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Abstract

Background: Fosfomycin has been proven to be a vital choice to treat infection caused by multidrug resistance
bacteria, especially carbapenem-resistant Klebsiella pneumoniae (CRKP). However, fosfomycin resistant cases has
been reported gradually. In this study, we reported the fosfomycin-resistant rate in CRKP strains and further
revealed the molecular mechanisms in resistance gene dissemination.

Results: A total of 294 non-duplicated CRKP strains were collected. And 55 fosfomyin-resistant strains were
detected, 94.5% of which were clustered to sequence type (ST) 11 by PCR followed up sequencing. PFGE further
revealed two major groups and four singletons. The positive rates of genes responsible to fosfomycin and
carbapenem resistance were 81.8% (fosA3), 12.7% (fosA5) and 94.5% (blaKPC-2), respectively. Genomic analysis
confirmed insertion sequence (IS) 26 was the predominant structure surrounding fosA3. The fosA3 genes in six
isolates were located on plasmids which were able to transfer to E. coli J53 recipient cells by means of conjugation.

Conclusions: Although the resistant rate of CRKP to fosfomycin is relatively low in our area, considering its gene is
located on transferrable plasmid and inserted in IS structure, continuous monitoring is still needed.
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Introduction
Carbapenem resistant Klebsiella pneumoniae (CRKP)
has become a great threat to public health. The dissem-
ination of CRKP causes severe morbidity and mortality,
due to few antibiotics available for the treatment [1].
Fosfomycin is a bactericidal antibiotic which inhibits

the biosynthesis of cell wall by irreversibly binding with
UDP-N-acetylglucosenol acetonyl transferase (MurA),
an essential enzyme for peptidoglycan biosynthesis. Fos-
fomycin is commonly used in uncomplicated urinary

tract infection caused by susceptible organisms [2, 3]. In
recent years, fosfomycin has been proven to be effective
against multidrug-resistance bacteria and recommended
as alternative option for treatment of CRKP [4].
During the medical application of fosfomycin, resistant

strains has been continually reported [5]. Three resist-
ance mechanisms to fosfomycin have been reported,
including the fosfomycin modified enzymes, amino acid
substitutions of the antibiotic MurA target and muta-
tions of fosfomycin transport system (GlpT and UhpT)
and its regulatory genes [5–7]. The resistance mecha-
nisms exhibit divergences among different regions [5].
The fosfomycin modified enzymes is the predominant
mechanism of fosfomycin resistance in China. More
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than ten fos genes have been identified [8, 9]. Gene fosA3
is the most prevailing variant, mainly distributed in Asia,
and can spread horizontally [10]. Therefore, the monitor
of fosfomycin resistance is necessary to maintain fosfo-
mycin effectiveness.
In the present study, we intended to investigate the

in vitro antibacterial activity against CRKP from two
teaching hospitals in China and further explore the re-
sistance mechanism.

Result
Antibiotic susceptibility profiles
Among the 294 tested CRKP strains, 55 strains were re-
sistant to fosfomycin (MIC ≥256 μg/mL). The fosfomy-
cin resistant rates for two hospitals were 14.3 and 18.9%,
respectively. All the fosfomycin resistance strains were
highly resistant to tested antibiotics, including amikacin
(AK), aztreonam (ATM), cefotaxime (CTX), cefotaxime
(CRO) and ceftriaxone (FEP), with the minimum inhibi-
tory concentration (MIC) at which 50% isolates were
inhibited (MIC50) were greater than or equal to 256 μg/
mL. All the strains were susceptible to polymyxin B
(PB). The antibiotic susceptibility results were showed in
Table 1.

Screening for carbapenem and fosfomycin resistance
genes
For carbapenem-resistance genes, the detection rate of
blaKPC was 94.5% (52/55) in the CRKP isolates and all
blaKPC belonged to blaKPC-2. None blaNDM and
blaOXA-48 were identified in our study.
Among the 55 fosfomycin-resistant strains, 45 (81.8%)

were positive with fosA3 gene, 7 (12.7%) were fosA5,
while none harbored with fosA or fosC2 genes. For three
strains which were negative for fosfomycin-resistance

genes tested in our study, an amino acid substitution in
Thr287Asn was discovered in fosfomycin target murA.

Bacterial genotype
The dendrogram map conducted by pulsed-field gel
electrophoresis (PFGE) revealed the genetic relationship
between the fosfomycin-resistant strains. Two major
groups (Group I and Group II) and four singletons were
identified (Fig. 1). Group II was predominant that com-
prised 39 strains that were isolated in two hospitals.
In addition to multilocus sequence typing (MLST), 52

(94.5%) strains belonged to ST11. The rest of three
strains belonged to ST 562, ST 37 and a new ST type,
ST 3984, respectively.

Genetic environment surrounding fosA3 gene
The genetic environment adjacent to fosA3 was deter-
mined by PCR mapping. All the fosA3 genes were lo-
cated between two IS26 oriented in the opposite
direction. The structure between fosA3 and upstream
IS26 was the same in all 45 strains. The length of inter-
genic region between upstream IS26/fosA3 was 386 bp.
However, four different downstream regions of fosA3
were discovered and designated as type 1 to 4, with vari-
able lengths between fosA3 and the downstream IS26
(589, 819, 926 and 1811 bp). Type 1, accounting for 20
strains, consisted of fosA3-orf1-IS26 and shared 99.4%
identity with the corresponding region of plasmid pKP
19–2029-KPC2 from K. pneumoniae strain KP19–2019
(GenBank no. CP047161). Twelve strains belonged to
type 2, with a genetic background of fosA3-orf1-orf2-
tetR-IS26, which was similar with that on plasmid
p116753-KPC from K. pneumoniae strain 116,753 (Gen-
Bank no. MN891682). Two new types of fosA3 down-
stream sequence were found in our study, namely type 3
and 4, accounting for four and nine strains, respectively,

Table 1 Antimicrobial susceptibility results of 55 CRKP clinical isolates

Antimicrobial
agents

MIC (μg/mL) number of isolates (%)

Range MIC50 MIC90 S I R

CTX 256–> 256 > 256 > 256 0 (0.0) 0 (0.0) 55 (100)

CRO 256–> 256 > 256 > 256 0 (0.0) 0 (0.0) 55 (100)

FEP 128 – > 256 > 256 > 256 0 (0.0) 0 (0.0) 55 (100)

MEM 8–> 256 256 > 256 0 (0.0) 0 (0.0) 55 (100)

ATM 2–> 256 > 256 > 256 1 (1.8) 0 (0.0) 54 (98.2)

FOS 256–> 512 > 512 > 512 0 (0.0) 0 (0.0) 55 (100)

AK 1–> 256 > 256 > 256 4 (7.3) 0 (0.0) 51 (92.7)

TGC 1–8 2 8 22 (40.0) 8 (14.5) 25 (45.5)

PB 0.25–1 0.5 0.5 55 (100) 0 (0.0) 0 (0.0)

MIC50, minimum inhibitory concentration for 50% of the isolates; MIC90, minimum inhibitory concentration for 90% of the isolates
S susceptibility, I intermediate, R resistance
CTX cefotaxime, CRO ceftriaxone, FEP cefepime, MEM meropenem, ATM aztreonam, FOS fosfomycin, AK amikacin, TGC tigecycline, PB polymyxin B
The susceptibility profiles were analyzed according to the CLSI guidelines for CTX, CRO, FEP, MEM, ATM, FOS and AK, and EUCAST for PB and TGC
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and registered as MK948099 and MK911732 in the Gen-
Bank. The schematic map for four types was shown in
Fig. 2.

Conjugation experiments and plasmid analysis
Among the 45 fosA3 positive strains, 6 (13.3%) fosA3
genes were transferable to E. coli J53 recipient. For the

Fig. 1 Dendrogram of relationships among 55 fosfomycin-resistant CRKP via the unweighted pair group method. Red line represents Dice
coefficient equal to 80%
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antibiotic susceptibility profiles, four transconjugants
showed highly resistant to antibiotics tested, com-
pared to E. coli J53 recipient. However, two transcon-
jugants (TC5 and TC18) only showed an increase in
the MIC value of fosfomycin and amikacin (Table 2).
PCR confirmed the blaKPC-2 was absent in TC5 and
TC18 (Figure S1).
S1-PFGE, southern blotting and PCR-based replicon

typing were used for plasmid analysis. S1-PFGE demon-
strated that five in six transconjugants harbored single
plasmid. The plasmids harbored in six transconjugants
were assigned to the following incompatibility groups:
IncN (n = 2), IncL/M (n = 1) and not determined (ND,
n = 3) (Table 2). Southern blot analysis confirmed that

the fosA3 genes were located in the plasmids of different
sizes (~ 40, 100 and 140 kb) in the transconjugants
(Fig. 3).
For the rest 49 strains, the plasmids were assigned to

the following incompatibility groups: IncF (n = 42) and
ND (n = 3). Multiple replicons were detected in 4 strains
(the data were shown in supplemental table).

Discussion
Our study investigated the prevalence of fosfomycin re-
sistance genes among 294 non-duplicate CRKP strains
from two tertiary hospitals in two provinces. We have
reported a resistance rate of 18.7%, indicating a relatively
low resistant rate to fosfomycin, compared to a study

Fig. 2 Schematic maps of four type of genetic environments between gene fosA3 and downstream IS26

Table 2 Antimicrobial susceptibility results of 6 fosA3 isolates with capability of transconjugation and their transconjugants

Isolate MIC (μg/mL) plasmid
typeCTX CRO FEP MEM ATM FOS AK TGC PB

KP5 > 256 > 256 > 256 > 256 > 256 > 512 > 256 4 0.5 IncN

KP18 > 256 > 256 > 256 > 256 > 256 > 512 > 256 4 0.5 IncN, IncF

KP165 > 256 > 256 > 256 256 > 256 > 512 > 256 4 0.5 ND

KP190 > 256 > 256 > 256 > 256 > 256 > 512 > 256 1 0.5 IncL/M

KP212 > 256 > 256 > 256 256 > 256 > 512 > 256 4 0.5 ND

KP223 > 256 > 256 > 256 256 > 256 > 512 > 256 4 0.5 ND

TC5 ≤0.25 ≤0.25 ≤0.25 1 ≤0.25 > 512 2 ≤0.25 ≤0.25 IncN

TC18 ≤0.25 ≤0.25 ≤0.25 1 ≤0.25 > 512 2 ≤0.25 ≤0.25 IncN

TC165 > 256 > 256 64 4 256 > 512 > 256 ≤0.25 ≤0.25 ND

TC190 8 > 256 8 2 128 > 512 > 256 ≤0.25 ≤0.25 IncL/M

TC212 > 256 > 256 32 4 128 > 512 > 256 ≤0.25 ≤0.25 ND

TC223 > 256 > 256 32 4 256 512 > 256 ≤0.25 ≤0.25 ND

EC J53 ≤0.25 ≤0.25 ≤0.25 1 ≤0.25 2 1 ≤0.25 ≤0.25 /

KP K. pneumoniae, TC transconjugant, EC E. coli, ND not detected
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conducted by Chen et al. (28.7%, 29/101 strains of
CRKP) [11]. Probably because fosfomycin is not com-
monly used in the two settings. However, recently stud-
ies reported severe resistance rates to fosfomycin among
CRKP in China between 2015 to 2020, ranging from
48.5 to 80% [12, 13]. The fast spread of fosfomycin re-
sistance present further medical challenge for CRKP
treatment, due to few antibiotics available. Another fac-
tor, which may impede the application of fosfomycin, is
the difference between CLSI and EUCAST on MIC
breakpoint. CLSI considers a MIC greater than or equal
to 256 μg/mL to fosfomycin as resistance. However,
EUCAST chooses 32 μg/mL as the breakpoint for fosfo-
mycin to discriminate resistance. Furthermore, the CLSI
breakpoint for fosfomycin only applies to E. coli urinary
trait isolates. There is an urgent need for more clinical
studies to determine the breakpoints for fosfomycin on
K. pneumoniae systematic infection.
Polymerase chain reaction (PCR) screening revealed

the plasmid gene fosA3 was the predominant resistance
mechanism. Gene fosA3 was first discovered in a E. coli
strain and transferred with resistance genes including
CTX-M and rmtB, resulting in highly resistant to fosfo-
mycin [14]. Previous studies have demonstrated that the
plasmid carrying fosA3 were classified into incompatibil-
ity group IncF II, IncN, IncI1 IncB/O or not determined
[15]. IncF plasmids are heterogeneous with variable size
and frequently carry more than one replicon and resist-
ance genes, contributing the fitness of the host [16]. In
our study, IncF plasmid was also the predominant repli-
con type in all 55 strains. Interestingly, all the IncF plas-
mids were unable transferred to E. coli J53 by means of

conjugation. Only six fosA3 genes were transferable to E.
coli J53 recipient. However, two transconjugants showed
no increase in MIC values of antibiotics tested in our
study, except for fosfomycin and amikacin (Table 2).
PCR and southern blot analysis confirmed the fosA3
genes of the two transconjugants were located in a plas-
mid around 40 kb (Fig. 3) and the absence of blaKPC-2
(Figure S1). The genes fosA3 and blaKPC-2 coexist on a
plasmid and can spread together by means of plasmid
transfer. Jiang et al. observed a plasmid co-harbored
fosA3 and blaKPC-2 on different transposon systems [17].
Li et al. reported a IncP1 plasmid co-harbored fosA3 and
blaKPC-2 in the same Tn1721-Tn3-like composite trans-
posons [18]. The rmtB gene, which contributes to the re-
sistance of aminoglycosides, is frequently located on
plasmid with fosA3. So we also tested the rmtB gene
among six transconjugants by PCR and confirmed that
five transconjugants harbored rmtB gene (Figure S1).
The coexistences of these resistance genes and the hori-
zontal gene transfer may promote the spread of fosA3
and fosfomycin resistance by co-selection, due to the ex-
cessive use of carbapenems and aminoglycosides for
treatment of bacterial infection.
As for the 3 strains which were negative for fosfomy-

cin resistance genes, an amino acid change on murA
may account for the resistance, which was also reported
in other study [19]. However, no change in active bind-
ing site of fosfomycin (Cys115 residue) and three con-
served positively charged residues (Lys22, Arg120 and
Arg397) in murA was discovered, so further study is
needed to reveal the influence of Thr287Asn in murA
on fosfomycin susceptibility.

Fig. 3 S1-PFGE and Southern blot hybridization of fosA3 transconjugants. Bands with black arrows pointing showed the positive signals in
Southern blot with fosA3 probes. S1-PFGE was shown in left and Southern blot was shown in right. M = DNA ladder of Salmonella serotype
Braenderup H9812 strain digested by XbaI. 1, E. coli J53 (KP5 plasmid); 2, E. coli J53 (KP 18 plasmid); 3, E. coli J53 (KP 165 plasmid); 4, E. coli J53 (KP
190 plasmid); 5, E. coli J53 (KP 212 plasmid); 6, E. coli J53 (KP 223 plasmid)
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Insertion sequence IS26 surrounds fosA3 gene and
plays an important role in the dissemination of fosA3.
Different studies have reported a s IS26-fosA3-IS26-like
structure, which was similar with the structures in our
study, while the length between IS26 and fosA3 was vari-
able [5]. The sequences of MK948099 and MK911732
showed some differences with that of plasmids known in
GenBank. The sequence of MK948099 showed a differ-
ence of 47 base pairs compared with corresponding frag-
ment of plasmid pHNGD46 (GenBank no KJ668701.1)
in E. coli GDC46.
Based on the PFGE pattern, we disclosed that clone

dissemination may play an important role in the spread
of fosfomycin resistance, which is consistent with differ-
ent studies on CRKP [20]. More importantly, group II
contained strains from Cangzhou Central Hospital
(KP28) and Xiangya hospital (KP10, KP12 and KP18),
which shared similar PFGE bands and carried gene
fosA3. It could be a clue that the spread of fosA3 among
CRKP may attribute to clone expansion. So, it is urgent
to monitor the fosfomycin resistance and use the antibi-
otics with caution to prevent further spread of fosfomy-
cin resistance. According to MLST, ST11 was the
predominant type in our study, which is in agreement
with the fact the ST11 is primary sequence type in Asia
for CRKP [21].

Conclusion
The fosfomycin resistance rate of CRKP strains is low in
our study. The main mechanism of fosfomycin resist-
ance is plasmid-mediated genes, which located on
transferrable plasmid and inserted in IS structure, so fur-
ther monitoring the fosfomycin resistance should be
strengthened.

Materials and methods
Bacteria source
A total of 294 non-duplicate CRKP strains were col-
lected from two tertiary hospitals (Cangzhou Central
hospital from Hebei province and Xiangya hospital from
Hunan province) in China between December 2016 and
March 2019. The sample sources included blood (n =
48), sputum (n = 132), urine (n = 34), abscess (n = 22)
and other samples (n = 58). CRKP was defined as strains
with MIC values ≥4 μg/ml for IPM or MEM based on
Clinical and Laboratory Standards Institute 2018 (CLSI)
guidelines.

Bacteria identification and antimicrobial susceptibility test
(AST)
The strains were identified by VITEK-2 Compact system
(bioMérieux, Marcy L’Etoile, France) or Microflex™
MALDI-TOF MS system (Bruker Daltonik, Bremen,
Germany).

Broth microdilution method with Mueller-Hinton
broth (Oxoid, unipath, UK) was used for AST according
to the CLSI 2018 guidelines [22]. Minimum inhibitory
concentration (MIC) for fosfomycin was determined by
agar dilution method with Mueller-Hinton agar supple-
mented with 25 μg/mL glucose-6-phosphate. The sus-
ceptibility profiles were analyzed according to the CLSI
guidelines, and the European Committee on Antimicro-
bial Susceptibility Testing breakpoints (EUCAST, www.
eucast.org) for polymyxin B and tigecycline.

Detection on resistance mechanisms of carbapenem and
fosfomycin
Further confirmation test on the resistance genes was
completed by means of PCR. The carbapenem-resistance
genes, including blaKPC, blaNDM and blaOXA-48, and
fosfomycin-resistance genes, such as fosA, fosA3, fosA5
and fosC2, were involved in our study according to pre-
vious reports [23–25]. We also analyzed the variants of
the blaKPC genes by PCR and follow up sanger sequen-
cing [26].
For strains which were negative for tested fosfomycin-

resistance genes, murA gene were amplified according to
previous work [19]. The products were sequenced and
compared with the murA gene sequence of fosfomycin-
sensitive K. pneumoniae K68 stains (GenBank no.
KT334183) available at the National Center for Biotech-
nology Information website.

Bacteria homology analysis
PFGE was employed to analyze the genomic background
among Fosfomycin-resistant CRKP strains according to
the standard protocol [27]. Briefly, the genomic DNA
was digested with XbaI restriction enzyme for 12 h and
separated by running PFGE electrophoresis with 1%
agarose gel at 12 °C and 5.5 V/cm, with alternating
pulses at a 120° angle in 0.5–70 s pulse time gradient for
21 hs. BioNumerics software (Applied Maths) was used
for dendrogram analysis using the dice similarity coeffi-
cient. Strains were classified as the same PFGE group if
they possessed ≥80% genetic similarity [28]. Salmonella
enterica H9812 was used as the size marker.
MLST was used to analyze ST type of CRKP. Seven

house-keeping genes of K. pneumoniae (rpoB, gapA,
mdh, pgi, phoE, infB and tonB) were amplified and the
products were sequenced. The ST type was analyzed ac-
cording to protocol of Pasteur website (http://bigsdb.
web.pasteur.fr).

Conjugation experiment and plasmid typing
The conjugation experiments were used for the fosA3
strains to examine the transferring capability of plas-
mids. The sodium azide-resistant E. coli J53 was used as
recipient strain and filter-mating method was performed
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according to reported procedures with 64 μg/mL fosfo-
mycin and 200 μg/mL sodium azide [29]. PCR and
antibiotic susceptibility tests for the transconjugants
were conducted to confirm the transferred fosA3 and
blaKPC genes.
Plasmid DNA of all strains was extracted by E.Z.N.A.

Endo-free Plasmid DNA Mini Kit (OMEGA, USA). The
plasmid incompatibility group was identified by PCR-
based replicon typing according to previous work,
including HI1, HI2, I1/Ir, X, L/M, N, FIA, FIB, W, Y, R,
FIC, A/C, T, FIIA, F and K [30].

S1-PFGE and southern blotting
Southern blotting was employed to confirm the location
of fosA3 gene. Total genomic DNA was digested with S1
nuclease and electrophoresed with a CHEF-Mapper XA
PFGE system (Bio-Rad, USA) for 16 h at 14 °C and 6 V/
cm, with alternating pulses in 2.16–63.8 s pulse time.
The DNA fragments were transferred to nylon
membranes (Millipore, USA) and hybridized with
digoxigenin-labelled fosA3-specific probe. An NBT/BCIP
color detection kit (Roche Applied Sciences, Germany)
was employed to detect the fragments [31].

PCR mapping of the flanking region of fosA3 gene
The genetic environment around fosA3 gene was
analyzed according to previous work [23]. The PCR
products were sequenced and compared using the Basic
Local Alignment Search Tool (http://blast.ncbi.nlm.nih.
gov/Blast.cgi). Sequences reported here have uploaded to
NCBI website with accession numbers of MK948099
and MK911732.
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