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Abstract: The question of molecular similarity is core in cheminformatics and is usually assessed
via a pairwise comparison based on vectors of properties or molecular fingerprints. We recently
exploited variational autoencoders to embed 6M molecules in a chemical space, such that their
(Euclidean) distance within the latent space so formed could be assessed within the framework of
the entire molecular set. However, the standard objective function used did not seek to manipulate
the latent space so as to cluster the molecules based on any perceived similarity. Using a set of some
160,000 molecules of biological relevance, we here bring together three modern elements of deep
learning to create a novel and disentangled latent space, viz transformers, contrastive learning, and
an embedded autoencoder. The effective dimensionality of the latent space was varied such that
clear separation of individual types of molecules could be observed within individual dimensions of
the latent space. The capacity of the network was such that many dimensions were not populated
at all. As before, we assessed the utility of the representation by comparing clozapine with its near
neighbors, and we also did the same for various antibiotics related to flucloxacillin. Transformers,
especially when as here coupled with contrastive learning, effectively provide one-shot learning and
lead to a successful and disentangled representation of molecular latent spaces that at once uses the
entire training set in their construction while allowing “similar” molecules to cluster together in an
effective and interpretable way.

Keywords: deep learning; artificial intelligence; generative methods; chemical space; neural net-
works; transformers; attention; cheminformatics

1. Introduction

The relatively recent development and success of “deep learning” methods involving
“large”, artificial neural networks (e.g., [1–4]) has brought into focus a number of important
features that can serve to improve them further, in particular with regard to the “latent
spaces” that they encode internally. One particular recognition is that the much greater
availability of unlabeled than labelled (supervised learning) data can be exploited in
the creation of such deep nets (whatever their architecture), for instance in variational
autoencoders [5–9], or in transformers [10–12].

A second trend involves the recognition that the internal workings of deep nets can be
rather opaque, and especially in medicine there is a desire for systems that explain precisely
the features they are using in order to solve classification or regression problems. This is
often referred to as “explainable AI” [13–22]. The most obviously explainable networks
are those in which individual dimensions of the latent space more or less directly reflect
or represent identifiable features of the inputs; in the case of images of faces, for example,
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this would occur when the value of a feature in one dimension varies smoothly with and
thus can be seen to represent, an input feature such as hair color, the presence or type of
spectacles, the presence or type of a moustache, and so on [23–26]. This is known as a
disentangled representation (e.g., [27–38]). To this end, it is worth commenting that the
ability to generate more or less realistic facial image structures using orthogonal features
extracted from a database or collection of relevant objects that can be parametrized has
been known for some decades [39–42].

Given an initialization, the objective function of a deep network necessarily determines
the structure of its latent space. Typical variational autoencoders seek to minimize the
evidence lower bound (ELBO) of the Kulback–Leibler (KL) divergence between the desired
and calculated output distributions [43–46], although many other variants with different
objective functions have been suggested (e.g., [45,47–54]). However, a third development is
the recognition that training with such unlabeled data can also be used to optimize the (self-)
organization of the latent space itself. A particular objective of one kind of self-organization
is one in which individual inputs are used to create a structure in which similar input
examples are also closer to each other in the latent space; this is commonly referred to
as self-supervised [12,55–57], or contrastive [58–66], learning. In image processing this is
often performed by augmenting training data with rotated or otherwise distorted versions
of a given image, which then retain the same class membership or “similarity” despite
appearing very different [61,67–69]. Our interests here are in molecular similarity.

Molecular Similarity

Molecular (as with any other kind of) similarity [70–72] is a somewhat elusive but,
importantly, unsupervised concept in which we seek a metric to describe, in some sense,
how closely related two entities are to each other from their structure or appearance
alone. The set of all small molecules of possible interest for some purpose, subject to
constraints such as commercial availability [73], synthetic accessibility [74,75], or “drug-
likeness” [76,77], is commonly referred to “chemical space”, and it is very large [78–97].
In cheminformatics the concept of similarity is widely used to prioritize the choice of
molecules “similar” to an initial molecule (usually a “hit” with a given property or activity
in an assay of interest) from this chemical space or by comparison with those in a database,
on the grounds that “similar” molecular structures tend to have “similar” bioactivities [98].

The problem with this is that the usual range of typical metrics of similarity, whether
using molecular fingerprints or vectors of the values of property descriptors, tend to give
quite different values for the similarity of a given pair of molecules (e.g., [99]). In addition,
and importantly, such pairwise evaluations are done individually, and their construction
takes no account of the overall structure and population of the chemical space.

Deep Learning for Molecular Similarity

In a recent paper [5], we constructed a subset of chemical space using six million
molecules taken from the ZINC database [100] (www.zincdocking.org/, accessed on 28
February 2021), employing a variational autoencoder to construct the latent space used to
represent 2D chemical structures. The latent space is a space between the encoder and the
decoder with a certain dimensionality D such that the position of an individual molecule
in the latent space, and hence the chemical space is simply represented by a D-dimensional
vector. A brief survey [5] implied that molecules near each other in this chemical space
did indeed tend to exhibit evident and useful structural similarities, though no attempt
was made there either to exploit contrastive learning or to assess degrees of similarity
systematically. Thus, it is correspondingly unlikely that we had optimized the latent space
from the points of view of either optimal feature extraction or explainability.

The most obvious disentanglement for small molecules, which is equivalent to feature
extraction in images, is surely the extraction of molecular fragments or substructures,
that can then simply be “bolted together” in different ways to create any other larger
molecule(s). Thus, it is reasonable that a successful disentangled representation would
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involve the principled extraction of useful substructures (or small molecules) taken from
the molecules used in the training. In this case we have an additional advantage over
those interested in image processing, because we have other effective means for assessing
molecular similarity, and these do tend to work for molecules with a Tanimoto similarity
(TS) greater than about 0.8 [99]; such molecules can then be said to be similar, providing
positive examples for contrastive learning (although in this case we use a different encoding
strategy). Pairwise comparisons returning TS values lower than say 0.3 may similarly be
considered to represent negative examples.

Nowadays, transformer architectures (e.g., [3,11,12,101–110]) are seen as the state
of the art for deep learning of the type of present interest. As per the definition of the
contrastive learning framework mentioned in [61,66], we add an extra autoencoder in which
the encoder behaves as a projection head. The outputs of the transformer encoder, which we
regard as representations, are to be of a higher dimension. Consequently, it can still take a
relatively large computational effort to compute the similarity between the representations.
To this end, we add a simple encoder network that maps the representations to a lower
dimensional latent space on which the contrastive loss is computationally easier to define.
Then, to convert the latent vector again to the appropriate representations to feed into the
transformer decoder network, we add a simple decoder network.

In sum, therefore, it seemed sensible to bring together both contrastive learning and
transformer architectures so as to seek a latent space optimized for substructure or molecu-
lar fragment extraction. Consequently we refer to this method as FragNet. The purpose
of the present paper is to describe our implementation of this, recognizing that SMILES
strings represent sequences of characters just as do the words used in natural language
processing. During the preparation of this paper, a related approach also appeared [111]
but used graphs rather than a SMILES encoding of the structures.

2. Results

Figure 1 shows the basic architecture chosen, essentially as set down by [112]. It is
based on [112] and is described in detail in Section 4. Pseudocode for the algorithm used is
given in Scheme 1.
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Scheme 1. Pseudocode for the transformer algorithm as implemented here.

Transformers are computationally demanding (our largest network had some 4.68 M
parameters), and so (as described in Section 4) instead of using 6M ZINC molecules (that
the memory available in our computational resources could not accommodate), we stud-
ied datasets consisting overall of ~160,000 natural products, fluorophores, endogenous
metabolites, and marketed drugs (the dataset is provided in [113]). We compared con-
trastive learning with the conventional objective function in which we used the evidence
lower bound of the KL divergence. The first dataset (Materials and Methods) consisted
of ~5000 (actually 4643) drugs, metabolites, and fluorophores, and 2000 UNPD natural
products molecules, while the second consisted of the full set of ~150 k natural products.
“Few-shot” learning (e.g., [114–116]) means that only a very small number of data points are
required to train a learning model, while “one-shot” learning (e.g., [117–121]) involves the
learning of generalizable information about object categories from a single related training
example. In appropriate circumstances, transformers can act as few-shot [3,122,123], or (as
here) even one-shot learners [124,125]. We thus first compared the learning curves of trans-
formers trained using cross entropy versus those trained using contrastive loss (Figure 2).
In each case, the transformer-based learning essentially amounts to one-shot learning, es-
pecially for the contrastive case, and so the learning curve is given in terms of the effective
fraction of the training set. We note that recent studies happily imply that large networks
of the present type are indeed surprisingly resistant to overtraining [126]. In Figure 2A
the optimal temperature used seemed to be 0.05 and this was used for the larger dataset
(Figure 2B). The clock time for training an epoch on a single NVIDIA-V100-GPU system
was ca. 30 s and 23 min for the two datasets illustrated in Figures 2A and 2B, respectively.
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Figure 2. Learning curve for training our transformers on (A) drugs, metabolites, fluorophores, and 2000 natural products,
and (B) a full set of natural products. Because the transformer is effectively a one-shot learner, and the batch size varied, the
abscissa is shown as a single epoch. The batch size was varied, as described in Section 4, and was (A) 50 (latent space of
64 dimensions) and (B) 20 (latent space of 256 dimensions), leading to an actual number of batches of (A) 92 and (B) 7500.

Figure 3 gives an overall picture using t-SNE [127,128] of the dataset used. Figure 3A
recapitulates that published previously, using standard VAE-type ELBO/K-L divergence
learning alone, while panels Figure 3B–E show the considerable effect of varying the
temperature scalar (as in [112]).

It can clearly be seen from Figure 3B–E that as the temperature was increased in the
series 0.02, 0.05, 0.1, and 0.5, the tightness and therefore the separability of the clusters
progressively decreased. For instance, by mainly looking at the fluorophores (red colors)
in the plotted latent space for each of the four temperatures, the separability as well as
tightness of the cluster was best for the 0.02 and 0.05 temperatures. Later, as the temperature
increased to 0.1, the data points became more dispersed, and finally at a temperature of
0.5, the data points were the most dispersed. Therefore, we suggest that (while the effect
is not excessive) the reduced temperature may lead to the data points being more tightly
clustered. However, the apparent dependency is not linear.
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We also varied the number of dimensions used in the latent space, which served to
provide some interesting insights into the effectiveness of the disentanglement and the
capacity of the transformer (Figure 4).

In Figure 4, trace 0 means that the elements of this number of dimensions was always
nonzero. In other words, for every molecule, the value of at least that number of dimensions
(the value on the y-axis) will be always non zero. Thus, for the 256-dimensional latent
space three dimensions were always non-zero). Trace1 means the average of the number of
dimensions that were non zero for the dataset. Finally trace2 gives the highest number of
dimensions recorded as populated for that specific dimensional latent space. This shows
(and see below) that while GPU memory requirements meant that we were limited to a
comparatively small number of molecules in our ability to train a batch of molecules, the
capacity of the network was very far from being exceeded, and in many cases some of the
dimensions were not populated with non-zero values at all. At one level this might be
seen as obvious: if we have 256 dimensions and each could take only two values, there are 2256

positions in this space (~1077). This large dimensionality at once explains the power and
the storage capacity of large neural networks of this type.

We illustrate this further by showing the population of just three of the dimensions
(for the 256-dimension case), viz dimensions 254 (Figure 5), 182 (Figure 6), and 25 (Figure 7)
(these three were always populated with non-zero values).
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(A) Learning based purely on the cross-entropy objective function. (B–E) The temperature scalar (as in [112]) was varied
between 0.02 and 0.5 as indicated. (Reducing t below led to numerical instabilities.) All drugs, fluorophores, and Recon2
metabolites are plotted, along with a randomly chosen 2000 natural products (as in [113]).
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Figure 5. Values adopted in dimension 254 of the trained 256-D transformer, showing the values of various tri-hydroxy-
benzene-containing compounds (left) ca. 0.59 and two lactones (ca. 0.73). The arrows indicate the bins (0.58, 0.73) in the
histogram of values in this dimension from which the representative molecules shown were taken.
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Figure 6. Values adopted in dimension 182 of the trained 256-D transformer, showing the values of various halide-containing
(~0.835) and other molecules. As in Figure 5, we indicate the bins in the histogram of values (0.76, 0.81, 0.83) in this dimension
from which the representative molecules shown were taken.
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Figure 7. Histogram of the population of dimension 25 for the 256-D dataset. It is evident that most molecules adopt only a
small range of non-zero values in this dimension.

To illustrate in more detail the effectiveness of the disentanglement, we illustrated a
small fraction of the values of the 25th dimension alone, as plotted against a UMAP [129,130]
X-coordinate. Despite the tiny part of the space involved (shown on the y-axis), it is clear
that this dimension alone has extracted features that involve tri-hydroxylated cyclohexane-
(Figure 8A) or halide-containing moieties (Figure 8B).

Another feature of this kind of chemical similarity analysis involves picking a molecule
of interest and assessing what is “near” to it in the high-dimensional latent space, as judged
by conventional measures of vector distance. We variously used the cosine or the Euclidean
distance. As before [5], we chose clozapine as our first “target” molecule and used it to
illustrate different feature of our method.
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Figure 8. Effective disentanglement of molecular features into individual dimensions, using the indicated values of 25th
dimension of the latent space of the 2nd dataset. In this case we used a latent space of 256 dimensions and a temperature t
of 0.05. (A) Trihydroxycyclohexane derivatives, (B) halide-containing moieties.

Figure 9 illustrates the relationship (using a temperature factor of 0.05) between the
cosine similarity and the Tanimoto similarity for clozapine (using RDKit’s RDKfingerprint
encoding (https://www.rdkit.org/docs/source/rdkit.Chem.rdmolops.html, accessed on
28 February 2021).
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Figure 9. Relationship between cosine similarity and Tanimoto similarity for clozapine in our chemical space, using a
temperature of 0.05.

It is clear that (i) very few molecules showed up as being similar to clozapine in
Tanimoto space, while prazosin (which competes with it for transport [131]) had a high
cosine similarity despite having a very low Tanimoto similarity. In particular, none of the

https://www.rdkit.org/docs/source/rdkit.Chem.rdmolops.html
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molecules with a high Tanimoto similarity had a low cosine similarity, indicating that our
method does recognize molecular similarities effectively.

To show other features, Figure 10A shows the plots of the cosine similarity against
the Euclidean distance; they were tolerably well correlated, with an interesting bifurcation,
implying that the cosine similarity is probably to be preferred. This is because a zoomed-in
version (Figure 10B) shows that the two sets of molecules with a similar Euclidean distance
around 1.5 really are significantly different from each other between the two sets, where
the cosine similarities also differ. By contrast, the molecules with a similar cosine similarity
within a given arm of the bifurcation really are similar. The zooming in also makes it clear
that the upper fork tends to have a significantly greater fraction of “Recon2” metabolites
than does the lower fork, showing further how useful the disentangling that we have
effected can be.
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space using a temperature of 0.1. (A) Overview. (B) Illustration of molecules in the bifurcation.

In a similar vein, varying the temperature scalar caused significant differences in the
values of the cosine similarities for clozapine vs. the rest of the dataset (Figure 11).
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our chemical space.

A similar plot is shown, at a higher resolution, for the cosine similarities with tempera-
ture scalars of 0.05 and 0.1 (Figure 12) and 0.05 vs. 0.5 (Figure 13). The closeness of clozapine
to the other “apines”, as judged by cosine similarity, did vary somewhat with the value of
the temperature. However, the latter value brings prazosin to be very close to clozapine,
indicating the substantial effects that the choice of the temperature scalar can exert.
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our chemical space.

A similar exercise was undertaken for “acillin”-type antibiotics based on flucloxacillin,
with the results illustrated in Figures 14–18.
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Figure 18. Relationship between cosine similarity for values of the temperature parameter of 0.05 and 0.5 for flucloxacillin
in our chemical space.

In the case of flucloxacillin, the closeness of the other “acillins” varied more or less
monotonically with the value of the temperature parameter. Thus for particular drugs of
interest, it is likely best to fine tune the temperature parameter accordingly. In addition, the
bifurcation seen in the case of clozapine was far less substantial in the case of flucloxacillin.

That the kinds of molecule that were most similar to clozapine do indeed share struc-
tural features is illustrated (Figure 19) for a temperature of 0.1 in both cosine and Euclidean
similarities, where the 10 most similar molecules include six known antipsychotics, plus
four related natural products that might be of interest to those involved in drug discovery.
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Figure 19. Molecules closest to clozapine when a temperature of 0.1 is used, as judged by both cosine similarity and
Euclidean distance.

Finally, here we show (using for clarity drugs and fluorophores only (Figure 20)) the
closeness of chlorpromazine and prazosin in UMAP space when the NT-Xent temperature
factor is 0.1.
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Figure 20. Positions of chlorpromazine, prazosin and some other molecules in UMAP space when the NT-Xent temperature
factor is 0.1.

3. Discussion

The concept of molecular similarity is at the core of much of cheminformatics, on the
simple grounds that structures that are more similar to each other tend to have more similar
bioeffects, an elementary idea typically referred to as the “molecular similarity principle”
(e.g., [98,132–134]). Its particular importance commonly comes in circumstances where one
has a “hit” in a bioassay and wishes to select from a library of available molecules of known
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structure which ones to prioritize for further assays that might detect a more potent hit.
The usual means of assessing molecular similarity are based on encoding the molecules as
vectors of numbers based either on a list of measured or calculated biophysical or structural
properties, or via the use of so-called molecular fingerprinting methods (e.g., [135–142]).
We ourselves have used a variety of these methods in comparing the “similarity” between
marketed drugs, endogenous metabolites and vitamins, natural products, and certain
fluorophores [91,99,113,143–148].

At one level, the biggest problem with these kinds of methods is that all comparisons
are done pairwise, and no attempt is thereby made to understand chemical space “as
a whole”. In a previous paper [5], based in part on other “deep learning” strategies
(e.g., [80,96,149–159]) we used a variational autoencoder (VAE) [6], to project some 6M
molecules into a latent chemical space of some 192 dimensions. It was then possible to
assess molecular similarity as a simple Euclidean distance.

A popular and more powerful alternative to the VAE is the transformer. Originally
proposed by Vaswani and colleagues [11], transformers have come to dominate the list of
preferred methods, especially those used with strings such as those involved in natural lan-
guage processing [106,160–163]. Since chemical structures can be encoded as strings such as
SMILES [164], it is clear that transformers might be used with success to attach problems in-
volving small molecules, and they have indeed been so exploited (e.g., [10,12,104,165–168]).
In the present work, we have adopted and refined the transformer architecture.

A second point is that in the previous work [5], we made no real attempt to manipulate
the latent space so as to “disentangle” the input representations, and if one is to begin to
understand the working of such “deep” neural networks it is necessary to do so. Of the
various strategies available, those using contrastive learning [11,62,66,169–171] seem to be
the most apposite. In contrastive learning, one informs the learning algorithm whether two
(or more) individual examples come from the same of different classes. Since in the present
case we do know the structures, it is relatively straightforward to assign “similarities”, and
we used a SMILES augmentation method for this.

The standard transformer does not have an obvious latent space of the type generated
by autoencoders (variational or otherwise). However, the SimCLR architecture admits its
production using one of the transformer heads. To this end, we added a simple autoencoder
to our transformer such that we could create a latent space with which to assess molecular
similarity more easily. In the present case, we used cosine similarity, Tanimoto similarity,
and Euclidean distance.

There is no “correct” answer for similarity methods, and as Everitt [172] points out,
results are best assessed in relation to their utility. In this sense, it is clear that our method
returns very sensible groupings of molecules that may be seen as similar by the trained
chemical eye, and which in the cases illustrated (clozapine and flucloxacillin) clearly group
molecules containing the base scaffold that contributes to both their activity and to their
family membership (“apines” and “acillins”, respectively).

There has long been a general recognition (possibly as part of the search for “artificial
general intelligence” (e.g., [173–179]) that one reason that human brains are more powerful
than are artificial neural networks may be—at least in part—simply because the former
contain vastly more neurons. What is now definitely increasingly clear is that very large
transformer networks can both act as few-shot learners (e.g., [3,108]) and are indeed
able to demonstrate extremely powerful generative properties, albeit within somewhat
restricted domains. Even though the limitations on the GPU memory that we could access
meant that we studied only some 160,000 molecules, our analysis of the contents of the
largest transformer trained with contrastive learning indicated that it was nonetheless very
sparsely populated. This both illustrates the capacity of these large networks and leads
necessarily to an extremely efficient means of training.

Looking to the future, as more computational resources become available (with trans-
formers using larger networks for their function), we can anticipate the ability to address
and segment much larger chemical spaces, and to use our disentangled transformer-based
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representation for the encoding of molecular structures for a variety of both supervised
and unsupervised problem domains.

4. Materials and Methods

We developed a novel hybrid framework by combining three things, namely trans-
formers, an auto-encoder, and a contrastive learning framework. The complete framework
is shown in Figure 1. The architecture chosen was based on the SimCLR framework of
Hinton and colleagues [61,112], to which we added an autoencoder so as to provide
a convenient latent space for analysis and extraction. Programs were written in Py-
Torch within an Anaconda environment. They were mostly run one GPU of a 4-GPU
(NVIDIA V100) system. The dataset used included ~150,000 natural products [91,99,148],
plus fluorophores [113], Recon2 endogenous human metabolites [143,144,146,147], and
FDA-approved drugs [99,143–145], as previously described. Visualization tools such as
t-SNE [127,128] and UMAP [129,130] were implemented as previously described [113]. The
dataset was split into training and validation and test sets as described below.

We here develop a novel hybrid framework upon the contrastive learning framework
using transformers. We explain the complete framework with each of the components as below:

4.1. Molecular SMILES Augmentation

Contrastive learning is all about uniting positive pairs and discriminating between
negative pairs. The first objective is thus to develop an efficient way of determining
positive and negative data pairs for the model. We adopted the SMILES enumeration
data augmentation technique from Bjerrum [180], that any given canonical SMILES data
example can generate multiple SMILES strings that basically represent the same molecule.
We used this technique to sample two different SMILES strings xi and xj from every
canonical SMILES string from the dataset, which we regarded as positive pairs.

4.2. Base Encoder

Once we received the augmented, randomized SMILES, they were added with their
respective positional encoding. The positional encoding is a sine or cosine function defined
according to the position of a token in the input sequence length. It is done in order also to
take into consideration the order of the sequence. The next component of the framework is
the encoder network that takes in the summation of the input sequence and its positional
encoding and extracts the representation vectors for those samples. As stated by Chen
and colleagues [112], there is complete freedom when it comes to the choice of architecture
for the encoder network. Therefore, we used a transformer encoder network, which has
in recent years become the state-of-the-art for language modelling tasks and has been
subsequently significantly extended to chemical domains as well.

As set down in the original transformers paper, the transformer encoder basically
comprises two sub-blocks. The first sub-block has a multi-head attention layer followed
by a layer normalization layer. The first multi-head attention layer makes the model pay
attention to the values at neighbors’ positions when encoding a representation for one
particular position. Then, the layer normalization layer normalizes the sum of inputs
obtained from the residual connection and the outputs of the multi-head attention layer.
The second block consists of a feed forward network, one for every position. Then, similar
to the previous case, layer norm is defined on the position-wise sum of the outputs from
the feed forward layer and the residually connected output from the previous block.

The output of the transformer encoder network is an array of feature-embedding
vectors which we call the representation (hi). The representation obtained from the network
is of the dimension sequential length × dmodel. This means that the transformer encoder
network generates feature embedding vectors for every position in the input sequence
length. Normally, these transformer encoder network blocks are repeated N times and
the output representation of one encoder is an input of another. Here, we employed 4
transformer encoder blocks.
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4.3. Projection Head

The projection head is a simple encoder neural network to project the feature embed-
ding representation vector of shape (input sequence length × dmodel) down to a lower
dimension representation of shape (1 × dmodel). Here, we used an artificial neural network
of 4 layers with the ReLu activation function. This gave an output projection vector zi,
which was then used for defining the contrastive loss.

4.4. Contrastive Loss

As the choice of contrastive loss for our experiments, we used the normalized temperature-
scaled cross entropy (NT-Xent) loss [64,112,181,182].

Li,j = log
exp

(
sim

(
zi, zj

)
/τ

)
∑2N

k=1

1 

 

𝟙 {k 6= i} exp(sim(zi, zk)/τ)
(1)

where zi and zj are positive pair projection vectors when two transformer models are run
in parallel.

1 

 

𝟙 {k 6= i} is a Boolean evaluating to 1 if k is not the same as i, and τ is the
temperature parameter. Lastly, sim() is the similarity metric for estimating the similarity
between zi and zj. The idea behind using this loss function is that when sampling a
sample batch of data of size N for training, each sample is augmented as per subsection
“Section 4.1” and the total would then be 2N samples. Therefore, for every sample there is
one other sample from the same canonical SMILES and 2N-2 other samples. Therefore, we
considered for every sample one other sample generated from the same canonical SMILES
as a positive pair and each of the other 2N-2 samples as a negative pair.

4.5. Unprojection Head

Unlike SimCLR or any other previous contrastive learning framework, we also opted
to include a simple decoder network and then a transformer decoder network through
which we also taught the model to generate a molecular SMILES representation whenever
queried with latent space vectors. With this architecture, we thus developed a novel
framework which can not only build nicely clustered latent spaces based on the structural
similarities of molecules but also has the capability of doing some intelligent navigation of
those latent spaces to generate some other highly similar molecules.

4.6. Base Decoder

This final component of our architecture, the base decoder, consists of a transformer
decoder network, a final linear layer, and a softmax layer. The transformer decoder network
adds one more block of multi-head attention, which takes in the attention vectors K and V
from the output of the unprojection. Moreover, the masking mechanism is infused in the
first attention block to mask the 1 position shifted right output embedding. With this, the
model is only allowed to take into consideration the feature embeddings from the previous
positions. Then the final linear layer is a simple neural network to convert position vector
outputs from the transformer decoder network into a logit vector which is then followed by
softmax layer to convert this array of logit values into a probability score, and the atom or
bond corresponding to the index with highest probability is produced as an output. Once
the complete sequence of molecules is generated, it is compared with the original input
sequence with cross-entropy as a loss function.

4.7. Default Settings

We referred to the first dataset of ~5 k molecules containing natural products, drugs,
fluorophores, and metabolites as SI1 and that of ~150 k natural product molecules as SI2.

For both the datasets, the choice of optimizer was Adam [183], the learning rate was
10−5, and dropout [184] was 20%. Our model has 4 encoder and decoder blocks and each
transformer block has 4 attention heads in its multi-head attention layer. For the SI1 dataset,
the maximum sequence length of the molecule (in its SMILES encoding) was found to be of
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length 412. Therefore, we chose the optimal input sequence length post data preprocessing
to be 450. The vocabulary size was 79, and the dmodel was set to 64. With these settings
the total number of parameters in our model was 342,674, and we chose the maximum
possible batch-size to fit on our GPU set-up, which was 40. We randomly split the dataset
in the ratio 3:2 for training and validation. However, in this particular scenario we augment
the canonical SMILES and train only on the augmented SMILES. Our model was shown
none of the original canonical SMILES during training and validation. Canonical SMILES
were used only for obtaining the projection vectors during testing and the analyses of the
latent space.

For the SI2 dataset, the maximum molecule length was 619, and therefore we chose to
train the model with input sequence length of 650. The total vocabulary size of the dataset
was 69. The dimensionality dmodel of the model was varied for this dataset from around
48 to 256. For most of our analysis, however, we choose 256 dimensional latent space
or dmodel = 256. Therefore, we focused on the settings for this case only. The batch size
was set to 20, and the model had a total of 4,678,864 training parameters. In this case, the
dataset was split such that 125,000 molecules were used for training and 25,000 reserved
for validation.

5. Conclusions

The combination of transformers, contrastive learning, and an autoencoder head
allows the production of a powerful and disentangled learning system that we have
applied to the problem of small molecule similarity. It also admitted a clear understanding
of the sparseness with which the space was populated even by over 150,000 molecules,
giving optimism that these methods, when scaled to greater numbers of molecules, can
learn many molecular properties of interest to the computational chemical biologist.

Author Contributions: Conceptualization, all authors; methodology, all authors; software, A.D.S.;
resources, D.B.K.; data curation, A.D.S.; writing—original draft preparation, D.B.K.; writing—review
and editing, all authors; funding acquisition, D.B.K. All authors have read and agreed to the published
version of the manuscript.

Funding: A.D.S. was an intern sponsored by the University of Liverpool. D.B.K. is also funded by
the Novo Nordisk Foundation (grant NNF10CC1016517).

Acknowledgments: We thank Soumitra Samanta and Neil Swainston for useful discussions, and the
referees for useful comments, especially those pertaining to the bifurcation in Figures 10 and 15.

Conflicts of Interest: The authors declare that they have no conflicts of interest. The funders had no
role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of
the manuscript; or in the decision to publish the results.

References
1. LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [CrossRef]
2. Schmidhuber, J. Deep learning in neural networks: An overview. Neural Netw. 2015, 61, 85–117. [CrossRef]
3. Brown, T.B.; Mann, B.; Ryder, N.; Subbiah, M.; Kaplan, J.; Dhariwal, P.; Neelakantan, A.; Shyam, P.; Sastry, G.; Askell, A.; et al.

Language models are few-shot learners. arXiv 2020, arXiv:2005.14165.
4. Senior, A.W.; Evans, R.; Jumper, J.; Kirkpatrick, J.; Sifre, L.; Green, T.; Qin, C.; Zidek, A.; Nelson, A.W.R.; Bridgland, A.; et al.

Improved protein structure prediction using potentials from deep learning. Nature 2020, 577, 706–710. [CrossRef] [PubMed]
5. Samanta, S.; O’Hagan, S.; Swainston, N.; Roberts, T.J.; Kell, D.B. VAE-Sim: A novel molecular similarity measure based on a

variational autoencoder. Molecules 2020, 25, 3446. [CrossRef]
6. Kingma, D.; Welling, M. Auto-encoding variational Bayes. arXiv 2014, arXiv:1312.6114v1310.
7. Kingma, D.P.; Welling, M. An introduction to variational autoencoders. arXiv 2019, arXiv:1906.02691v02691.
8. Wei, R.; Mahmood, A. Recent advances in variational autoencoders with representation learning for biomedical informatics: A

survey. IEEE Access 2021, 9, 4939–4956. [CrossRef]
9. Wei, R.; Garcia, C.; El-Sayed, A.; Peterson, V.; Mahmood, A. Variations in variational autoencoders—A comparative evaluation.

IEEE Access 2020, 8, 153651–153670. [CrossRef]
10. Van Deursen, R.; Tetko, I.V.; Godin, G. Beyond chemical 1d knowledge using transformers. arXiv 2020, arXiv:2010.01027.

http://doi.org/10.1038/nature14539
http://doi.org/10.1016/j.neunet.2014.09.003
http://doi.org/10.1038/s41586-019-1923-7
http://www.ncbi.nlm.nih.gov/pubmed/31942072
http://doi.org/10.3390/molecules25153446
http://doi.org/10.1109/ACCESS.2020.3048309
http://doi.org/10.1109/ACCESS.2020.3018151


Molecules 2021, 26, 2065 23 of 28

11. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.; Polosukhin, I. Attention is all you need.
arXiv 2017, arXiv:1706.03762.

12. Chithrananda, S.; Grand, G.; Ramsundar, B. Chemberta: Large-scale self-supervised pretraining for molecular property prediction.
arXiv 2020, arXiv:2010.09885.

13. Sundararajan, M.; Taly, A.; Yan, Q. Axiomatic attribution for deep networks. arXiv 2017, arXiv:1703.01365.
14. Simonyan, K.; Vedaldi, A.; Zisserman, A. Deep inside convolutional networks: Visualising image classification models and

saliency maps. arXiv 2013, arXiv:1312.6034.
15. Azodi, C.B.; Tang, J.; Shiu, S.H. Opening the black box: Interpretable machine learning for geneticists. Trends Genet. 2020, 36,

442–455. [CrossRef]
16. Core, M.G.; Lane, H.C.; van Lent, M.; Gomboc, D.; Solomon, S.; Rosenberg, M. Building explainable artificial intelligence systems.

AAAI 2006, 1766–1773. [CrossRef]
17. Holzinger, A.; Biemann, C.; Pattichis, C.S.; Kell, D.B. What do we need to build explainable AI systems for the medical domain?

arXiv 2017, arXiv:1712.09923v09921.
18. Samek, W.; Montavon, G.; Vedaldi, A.; Hansen, L.K.; Müller, K.-R. Explainable AI: Interpreting, Explaining and Visualizing Deep

Learning; Springer: Berlin, Germany, 2019.
19. Singh, A.; Sengupta, S.; Lakshminarayanan, V. Explainable deep learning models in medical image analysis. arXiv 2020,

arXiv:2005.13799.
20. Tjoa, E.; Guan, C. A survey on explainable artificial intelligence (XAI): Towards medical XAI. arXiv 2019, arXiv:1907.07374.

[CrossRef]
21. Arrieta, A.B.; Díaz-Rodríguez, N.; Del Ser, J.; Bennetot, A.; Tabik, S.; Barbado, A.; Garcia, S.; Gil-Lopez, S.; Molina, D.; Benjamins,

R.; et al. Explainable artificial intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI. Inf.
Fusion 2020, 58, 82–115. [CrossRef]

22. Gunning, D.; Stefik, M.; Choi, J.; Miller, T.; Stumpf, S.; Yang, G.Z. XAI-explainable artificial intelligence. Sci. Robot. 2019, 4,
eaay7120. [CrossRef]

23. Parmar, G.; Li, D.; Lee, K.; Tu, Z. Dual contradistinctive generative autoencoder. arXiv 2020, arXiv:2011.10063.
24. Peis, I.; Olmos, P.M.; Artés-Rodríguez, A. Unsupervised learning of global factors in deep generative models. arXiv 2020,

arXiv:2012.08234.
25. Klys, J.; Snell, J.; Zemel, R. Learning latent subspaces in variational autoencoders. arXiv 2018, arXiv:1812.06190.
26. He, Z.; Kan, M.; Zhang, J.; Shan, S. PA-GAN: Progressive attention generative adversarial network for facial attribute editing.

arXiv 2020, arXiv:2007.05892.
27. Shen, X.; Liu, F.; Dong, H.; Lian, Q.; Chen, Z.; Zhang, T. Disentangled generative causal representation learning. arXiv 2020,

arXiv:2010.02637.
28. Esser, P.; Rombach, R.; Ommer, B. A note on data biases in generative models. arXiv 2020, arXiv:2012.02516.
29. Kumar, A.; Sattigeri, P.; Balakrishnan, A. Variational inference of disentangled latent concepts from unlabeled observations. arXiv

2017, arXiv:1711.00848.
30. Kim, H.; Mnih, A. Disentangling by factorising. arXiv 2018, arXiv:1802.05983.
31. Locatello, F.; Bauer, S.; Lucic, M.; Rätsch, G.; Gelly, S.; Schölkopf, B.; Bachem, O. Challenging common assumptions in the

unsupervised learning of disentangled representations. arXiv 2018, arXiv:1811.12359.
32. Locatello, F.; Tschannen, M.; Bauer, S.; Rätsch, G.; Schölkopf, B.; Bachem, O. Disentangling factors of variation using few labels.

arXiv 2019, arXiv:1905.01258v01251.
33. Locatello, F.; Poole, B.; Rätsch, G.; Schölkopf, B.; Bachem, O.; Tschannen, M. Weakly-supervised disentanglement without

compromises. arXiv 2020, arXiv:2002.02886.
34. Oldfield, J.; Panagakis, Y.; Nicolaou, M.A. Adversarial learning of disentangled and generalizable representations of visual

attributes. IEEE Trans. Neural Netw. Learn. Syst. 2021. [CrossRef] [PubMed]
35. Pandey, A.; Schreurs, J.; Suykens, J.A.K. Generative restricted kernel machines: A framework for multi-view generation and

disentangled feature learning. Neural Netw. 2021, 135, 177–191. [CrossRef] [PubMed]
36. Hao, Z.; Lv, D.; Li, Z.; Cai, R.; Wen, W.; Xu, B. Semi-supervised disentangled framework for transferable named entity recognition.

Neural Netw. 2021, 135, 127–138. [CrossRef] [PubMed]
37. Shen, Y.; Yang, C.; Tang, X.; Zhou, B. Interfacegan: Interpreting the disentangled face representation learned by gans. IEEE Trans.

Pattern Anal. Mach. Intell. 2020. [CrossRef] [PubMed]
38. Tang, Y.; Tang, Y.; Zhu, Y.; Xiao, J.; Summers, R.M. A disentangled generative model for disease decomposition in chest x-rays via

normal image synthesis. Med. Image Anal. 2021, 67, 101839. [CrossRef]
39. Cootes, T.F.; Edwards, G.J.; Taylor, C.J. Active appearance models. IEEE Trans. Pattern Anal. Mach. Intell. 2001, 23, 681–685.

[CrossRef]
40. Cootes, T.F.; Taylor, C.J.; Cooper, D.H.; Graham, J. Active shape models—Their training and application. Comput. Vis. Image

Underst. 1995, 61, 38–59. [CrossRef]
41. Hill, A.; Cootes, T.F.; Taylor, C.J. Active shape models and the shape approximation problem. Image Vis. Comput. 1996, 14, 601–607.

[CrossRef]

http://doi.org/10.1016/j.tig.2020.03.005
http://doi.org/10.21236/ada459166
http://doi.org/10.1109/TNNLS.2020.3027314
http://doi.org/10.1016/j.inffus.2019.12.012
http://doi.org/10.1126/scirobotics.aay7120
http://doi.org/10.1109/TNNLS.2021.3053205
http://www.ncbi.nlm.nih.gov/pubmed/33531308
http://doi.org/10.1016/j.neunet.2020.12.010
http://www.ncbi.nlm.nih.gov/pubmed/33395588
http://doi.org/10.1016/j.neunet.2020.11.017
http://www.ncbi.nlm.nih.gov/pubmed/33383527
http://doi.org/10.1109/TPAMI.2020.3034267
http://www.ncbi.nlm.nih.gov/pubmed/33108282
http://doi.org/10.1016/j.media.2020.101839
http://doi.org/10.1109/34.927467
http://doi.org/10.1006/cviu.1995.1004
http://doi.org/10.1016/0262-8856(96)01097-9


Molecules 2021, 26, 2065 24 of 28

42. Salam, H.; Seguier, R. A survey on face modeling: Building a bridge between face analysis and synthesis. Vis. Comput. 2018, 34,
289–319. [CrossRef]

43. Bozkurt, A.; Esmaeili, B.; Brooks, D.H.; Dy, J.G.; van de Meent, J.-W. Evaluating combinatorial generalization in variational
autoencoders. arXiv 2019, arXiv:1911.04594v04591.

44. Alemi, A.A.; Poole, B.; Fischer, I.; Dillon, J.V.; Saurous, R.A.; Murphy, K. Fixing a broken ELBO. arXiv 2019, arXiv:1711.00464.
45. Zhao, S.; Song, J.; Ermon, S. InfoVAE: Balancing learning and inference in variational autoencoders. arXiv 2017,

arXiv:1706.02262v02263. [CrossRef]
46. Leibfried, F.; Dutordoir, V.; John, S.T.; Durrande, N. A tutorial on sparse Gaussian processes and variational inference. arXiv 2020,

arXiv:2012.13962.
47. Rezende, D.J.; Viola, F. Taming VAEs. arXiv 2018, arXiv:1810.00597v00591.
48. Dai, B.; Wipf, D. Diagnosing and enhancing VAE models. arXiv 2019, arXiv:1903.05789v05782.
49. Li, Y.; Yu, S.; Principe, J.C.; Li, X.; Wu, D. PRI-VAE: Principle-of-relevant-information variational autoencoders. arXiv 2020,

arXiv:2007.06503.
50. Higgins, I.; Matthey, L.; Pal, A.; Burgess, C.; Glorot, X.; Botvinick, M.; Mohamed, S.; Lerchner, A. β-VAE: Learning basic visual

concepts with a constrained variational framework. In Proceedings of the ICLR 2017, Toulon, France, 24–26 April 2017.
51. Burgess, C.P.; Higgins, I.; Pal, A.; Matthey, L.; Watters, N.; Desjardins, G.; Lerchner, A. Understanding disentangling in β-VAE.

arXiv 2018, arXiv:1804.03599.
52. Havtorn, J.D.; Frellsen, J.; Hauberg, S.; Maaløe, L. Hierarchical vaes know what they don’t know. arXiv 2021, arXiv:2102.08248.
53. Kumar, A.; Poole, B. On implicit regularization in β-VAEs. arXiv 2021, arXiv:2002.00041.
54. Yang, T.; Ren, X.; Wang, Y.; Zeng, W.; Zheng, N.; Ren, P. GroupifyVAE: From group-based definition to VAE-based unsupervised

representation disentanglement. arXiv 2021, arXiv:2102.10303.
55. Gatopoulos, I.; Tomczak, J.M. Self-supervised variational auto-encoders. arXiv 2020, arXiv:2010.02014.
56. Rong, Y.; Bian, Y.; Xu, T.; Xie, W.; Wei, Y.; Huang, W.; Huang, J. Self-supervised graph transformer on large-scale molecular data.

arXiv 2020, arXiv:2007.02835.
57. Saeed, A.; Grangier, D.; Zeghidour, N. Contrastive learning of general-purpose audio representations. arXiv 2020,

arXiv:2010.10915.
58. Aneja, J.; Schwing, A.; Kautz, J.; Vahdat, A. NCP-VAE: Variational autoencoders with noise contrastive priors. arXiv 2020,

arXiv:2010.02917.
59. Artelt, A.; Hammer, B. Efficient computation of contrastive explanations. arXiv 2020, arXiv:2010.02647.
60. Ciga, O.; Martel, A.L.; Xu, T. Self supervised contrastive learning for digital histopathology. arXiv 2020, arXiv:2011.13971.
61. Chen, T.; Kornblith, S.; Norouzi, M.; Hinton, G. A simple framework for contrastive learning of visual representations. arXiv 2020,

arXiv:2002.05709.
62. Jaiswal, A.; Babu, A.R.; Zadeh, M.Z.; Banerjee, D.; Makedon, F. A survey on contrastive self-supervised learning. arXiv 2020,

arXiv:2011.00362.
63. Purushwalkam, S.; Gupta, A. Demystifying contrastive self-supervised learning: Invariances, augmentations and dataset biases.

arXiv 2020, arXiv:2007.13916.
64. Van den Oord, A.; Li, Y.; Vinyals, O. Representation learning with contrastive predictive coding. arXiv 2018, arXiv:1807.03748v03742.
65. Verma, V.; Luong, M.-T.; Kawaguchi, K.; Pham, H.; Le, Q.V. Towards domain-agnostic contrastive learning. arXiv 2020,

arXiv:2011.04419.
66. Le-Khac, P.H.; Healy, G.; Smeaton, A.F. Contrastive representation learning: A framework and review. arXiv 2020,

arXiv:2010.05113. [CrossRef]
67. Wang, Q.; Meng, F.; Breckon, T.P. Data augmentation with norm-VAE for unsupervised domain adaptation. arXiv 2020,

arXiv:2012.00848.
68. Li, H.; Zhang, X.; Sun, R.; Xiong, H.; Tian, Q. Center-wise local image mixture for contrastive representation learning. arXiv 2020,

arXiv:2011.02697.
69. You, Y.; Chen, T.; Sui, Y.; Chen, T.; Wang, Z.; Shen, Y. Graph contrastive learning with augmentations. arXiv 2020, arXiv:2010.13902.
70. Willett, P. Similarity-based data mining in files of two-dimensional chemical structures using fingerprint measures of molecular

resemblance. Wires Data Min. Knowl. 2011, 1, 241–251. [CrossRef]
71. Stumpfe, D.; Bajorath, J. Similarity searching. Wires Comput. Mol. Sci. 2011, 1, 260–282. [CrossRef]
72. Maggiora, G.; Vogt, M.; Stumpfe, D.; Bajorath, J. Molecular similarity in medicinal chemistry. J. Med. Chem. 2014, 57, 3186–3204.

[CrossRef]
73. Irwin, J.J.; Shoichet, B.K. ZINC–a free database of commercially available compounds for virtual screening. J. Chem. Inf. Model.

2005, 45, 177–182. [CrossRef]
74. Ertl, P.; Schuffenhauer, A. Estimation of synthetic accessibility score of drug-like molecules based on molecular complexity and

fragment contributions. J. Cheminform. 2009, 1, 8. [CrossRef]
75. Patel, H.; Ihlenfeldt, W.D.; Judson, P.N.; Moroz, Y.S.; Pevzner, Y.; Peach, M.L.; Delannee, V.; Tarasova, N.I.; Nicklaus, M.C. Savi, in

silico generation of billions of easily synthesizable compounds through expert-system type rules. Sci. Data 2020, 7, 384. [CrossRef]
76. Bickerton, G.R.; Paolini, G.V.; Besnard, J.; Muresan, S.; Hopkins, A.L. Quantifying the chemical beauty of drugs. Nat. Chem. 2012,

4, 90–98. [CrossRef]

http://doi.org/10.1007/s00371-016-1332-y
http://doi.org/10.1609/aaai.v33i01.33015885
http://doi.org/10.1109/ACCESS.2020.3031549
http://doi.org/10.1002/widm.26
http://doi.org/10.1002/wcms.23
http://doi.org/10.1021/jm401411z
http://doi.org/10.1021/ci049714+
http://doi.org/10.1186/1758-2946-1-8
http://doi.org/10.1038/s41597-020-00727-4
http://doi.org/10.1038/nchem.1243


Molecules 2021, 26, 2065 25 of 28

77. Cernak, T.; Dykstra, K.D.; Tyagarajan, S.; Vachal, P.; Krska, S.W. The medicinal chemist’s toolbox for late stage functionalization
of drug-like molecules. Chem. Soc. Rev. 2016, 45, 546–576. [CrossRef]
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