Table 5.
Algorithm | Parameter | Values |
---|---|---|
LASSO | Alpha | 1.0, 0.75, 0.5, 0.25 |
EN | Alpha | 1.0, 0.75, 0.5, 0.25 |
KNN | N Neighbors | 3, 7, 11, 15, 21 |
Leaf Size | 1, 2, 3, 5 | |
Weights | uniform, distance | |
Algorithm | auto, ball tree, kd tree, brute | |
RF | Min Samples Leaf | 1, 3, 5 |
Min Samples Split | 2, 4, 6 | |
Max Depth | 3, 5, 8 | |
Max Features | log2, sqrt | |
Criterion | mse,mae | |
Bootstrap | true, false | |
Number of Estimators | 50, 100, 200, 500 | |
Gb | Learning Rate | 0.01, 0.05, 0.1, 0.2 |
Min Samples Leaf | 1, 3, 5 | |
Min Samples Split | 2, 4, 6 | |
Max Depth | 3, 5, 8 | |
Max Features | log2, sqrt | |
Criterion | friedman mse, mae | |
Subsample | 0.5, 0.75, 1 | |
Number of Estimators | 50, 100, 200, 500 | |
ET | Min Samples Leaf | 1, 3, 5 |
Min Samples Split | 2, 4, 6 | |
Max Depth | 3, 5, 8 | |
Max Features | log2, sqrt | |
Criterion | mse,mae | |
Number of Estimators | 50, 100, 200, 500 |