10−1 soluble 0.55

All the compounds, except for chlorogenic acid, revealed high probabilities of being
absorbed in the gastrointestinal tract (Table 5). The skin permeability (LogKp) is an impor-
tant index for the evaluation of molecules that might require transdermal administration.
The LogKp of the compounds is presented in Table 5. All the compounds are expected to
be impermeable as they had the negative LogKp values. All ligand molecules revealed not
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to inhibit CYP2C9 and CYP2C19 whereas CYP1A2 and CYP2D6 was inhibited by apigenin,
ellagic acid, kaempferol, luteolin, and quercetin (Table 5). The druglikeness properties of
the compounds and the standards are presented in Table 6.

Table 5. Pharmacokinetics prediction output of test compounds.

Apigenin Caffeic
Acid

Chlorogenic
Acid

(R)-
Donepezil

Ellagic
Acid Galanthamine Gallic

Acid Kaempferol Luteolin p-Coumaric
Acid Quercetin

GI absorp-
tion High High Low High High High High High High High High

BBB
permeant No No No Yes Yes No No No No Yes No

Pgp
substrate No No No Yes Yes No No Yes Yes No Yes

CYP1A2
inhibitor Yes No No No Yes No No Yes Yes No Yes

CYP2C19
inhibitor No No No No No No No No No No No

CYP2C9
inhibitor No No No No No No No No No No No

CYP2D6
inhibitor Yes No No Yes No Yes No Yes Yes No Yes

CYP3A4 Yes No No Yes No No Yes Yes Yes No Yes
Skin per-
meability

logKp
(cm/s)

−5.8 −6.58 −8.76 −5.58 −7.36 −6.75 −6.84 −6.7 −6.25 −6.26 −7.05

Table 6. Druglikeness prediction output of test compounds.

Apigenin Caffeic
Acid

Chlorogenic
Acid

(R)-
Donepezil

Ellagic
Acid Galanthamine Gallic

Acid Kaempferol Luteolin
p-

Coumaric
Acid

Quercetin

MW 270.24 180.16 354.31 379.49 302.19 287.35 170.12 286.24 286.24 164.16 302.24
#Heavy
atoms 20 13 25 28 22 21 12 21 21 12 22

#Aromatic
heavy
atoms

16 6 6 12 16 6 6 16 16 6 16

Fraction
Csp3 0 0 0.38 0.46 0 0.53 0 0 0 0 0

#Rotatable
bonds 1 2 5 6 0 4 1 4 4 4 2

#H-bond
donors 3 3 6 0 4 1 4 4 4 2 5

MR 73.99 47.16 83.5 115.31 75.31 84.05 39.47 76.01 76.01 45.13 78.04
TPSA 90.9 77.76 164.75 38.77 141.34 41.93 97.99 111.13 111.13 57.53 131.36

Lipinski
#viola-
tions

0 0 1 0 0 0 0 0 0 0 0

Ghose
#viola-
tions

0 0 1 0 0 0 2 0 0 0 0

Veber #vi-
olations 0 0 1 0 0 0 0 0 0 0 0

Egan #vi-
olations 0 0 1 0 1 0 0 0 0 0 0

Muegge
#viola-
tions

0 1 2 0 0 0 1 0 0 1 0

PAINS
#alerts 0 1 1 0 1 0 1 0 1 0 1

Brenk
#alerts 0 2 2 0 3 1 1 0 1 1 1

Leadlikeness
#viola-
tions

0 1 1 2 0 0 1 0 0 1 0

Synthetic
Accessi-

bility
2.96 1.81 4.16 3.62 3.17 4.57 1.22 3.14 3.02 1.61 3.23

MW: Molecular weight; MR: Molar refractive; TPSA: Topological polar surface area.

Pharmacokinetic tests were conducted on all the ligand molecules. Apigenin and lute-
olin showed Caco-2 permeability and all compounds were p-glycoprotein non-inhibitors
(Table S7). Also, apigenin, luteolin and ellagic acid were p-glycoprotein substrates. All the
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ligands were found to be HIA positive, which means that they will be absorbed by the intes-
tine. All the compounds did not show potential to cross the BBB which can be an advantage
as they will have less likelihood to induce adverse effects in the sensory system. Two out
of the three ligands were inhibitors for CYP450 1A2. However, only apigenin and luteolin
were non-inhibitor for CYP3A4. Besides, all three compounds were non-substrates and
non-inhibitors for CYP2C9 and CYP2C19. Apigenin, luteolin and ellagic acid all possess
hepatotoxic properties (Table S8). Furthermore, none of the compounds were carcinogenic
and mutagenic except for kaempferol. Donepezil and galantamine both revealed substrate
properties to CYP2D6 and CYP3A4, while only donepezil showed inhibitory activity to
CYP2D6. They were also substrates for CYP3A4. The results of ADME/T tests are listed in
Tables S7 and S8.

3. Discussion

The pharmacophore models were created by PHASE [46–49] energetic terms onto
pharmacophore sites that are calculated dependent on the structural and energy infor-
mation between the protein and the ligand. The data obtained in this study are vital to
evaluate the variety among the pharmacophore hypothesis based on different ligands. The
utilization of various pharmacophore models created from various crystal structures cannot
singly improve the possibility of recognizing molecules but also diversity and also the flex-
ible nature of the active site can add to the modifications in the energy arrangement [50]. It
is therefore very necessary to ascertain the screening approval of the pre-owned technique,
if it was effective in the recovering of the actives from the records as well as placing them
either early or not in an orderly manner by the pharmacophore model cycle. This study
shows various authentications that were determined to recover the active compounds from
the molecular records and it indicates that the screening procedures in recovering these
records, were great [51]. Excluded volumes were accounted to better discern inactives and
in doing that, different pharmacophore hypotheses were generated sorted on the values of
the Phase Hypo Score, which is a linear combination of different contributes related with
site, volume, vector and selectivity scores [46,52]. Enrichment factor (EF) was calculated
as a point of reference for the reliability of the model and for the accurate ranking of
compounds [53] For the hypothesis, EF1% value was 36.76 suggesting the superiority of
pharmacophore modeling ranking over random. The enrichment results for all targets
using the e-pharmacophore were compared for the enrichment factor (EF1%), BEDROC
(a = 160.9), based on recovery rate of actives against the ranked decoy database as in Table 1.
The average EF 1% value from all the hypothesis was >36.76 which is a good sign that this
procedure can identify actives, while the average BEDROC values (a = 160.9) were ≥0.57.
Another dependable metric to assess the performance of the pharmacophore hypothesis is
the AUAC of the ROC curve (Table 1; Figures S3 and S4). The AUAC values of the models
revealed comparable results as presented in Table 1. Further, the recovery rate of the known
actives from the constructed decoy database versus the ranked database screened with
26 pharmacophore models were plotted and are depicted in the Figures S3 and S4. The
result indicates that the pharmacophore models generated from the crystal structures of
AChE, BChE and MAO could identify the actives, with a recovery rate of the known actives
close to the total ranked decoy database. Based on the validation results these multiple
pharmacophore hypotheses could be utilized for conscientiously recognizing potential
hits. Based on this result it can be inferred that the model was better than a randomly
generated model.

The bonding that takes place, which includes hydrogen bonds which interact like the
carbon-hydrogen bond, conventional hydrogen bonds and π-interactions which includes
π-sulphur, amide-π stacking, π-alkyl bonds, π-π stacking and π-π-T-shaped stacking. These
occurs between the ligands and receptors which eventually played a significant part in
the probably played a significant role in the repressive activity on the enzymes as well as
attractive charge [54,55]. Therefore, it can be affirmed that hydrophobicity, electrostatic
interactions, hydrogen bonding effect, and unsaturation features (which are mediated
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by π-interactions) which was revealed in the docking study as well as the auto-QSAR
modeling and are necessary for the repressive performance against AChE, BChE and MAO.
Validation methods are necessary to establish the robustness of a model on unseen data.
The method of root mean-squared error (RMSE) is one of the internal methods of validating
a model [56]. The screening process additionally progressed via the use of the machine
learning-based predictive model (pIC50 calculation) performed by the Auto-QSAR panel
of Schrodinger. Thus, given a learning set of chemical structures and an activity property
from CHEMBL database, a total of 497 physicochemical and topological descriptors were
computed, together with a variety of Canvas fingerprints [52], providing a large pool of
independent variables from which to build models.

The strategies for external validation are crucial and it is of paramount interest to
adopt all available validation strategies to check robustness of the model. The parameters
for external validation such as Q2 and R2 were used in the QSAR model report in this study.
The auto-QSAR model for AChE, BChE and MAO had R2 of 0.86, 0.77 and 0.81 for the
training set of compounds with Q2 values of 0.73, 0.72 and 0.81 for test set of compounds.
The slopes of regression line and correlation coefficient were obtained from predicted pIC50
and observed pIC50 activity of the dataset. All the parameters for external validation of
pharmacophore models like cross validation (Q2) values, the correlation coefficient (R2)
values, for AChE, BChE and MAO indicated that the model had high predictive ability. The
calculated pIC50 values of the compounds in the predicted test set and observed test set are
listed in Tables S1–S3. These scatter plots are significant for the predictive ability of QSAR.
Residual plots (scatter) were utilized to identify the existence of outliers from a QSAR
model [57,58]. Thus, the developed QSAR model was considered stable and as expected, it
was able to validate the observed pIC50 values for the compounds. A predictive correlation
coefficient R2 values of 0.86, 0.77, 0.81 for the set were achieved for the developed model.
In general, statistical values of R2 >0.6 and Q2 >0.5 between the predicted and the observed
values portrays the model to be good and able to predict the AChE, BChE and MAO
inhibitory activities of compounds not included in the model development process [57–59].

The current survey made use of Autodock vina and flexible docking to correctly
predict the binding affinity and docking score of the compounds derived from T. diversifolia,
B. sapida, and I. gabonensis respectively with AChE, BChE and MAO, as such denoting
compounds with favorable interaction. These therefore suggest that the compounds
derived from T. diversifolia, B. sapida, and I. gabonensis possess some bioactivities against AD.

As can be seen from the molecular docking results, the least active compound
was galanthamine, it interacted with the least number of amino acid residues of AChE,
BChE and MAO whereas the most active were donepezil, quercetin and chlorogenic acid
(Figures 5–7). All the compounds interacted strongly with the amino acid residues of
AChE, however apigenin was the most active as it interacted with the highest number
of amino acid residues of AChE and with the highest number of interacting forces. This
suggests that apigenin possess the most important inhibitory activity against AChE and
therefore can serve as a potential acetylcholinesterase inhibitor (AChEI). Donepezil shows
the most bioactivity against BChE. The compound interacted with the highest number
of amino acid residues of BChE, with the highest number of interacting forces (seven
different interactions) in comparison to the other compounds. This was closely followed
by quercetin which interacted with twenty-two amino acid residues mediated by four
interacting forces. It therefore can be proposed that donepezil and quercetin possess higher
bioactivity against BChE. The most active compounds against MAO were donepezil and
chlorogenic acid when compared with the other compounds indicating their preference
as inhibitors of MAO due to their higher level of bioactivity (interaction with the amino
acid residues of MAO) against the enzyme. They reacted with twenty-two amino acid
residues of MAO each. Donepezil interacted with five different interacting forces whereas
chlorogenic acid was four.

In this study, the molecular docking approach was conducted to examine the most
favorable position by a ligand molecule inside the binding pocket of a limited receptor after
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which a binding power is determined. The lesser the binding vigor, the higher the chances
of binding and vice-versa. In the present study, nine ligand molecules identified from T.
diversifolia, B. sapida, and I. gabonensis, respectively, were analyzed to inhibit the AChE,
BChE and MAO enzyme that are responsible for AD progression. Each of the nine ligands
were docked against the selected target receptor to determine their anti-Alzheimer’s activity
and from the experiments, the three best ligands were selected for further analysis. The
best possible ligand compounds were selected based on their binding energy, where the
lower bind energy was favored.

The moment the three terrific ligands were placed side by side with the positive
control, the performance of donepezil was noticed to be satisfactory from the docking
studies, while apigenin, luteolin and ellagic acid was observed to be more satisfactory than
galantamine. Therefore, it can then be stated conclusively, that the larger performances that
was revealed in this study was that of the three terrific ligand molecules. Figure 6 shows the
amino acids that took part in the cooperation between the ligands and the positive controls
with AChE. PHE the most frequently interacting amino acid that was observed among all
amino acids of AChE coupled with the three ligands as well as positive controls (donepezil
and galantamine) is PHE A: 338 amino acids. There was a prediction that all three ligands
will interact with PHE A-338, they all also interacted with TRP A:341, TRP A:286 and
PHE A:295 by hydrogen and hydrophobic interactions. Furthermore, interactions of the
three ligands with BChE revealed amino acids with TRP A:440, TRP A:8 and HIS A:438 via
hydrogen and hydrophobic interactions, while interactions with MAO by hydrogen and
hydrophobic interactions showed amino acids with TYR A:398 and ASN A:116. It could
then be stated conclusively, that the binding that takes place between the active sites of
AChE, BChE and MAO receptor and all the three ligands were very vital for receptor-
ligand interactions and also for strengthening, because of the hydrogen and hydrophobic
interactions [60–62].

Assessing the druglikeness enables the processes of discovering drug and producing
them. For a drug to penetrate through the biological barrier, the topological polar surface
area (TPSA) and the molecular weight must be considered. The higher the TPSA and
molecular weight values, the less the drug candidate is able to penetrate and vice versa.
The partition coefficient logarithm of a drug compound in an organic or liquid phase
(LogP) is termed lipophilicity. It influences the digestion of the drug compounds in the
body and increased LogP implies decreased digestion and vice-versa. The ability of a drug
compound to dissolve is impacted by its LogS value and the least value is better. In addition,
the ability of a drug molecule to penetrate the cell layer is influenced by the amount of
donors and acceptors of hydrogen bond it possesses above the required ranges. Rotatable
bonds number influences the properties of druglikeness and the range for the acceptable
number is <10. In addition, the Lipinski’s RO5 shows that an effective drug molecule
ought to include properties within the acceptable range of the five Lipinski guidelines [63].
The druglikeness prediction was performed for all the ligand molecules. Also, as per a
potential drug molecule like Ghose filter which is supposed to have an estimated LogP
of −0.4–5.6, and molecular weight of about 160 and 480, an absolute number of 20 to
70 atoms, and about 40 to 130 molar refractivity, which is suitable as an effective drug [64].
Oral bioavailability of a potential drug compounds depends on two aspects according to
Veber rule and they include; Polar surface that ought to be equivalent to 140 Å2 and 10
or lower rotatable bonds numbers [65]. Moreover, as per the Egan rule, the absorption
of a potential drug compound additionally relies upon two elements: the polar surface
area (PSA) and AlogP98 (the logarithm of partition co-efficient between n-octanol and
water) [66]. Furthermore, as per the Muegge rule, for a drug-like substance to become an
effective compound, it must go through a filter that was created by researchers which is
known as the pharmacophore point filter [67]. Furthermore, the synthetic accessibility (SA)
score will be used to assess a target molecule before it is synthesized. There are different
scores and the syntheses vary on the score for example score 10 means very hard and
difficult to synthesize and score 1 simply means very easy and simple to synthesize [68].
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The bioavailability score determines the penetrability of a potential drug molecule as well
as the bioavailability properties [69].

According to the respective molecular weights of apigenin (270.24 g/mol), luteolin
(286.24 g/mol) and ellagic acid (302.19 g/mol) apigenin ought to be the best one among
the three ligands because a lesser molecular weight is always significant. The TPSA values
of apigenin and luteolin revealed values of 90.90 and 111.13, respectively. Since, great
outcomes have consistently resulted from a lesser TPSA value, apigenin should perform
better than luteolin and ellagic acid. On account of the lipophilicity (LogP), a lower value
is consistently essential. The least logP value corresponded to ellagic acid, among all
three ligands, which exhibited an outstanding performance in the lipophilicity study. The
remaining two ligands (apigenin and luteolin) also exhibited outstanding performance as
well, having logP values of 2.11 and 1.73, respectively, additionally demonstrating very
good performances. Apigenin, luteolin and ellagic acid were all predicted to obey the five
Lipinski rules. It was further observed that the Ghose filter, Muegge, Veber, and Egan rules
were obeyed by the three ligands too. Looking closely at all the phases of the druglikeness
prediction study, it stands to reason that the compounds apigenin, luteolin and ellagic acid
(the three best ligands) did comparatively well in the druglikeness prediction study and all
three ligands demonstrated very stable actions in the druglikeness prediction study when
compared side by side with the controls.

All the compounds, except for chlorogenic acid, showed high probabilities of being
absorbed in the gastrointestinal tract (GIT). This suggests that these compounds have the
potential to be absorbed in the GIT upon oral administration [70]. Metabolism prediction
of principal compounds is one of the main concerns in the course of drug discovery [71].
The metabolism predictions of the compounds were achieved against five isoforms of
cytochrome P450 (CYP) monooxygenase family namely; CYP1A2, CYP2C19, CYP2C9,
CYP2D6 and CYP3A4. Cytochrome P450 monooxygenase performs a vital function in
the drug metabolism and elimination process. The non-inhibition action of the identified
compounds against these enzymes indicates that the compounds have high probabilities
of been transformed and consequently be bioavailable upon oral administration [71].
Alternatively, the inhibition of the CYP isomers by the compounds can lead to poor
bioavailability owing to failure to be metabolized and toxic side effects attributable to
their accumulation [72]. The skin is a selective barrier that allows diverse compounds to
permeate through at diverse rates based on their physicochemical properties [46]. Hence,
the skin permeability (LogKp) is a key parameter for the evaluation of molecules that might
require transdermal administration. All the molecules are expected to be impermeable
as they had negative LogKp values. This implies that none of the molecules could be
effectively administered through the skin [73].

ADMET predictions were determined to assess the potential of a drug molecule within
a biological system from its pharmacological and pharmacodynamic properties. Thus, the
achievement of a drug investigation and drug improvement is a vital factor, while the main
factor for the drugs that principally focus on the brain cells is the blood brain barrier (BBB).
Besides, inasmuch as a large portion of the drugs are administered orally, it is of great
importance that the intestinal tissue digests the drug compounds. A well-characterized
plasma membrane ATP-binding cassette transporter, known as P-glycoprotein (P-gp), helps in
transporting drugs, and by so doing prevents p-gp and influences the drug transportation.
Penetrability studies through in-vitro investigation generally utilize the cell line called
Caco-2. The penetrability of the drug determines if the intestine will effectively digest
the drug molecule or not. Orally administered drugs normally return back to the liver
after making their journey through the bloodstream. An enzyme of cytochrome P450
family, uses the drugs as substrate and finally ejects the drugs through the urine or bile.
Consequently, interference of any kind with any of these enzymes leads to a breakdown of
the drug molecule [49,74]. Additionally, when a compound is discovered to be a substrate
for at least one type of CYP450 enzyme, it means the compound is anticipated to be easily
and seriously metabolized by the respective CYP450 enzyme or enzymes [19]. Another
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influencer of the pharmacodynamics, circulation and excretion of the drug is the ability
of a drug to bind to plasma proteins which also signifies a pharmacological index. The
level at which a drug binds to plasma proteins actually determines its capability. Orally
managed drugs have a significant cycle which is known as human intestinal absorption
(HIA), which shows the digestion of drugs taken through the mouth down to the intestine
and into the circulatory system [75]. The human liver is the primary site where metabolism
take place could be defenseless against the impacts of toxic agents and various drugs.
Human hepatotoxicity (H-HT) demonstrates and shows various kind of harm to the liver
that could cause the organ to fail or eventually lead to death [74]. There is a mutagenicity
test called the Ames test that is used to recognize compounds that have a potential to
be mutagenic causing alterations or malignant growth [47]. In the digestion area, there
was a flawless performance by the ligands. However, apigenin and luteolin which are
non-inhibitors of p-gp display Caco-2 permeability Consequently, none of the tested plant
natural products stopped or prevented the actions that are made possible by p-gp. In any
case, as a result apigenin, luteolin and ellagic acid were p-gp substrates, and this enables
them to be absorbed more effectively by cells. Again, the human intestine will be able
to digest the HIA capability, as the three ligands have shown us. In the metabolism area,
apigenin, luteolin and ellagic acid were inhibitors of CYP1A2 while apigenin and luteolin
are inhibitors of CYP3A4 suggesting very effortless metabolism of the ligands. In the
toxicity area, all three ligands were tested in the Ames mutagenicity and carcinogenicity
tests and shown to be safe. Moreover, none was human hepatotoxic when placed side by
side in comparison with the two controls that were used in this study. Therefore, in this
study, apigenin, luteolin and ellagic acid displayed excellent performance in comparison
with the positive controls in some areas of the study. Placed side by side with the two
controls, it could be conclusively said that apigenin, luteolin and ellagic acid demonstrated
acceptable outcomes in the druglikeness, molecular docking study, and ADMET prediction.

4. Materials and Methods
4.1. Proteins and Ligands Collection

Nine test compounds, namely gallic acid, chlorogenic acid, caffeic acid, p-coumaric
acid, apigenin, ellagic acid, quercetin, luteolin, and kaempferol identified from T. diversifolia,
B. sapida, and I. gabonensis, respectively, were subjected to molecular docking analysis
against the three AD protein biomarkers targeted in this study: acetylcholinesterase (PDB
ID: 6U3P), butyrylcholinesterase (PDB ID: 3O9M), and monoamine oxidases (PDB ID:
2BK5). The crystal structures of Alzheimer’s protein biomarkers were obtained from the
Protein Data Bank (PDB) and the structure data file (SDF) format of the test compounds
was obtained from the PubChem database. PDBQT format of the PDB and SDF files for
target-ligand docking were prepared using AutoDock 4.2. Finally, the results were analyzed
using UCSF Chimera 1.14 and Discovery Studio 2020 [75,76].

4.2. Generation of Ligand-Based Pharmacophore Model

The structure data file (sdf) of our test compounds sourced from PUBCHEM database
were prepared using LigPrep panel of the Schrödinger suite (Schrödinger 2020-3, LLC, New
York, NY, USA), the chemistry of the ligands was properly standardized and extrapolated,
and were used for the pharmacophore modeling using PHASE.

The ligands were automatically aligned by PHASE based on their best arrangement
and mutual features. To develop the pharmacophore model, the prepared ligands were
imported to the maestro workspace, and based on their experimental binding affinities
(pIC50), the ligands were defined as active or inactive. [pIC50 = −log(IC50)]. IC50 ≤ 50 nM
affinity corresponds to a pIC50 ≥ 7.3. The threshold for recognizing an inactive molecule is
10 µM or pIC50 ≤ 5.0.

The hypothesis requirement was set to match 50% of the actives, Number of features
in the hypothesis set to five as the preferred minimum number of features to match. The
hypothesis difference criteria were left as the defaults except for the donor and negative
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ionic features that were set to 1, hence, the acceptor and negative features were made
equivalent [77].

4.3. Machine Learning Development of Automated QSAR Model
Dataset Generation and Preparation

The experimental dataset containing ACHE, BCHE and MAO inhibitors were recov-
ered from the CHEMBL database (www.ebi.ac.uk/chembl/) (accessed on 20 October 2020),
through blasting of the FASTA sequence of the particular proteins. Bioactive inhibitors of
the proteins were retrieved with their respective pIC50 values from CHEMBL. The bioactive
inhibitors with pIC50 were converted to structure data file (sdf) format utilizing the Data-
Warrior package (v.2) [78]. The sdf format was transferred to the working area of Maestro
for preparation by ligprep [79]. The prepared compounds were transferred to the Canvas
cheminformatics program [80] for clustering base on the Tanimoto similarity between sets
of hashed linear binary fingerprint descriptors, and to decide the primary structural variety
among the inhibitor, thus, to choose representatives from each resulting cluster. These
computational studies generated a total of 74, 47 and 71 clusters and were used to build
the QSAR model using the automated QSAR panel of Maestro Schrödinger Suite.

The QSAR models of each target proteins were built based on the IC50 of the cor-
responding ligands. For AChE, kpl_radial_17 was the best model chosen based on the
prediction ranking of the all-model outcomes; BChE, pls_38 and MAO, kpls_desc_44 was
chosen respectively. Furthermore, the predictive precision of the model is assessed utilizing
different indices like ranking score, root mean square error (RMSE), standard deviation
(SD), Q2 and R2 values [81]. Furthermore, the predictive capability of a QSAR model can
be assessed by the accompanying statistical attributes of the test set which was suggested
by [57]: namely the correlation coefficient R between the predicted and observed activities.

4.4. Virtual Screening

Autodock vina in the PyRx software was utilized to achieve the docking based virtual
screening of nine candidate compounds against the target protein receptors. The structure
data files (sdf) of the candidate compounds were obtained from PubChem. The candidate
compounds were subjected to molecular docking utilizing the AutoDock Vina program in
the PyRX software. The ligands with high docking scores were filtered by Lipinski’s rule
and by their SwissADME physicochemical properties. Only the molecules which followed
Lipinski’s rules and SwissADME predictions were considered as hits and subjected to
post-docking analysis using Discovery Studio 2020 and UCSF Chimera 1.14, and toxicity
screening using the admetSAR web server. Hence, the top-ranked compounds were
suggested for experimental screening for the establishment of therapeutic interventions
against Alzheimer’s [76].

4.5. ADMET Screening

Absorption, distribution, metabolism, excretion, and toxicity (ADMET) of the test
compounds were determined utilizing an in silico integrative model predicted at the
SwissADME and admetSAR web servers, respectively. Using a huge database, these
servers speculate the physicochemical properties, pharmacokinetics, water- dissolvability,
lipophilicity, drug-likeness, therapeutic properties, and toxicity of compounds with high
precision [82].

5. Conclusions

This research work provides valuable evidence on the appropriate nature of novel
AChE/BuChE and MAO inhibitors as potential anti-AD candidates. We conclude that
the compounds from this study demonstrate potential neuroprotective property by virtue
of binding to the key protein targets for Alzheimer’s. Pharmacophore modeling and
Auto-QSAR models were performed with a good correlation coefficient, which brought
about predicting the inhibitory activities for AChE, BChE and MAO. Luteolin revealed

www.ebi.ac.uk/chembl/
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better absorption and BBB permeability than other compounds, which indicates it could
be a potential candidate for AD treatment. Luetolin showed the most binding affinity
against AChE/BuChE and MAO followed by apigenin and ellagic acid while the least was
presented by gallic acid. In all, luteolin was revealed as the most active flavonoid of all the
compounds tested.

Supplementary Materials: The following are available online. Figure S1: Screening hypothesis is
generated by a structure-based e-pharmacophore model consisting of one hydrogen bond acceptor
(A), one hydrogen bond donor (D) and two aromatic rings (R), Figure S2: Screening hypothesis is
generated by a structure-based e-pharmacophore model consisting of two hydrogen bond acceptor
(A), one hydrogen bond donor (D) and three aromatic rings (R), Figure S3: ROC Plot between percent
screen and percent actives found, Figure S4: ROC Plot between percent screen and true positive
rate, Table S1: Report for Numeric Model kpls_radial_17 (AChE), Table S2: Report for Numeric
Model pls_38 (BChE), Table S3: Report for Numeric Model kpls_desc_44 (MAO), Table S4: List of the
different types of bonds with their respective interacting amino acids, that took part in the interaction
between the three best ligands as well as controls and the target receptor, AChE, Table S5: List of the
different types of bonds with their respective interacting amino acids, that took part in the interaction
between the three best ligands as well as controls and the target receptor, BuChE, Table S6: List of the
different types of bonds with their respective interacting amino acids, that took part in the interaction
between the three best ligands as well as controls and the target receptor, MAO, Table S7: admeSAR
prediction test compounds, Table S8: Toxicity Prediction test compounds.
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