Skip to main content
. 2021 Mar 29;21(7):2361. doi: 10.3390/s21072361

Table 5.

Hyper-parameters and values tested during tuning for the regression.

Algorithm Parameter Values
LASSO Alpha 1.0, 0.75, 0.5, 0.25
EN Alpha 1.0, 0.75, 0.5, 0.25
KNN N Neighbors 3, 7, 11, 15, 21
Leaf Size 1, 2, 3, 5
Weights uniform, distance
Algorithm auto, ball tree, kd tree, brute
RF Min Samples Leaf 1, 3, 5
Min Samples Split 2, 4, 6
Max Depth 3, 5, 8
Max Features log2, sqrt
Criterion mse,mae
Bootstrap true, false
Number of Estimators 50, 100, 200, 500
Gb Learning Rate 0.01, 0.05, 0.1, 0.2
Min Samples Leaf 1, 3, 5
Min Samples Split 2, 4, 6
Max Depth 3, 5, 8
Max Features log2, sqrt
Criterion friedman mse, mae
Subsample 0.5, 0.75, 1
Number of Estimators 50, 100, 200, 500
ET Min Samples Leaf 1, 3, 5
Min Samples Split 2, 4, 6
Max Depth 3, 5, 8
Max Features log2, sqrt
Criterion mse,mae
Number of Estimators 50, 100, 200, 500