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42-200 Częstochowa, Poland; gari.sg@gmail.com (S.G.); stachowiak@ipp.pcz.pl (T.S.)
6 Faculty of Material Science and Engineering, Gheorghe Asachi Technical University of Iasi,

41 D. Mangeron St., 700050 Iasi, Romania
7 National Institute for Research and Development for Environmental Protection INCDPM,

294 Splaiul Inde-pendentei, 060031 Bucharest, Romania
8 Machine Engineering Department, Faculty of Engineering, Karabuk University, 78050 Karabuk, Turkey;

merdikorkmaz@karabuk.edu.tr
9 Faculty of Chemical Engineering, Universiti Teknologi MARA, Cawangan Pulau Pinang,

13500 Permatang Pauh, Malaysia; syazwan.osman@uitm.edu.my
* Correspondence: fathullah@unimap.edu.my (M.F.G.); mustafa_albakri@unimap.edu.my (M.M.A.B.A.)

Abstract: This paper reports on the potential use of geopolymer in the drilling process, with respect
to tool wear and surface roughness. The objectives of this research are to analyze the tool life of three
different economy-grade drill bit uncoated; high-speed steel (HSS), HSS coated with TiN (HSS-TiN),
and HSS-cobalt (HSS-Co) in the drilling of geopolymer and to investigate the effect of spindle speed
towards the tool life and surface roughness. It was found that, based on the range of parameters
set in this experiment, the spindle speed is directly proportional to the tool wear and inversely
proportional to surface roughness. It was also observed that HSS-Co produced the lowest value of
surface roughness compared to HSS-TiN and uncoated HSS and therefore is the most favorable tool
to be used for drilling the material. For HSS, HSS coated with TiN, and HSS-Co, only the drilling
with the spindle speed of 100 rpm was able to drill 15 holes without surpassing the maximum tool
wear of 0.10 mm. HSS-Co exhibits the greatest tool life by showing the lowest value of flank wear
and produce a better surface finish to the sample by a low value of surface roughness value (Ra).
This finding explains that geopolymer is possible to be drilled, and therefore, ranges of cutting tools
and parameters suggested can be a guideline for researchers and manufacturers to drill geopolymer
for further applications.

Keywords: geopolymer drilling; geopolymer machining; green materials

1. Introduction

The use of environmentally friendly materials has been increasing across the globe be-
cause it helps reduce waste, minimize pollution, and save energy. Geopolymer, for instance,
is one of the green materials and has been highly demanded in numerous applications,
particularly in construction materials, to replace ordinary cement [1]. The interest in these
materials has been increasing due to the manufacturing of this material that involves a
very low rate of greenhouse gas emission [2,3]. Apart from that, geopolymer utilizes waste
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materials such as recycled concrete and unwanted fly ash. This material has interesting
properties because it is very durable and stable at high temperature; thus, this property has
been one of the reasons why geopolymer materials are now widely used in many sectors,
especially in the engineering sector such as civil construction, automotive industry, and
aviation sector [2–5].

Geopolymer is a type of inorganic polymer with an amorphous structure that poly-
merizes in a quick reaction of silica (Si)-alumina (Al) under alkaline conditions, creating
a three-dimensional polymeric chain of Si-O-Al-O bonds [6,7]. Understanding that the
existence of Si and Al can be used to easily produce geopolymer, this material is easily
made by using a pre-shaped mold in which all required raw materials are mixed and left
solidified at room temperature [6–8]. The final shape of the material highly depends on
the mold’s shape and its final dimensional accuracy is still an issue. The need to manu-
facture geopolymer in various forms and shapes with high accuracy is required so that
its advantages can be widely benefited not just in construction applications. From the
manufacturing point of view, one of the ways of producing materials in various forms and
shapes can be achieved through machining processes [8].

Machining such as the drilling process is one of the important processes in shaping
certain materials. Computer Numerical Control (CNC) milling machines, hole drilling
apparatus, and milling cutters are used especially for drilling blind holes of certain depths
that are not lengthwise and axial holes of certain precise dimensions. Basically, high-speed
steel (HSS) drills are used in these processes. However, coated carbide and indexable drills
have also been recently used [6–11].

Chip formation during the drilling process affects the cutting forces, cutting tempera-
ture, surface quality, and dimensional accuracy of the hole [6]. In addition, the disposability
of the chip during the drilling operations directly affects the hole quality and changes
according to the cutting parameters (spindle speed, feed). Amongst those parameters
mentioned, spindle speed and feed are the most important parameters in drilling. These
parameters directly affect cutting conditions that occur during the cutting process and are
the factors that determine the performance of the cutting tool (drill) [11–15].

In the light of the studies in the literature, tool life (based on tool wear) and surface
quality are therefore the main focus of this paper. Failure to control the flank wear occurring
during the drilling process causes both the cutting tool and the workpiece to be significantly
affected. It causes different types of wear on the cutting tool, eventually causing the
tool to complete its life in a shorter time than expected. On the other hand, the surface
quality of the workpiece is negatively affected, in addition to undesirable changes in the
chemical structure of the workpiece. For these reasons, tool wear and surface roughness
measurements in hole drilling have attracted the attention of many researchers.

Previous reports showed that fly ash geopolymer can be machined using milling and
turning processes but with very low spindle speeds and small depth of cuts [16–18] but
have yet to provide evidence on drilling performance on geopolymer materials. Apart
from the articles reported, literature related to geopolymer drilling is still lacking, and in
order to fill in the gap in the literature, this paper assessed the relationship between spindle
speeds and tool life of drilling fly ash geopolymer using three types of cutting tools—HSS,
HSS coated with TiN, and HSS-cobalt (HSS-Co).

2. Methodology

A set of class C fly ash geopolymer blocks was prepared with a size of 100 mm × 100
mm × 100 mm. The methods of preparing the samples were as previously reported [16–18].
Table 1 shows the list of apparatus used in producing the geopolymer samples.
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Table 1. List of required tools in making geopolymer.

Tools Description

Raw Material Fly Ash class C

Activators Sodium hydroxide, sodium silicate

Apparatus/Equipment Wellbeing glasses, clean paper tissue, expendable nitrile gloves,
laboratory garment, and 100 mm × 100 mm × 100 mm cubic mould.

The molarity of sodium hydroxide was controlled at 12 M whereby the ratio of sodium
silicate (Na2SiO3) to sodium hydroxide (NaOH) was set at 2.5, and the solid-to-liquid ratio
was set at 2.0, as employed in a previous report [19]. The calculation for determining the
weight of fly ash and alkaline activator based on the cubic mold is as follows [18,19]:

i. Sample size = 100 mm × 100 mm × 100 mm;
ii. Total weight of fly ash used = 1600 g;
iii. Solid-to-liquid ratio = 2.0.

The weight of the alkaline activator was obtained as follows:

Weight of Fly ash
Weight of Alkaline activator

=
2.0
1.0

(1)

=
1600 g

Weight of Alkaline Activator
=

2.0
1.0

Weight of Alkaline Activator = 800 g

Thus, the weight of NaOH + Na2SiO3 was 800 g. Since Na2SiO3/NaOH ratio was 2.5,
the weight of Na2SiO3 was calculated as shown below.

Weight of Na2SiO3

Weight of NaOH
=

2.5
1.0

(2)

Weight of Na2SiO3 =
2.5

2.5 + 1.0
× 800 g = 571.429 g

Weight of NaOH = 800 g − 571.429 g = 228.571 g

Figure 1 shows the geopolymer block sample after solidification and ready for the
drilling process.
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Three types of cutting tools—uncoated HSS, HSS-TiN, and HSS-Co—were selected
for this experiment. HSS was chosen in this exploration study because this drill bit is
affordable at a low price, and considering that it offers several advantages such as being
easy to maintain with a seamless sharpening of blunt tools and having a high level of
compactness and high breaking strength. HSS coated with TiN and HSS-Co were chosen
as another set of samples because the coatings of TiN and the addition of cobalt elements
in HSS were reported to offer more strength and increases durability [20]. The details of
the drilling parameters are shown in Table 2, and the image of the cutting tools is shown in
Figure 2. Six rows of 6.0-mm-hole diameter with 6.0-mm spaces in between each hole were
set for drilling, as shown in Figure 3. The maximum tool wear (Vbmax) of 0.10 mm was set
as the limit of the tool life as recommended by a previous report [21].

Table 2. Parameter details in drilling fly ash geopolymer.

Parameter Details

Spindle speed (RPM) 250, 200, 150 and 100 RPM

Feed rate (f) (mm/rev) 0.075 mm/rev

Depth of cut (mm) 0.30 mm

Cutting tool types Coatings Thickness Friction Coefficient

HSS (Danyang Daming Tools, Ltd, Danyang, China) N/A 0.1–0.23

HSS Coated with TiN (Jiangsu Industry Co. Ltd.,
Yancheng, China) 6 µm 0.050–0.065

M35 HSS Co (5%) (Jiangsu Industry Co. Ltd.,
Yancheng, China) N/A 0.030–0.045

Tool geometry
specifications

No. of flute 2

Flute length (mm) 50

Shank diameter (mm) 6

Tool diameter (mm) 6

Overall length (mm) 102

Point angle (◦) 135

Helix angle (◦) 25
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Figure 3. (a) Diagram of designated drilled holes on the workpiece and (b) drilling operation on
geopolymer samples.

Four different spindle speeds that were 250 rpm, 200 rpm, 150 rpm, and 100 rpm
with a constant feed rate of 0.10 mm/rev and depth of cut 0.30 mm were set using Akira
Seiki Performa SR3 CNC milling machine, as shown in Figure 4. Initially, the parameter
selection was set in larger ranges based on the literature [22] with respect to the nearest
similar samples; however, the samples experienced major cracks when drilled at various
high spindle speed parameters, and therefore, the ranges had to be lowered until the
drilling process could be completed highest at 250 rpm. The flank wear was observed in
the sequence of 5, 10, 15, 20, and 25 holes using Xoptron Stereo Microscope XST60 digital
microscope and visualized using iSolution Lite. The surface roughness was measured
using Accretech Handysurf E+ 35 Portable Surface Tester on each sample. The setup of the
surface roughness measurement is shown in Figure 4a, while the location of measurement
is represented in Figure 4b.
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3. Results and Discussion
3.1. Tool Wear Evaluation

Before discussing the flank wear, it is interesting to note that the chip formed observed
is powder-like chips. This type of formed chip was due to the properties of the fly ash
geopolymer, which is very hard and brittle [22]. Due to its brittleness, the geopolymer
experience brittle fractures, therefore producing discontinuous chips and most of the time
powder forms [23]. This powder-like chip also shows a sign of a potential reduction of the
life of the bit, and even breaks the tool if high spindle speed is applied. Table 3 shows tool
wear (flank wear) as measured from the optical microscope on different spindle speeds
using HSS, HSS-TiN, and HSS-Co. The data were then tabulated into graphs, as shown
in Figure 5. As expected, it can be observed that the flank wear increased as the drilling
processes went through until Hole-25. Continuous employment of the drilling process
from one hole to another is believed to have increased the cutting temperature, which
had a huge impact on wear, experiencing an increase in the flank wear, as mentioned by
the literature [24]. The images of the flank wear captured by the microscope for each cut
are shown in Table 4. From the table, there is an existence of growing tool wear occurred
due to the friction between the underside of the tool (clearance face) and the geopolymer
workpiece. The wear happened at the drill corner due to subjected horizontal and vertical
forces that occurred and from the spindle speed and contact length at the maximum. This
is due to the higher friction that happened during the drilling process, contributing to
the removal of small particles from the sharp edges of the cutting tools [25]. The cutting
edges of the flank surface gradually wore as the drilling process progressed with no sign of
flaking or chipping. Another interesting finding was that in the coating, the presence of
Co grain started to wear slowly after a few holes until the end of hole 25, indicating that
the coating is not significant in resisting flank wear. Previous research stated that HSS-Co
has poor heat and wear resistance [26,27], and the corner edge starts to wear after the
coating grains are lost in the worn zone. This justifies that both HSS-Co and HSS-TiN are
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the cheapest types of coated HSS in the market. However, both coated tools still manifest a
better performance, compared to uncoated HSS.

Table 3. Tool wear effects on different spindle speeds using HSS, HSS-TiN, and HSS-Co.

N
o.

of
H

ol
es

Tool Wear (mm)

Spindle Speed
250 rpm

Spindle Speed:
200 rpm

Spindle Speed:
150 rpm

Spindle Speed:
100 rpm

H
SS

H
SS

-T
iN

H
SS

-C
o

H
SS

H
SS

-T
iN

H
SS

-C
o

H
SS

H
SS

-T
iN

H
SS

-C
o

H
SS

H
SS

-T
iN

H
SS

-C
o

5 0.08 0.06 0.05 0.04 0.03 0.02 0.04 0.02 0.01 0.02 0.02 0.01
10 0.11 0.10 0.09 0.09 0.08 0.07 0.07 0.05 0.04 0.04 0.03 0.03
15 0.21 0.20 0.19 0.14 0.12 0.10 0.11 0.10 0.09 0.08 0.07 0.07
20 0.30 0.28 0.27 0.22 0.21 0.20 0.12 0.16 0.15 0.11 0.10 0.09
25 0.35 0.34 0.32 0.33 0.31 0.30 0.22 0.20 0.18 0.12 0.11 0.11
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Table 4. Images of flank wears gradually emerge on HSS, HSS-TiN, and HSS-Co under a microscope
magnification scale from 30× to150×.

Tools Cutting Speed (rpm) Initial Condition Final Condition (25th Hole)

H
SS

250
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Figure 6 shows the progression of flank wear curves for uncoated HSS, HSS-TiN, and
HSS-Co drill bits in drilling the fly ash geopolymer at spindle speeds of 100, 150, 200, and
250 rpm at 25th holes. Although the major trends show that all flank wears increase as the
spindle speed increases, it is interesting to note that at 100 rpm, the flank wear does not
show significant differences. This result is in line with the previous studies that showed the
increasing value of tool wear as spindle speed increases [22,26,28,29]. However, starting
at 150 rpm, the flank wear differences show noteworthy differences. The presence of a
layer of coating increases the hardness and wear resistance of the HSS-TiN and HSS-Co
drill bits at low speed, and therefore, less wear occurred, compared to the uncoated HSS
drill bits [26], but yet the coatings could not sustain the friction at 150 rpm. The highest
flank wear was recorded on an uncoated HSS drill bit at 250 rpm, with a value of 0.35 mm.
This highest is in line with the literature [26–30] due to the fact that HSS is less superior,
compared to HSS-TiN coated and HSS-Co. The loss of the tool material can be observed
on the tool flank, due to abrasive wear of the cutting edge against the machined surface.
Although the tool material loss happened in all three cutting tools, the worst came from the
uncoated HSS due to its direct engagement between the HSS materials and the workpiece.
Based on the range of parameters used in this experiment, it demonstrates that spindle
speed is directly proportional to the flank wear value. Increases in spindle speed reduce the
tool-to-chip contact area, therefore reducing friction, which allows better surface quality to
be achieved.
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Figure 6. Flank wear value of cutting tools 25th hole at different spindle speeds.

Figure 7 shows the comparison of flank wear at various spindle speeds under the
same cutting tool of HSS, HSS-TiN, and HSS-Co. In general, all trends of flank wear show
that the rate of flank wear is faster with respect to the speed of the drilling processes. For
the HSS tool, the maximum tool wear (Vbmax) is already seen to exceed 100 rpm on the
20th hole, suggesting that the maximum of 20 holes can be drilled using HSS at 100 rpm.
HSS can be used at faster spindle speed; somehow the Vbmax is exceeded at the 15th hole
if 100 rpm is used. In addition, only 10 holes can be drilled on the materials if 200 rpm is
applied. For the results of using the 250-rpm HSS tool, only five to six holes can be drilled
before it exceeds Vbmax. Remarkably, the HSS-TiN tool also does not show a significant
improvement in drilling fly ash geopolymer. Similar to what was experienced on HSS
uncoated tool, the use of 100 rpm on HSS-TiN shows the same number of holes as HSS
when it reaches Vbmax, i.e., 15 holes and 10 holes were recorded as the maximum number
that can be drilled with 150 and 200 rpm, respectively. Interestingly, the coating of TiN
helps the tool to stay a little bit longer in cutting at 250 rpm when the Vbmax at 250 rpm
was recorded at the 10th hole.
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Figure 7. Comparison of flank wear of HSS, HSS-TiN, and HSS-Co at various spindle speeds.

For the HSS-Co cutting tool, it took the same 25 holes and 15 holes to reach Vbmax
at 100 and 150 rpm, respectively. Nevertheless, the performance of HSS-Co helped the
increase at 200 rpm. The Vbmax was recorded at the same 15th hole when 200 rpm was
applied to the drilling process. Similarly, only 10 holes can be drilled using HSS-Co with
250 rpm before it reaches Vbmax.
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3.2. Surface Roughness Evaluation

The surface roughness of the material is one of the most important aspects that need
to be considered when carrying a drilling process. The result of the surface roughness help
to determine whether the selected parameter of machining is sufficient enough to create a
good finishing quality to the product. Thus, maintaining a low value of surface roughness
will produce a good finishing to the product itself within the demand and thus will create
an added value to the production.

Figure 8 shows the comparison of surface roughness value for the cutting tools at
a spindle speed of 250 rpm. The general trend shows gradual increases on Ra values
indicating that the surface roughness quality is significantly affected by the engagement
of the cutting tool with the workpiece. Another interesting point derived from the figure
is that HSS-Co produces the lowest value of surface roughness, compared to HSS-TiN
and uncoated HSS. When using uncoated drill tools, the thermal softening effects affected
the edge of tools, resulting in damage. This situation could contribute to the high surface
roughness of the drilled surface [12]. The HSS-Co-coated drill tool has a superior abrasive
performance, which helps in shearing finer surface finish, compared to the other coun-
terparts. During the drilling process, the cutting tool can retain hardness and stability at
high impact force and high temperature, hence producing strong drilling action to slide
and produce the holes consistently. It should be noted that the use of an uncoated drilling
tool gave very high surface roughness, contributing to the major change in the percentage
distribution. Therefore, for the best drilling performance, HSS-Co is suggested to be used
along with a spindle speed of 100 rpm.
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Figure 8. Surface roughness value of different cutting tools at a spindle speed of 250 rpm.

On the other hand, Figure 9 shows the comparison of surface roughness value of
the cutting tools after drilling geopolymer at various spindle speeds. It can be seen from
Figures that all the cutting tools showed exact behavior, in which the surface roughness
values decrease with the increase in spindle speed from 100 rpm up to 250 rpm. The effects
of spindle speed on the surface roughness obtained in this study are in agreement with the
results of previous studies [30–32]. Although increasing the spindle speed may increase
the quality of surface finish, higher spindle speed also comes with higher heat generated
and therefore causes the tool to wear or blunt [32].
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Figure 9. Surface roughness value of the cutting tools.

The results shown in Figure 9 show that the performance of surface roughness is
closely related to the spindle speed. Increasing the spindle speed will lead to high friction,
resulting in an increase in the temperature at the contact region. Hence, this will result in
thermal softening of the workpiece material and thus reduce the thrust force and enable
the machine to feed the drill with less energy, resulting in a better surface finish [32].
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4. Conclusions

The first conclusion made is that fly ash geopolymer is machinable using drilling
process either HSS, HSS-TiN, and HSS-Co drill bits, as indicated by the experiment. Even
so, the experiment showed that almost all tools surpass the 0.10-mm targeted tool life
limit after drilling 15 holes. Furthermore, all cutting tools show the behavior as expected,
which is to wear gradually with respect to the number of drilled holes. On the other
hand, the spindle speed is directly proportional with tool wear but inversely proportional
with the surface roughness of the samples. The finding also shows HSS-TiN and HSS-Co
increase the tool life at high spindle speed (200 rpm and above), compared to the HSS
tool. HSS-Co exhibits the greatest tool life by showing the lowest value of flank wear
and produces a better surface finish by exhibiting a low Ra value. Therefore, for the best
drilling performance, Hss-Co is the most recommended tool to be used in drilling fly ash
geopolymer material with a spindle speed of 100 rpm.
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