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Nothing in Evolution Makes Sense 
Except in the Light of Biology

MARTHA O. BURFORD REISKIND , MICHAEL L. MOODY , DANIEL I. BOLNICK , CHARLES T. HANIFIN ,  
AND CAROLINE E. FARRIOR

A key question in biology is the predictability of the evolutionary process. If we can correctly predict the outcome of evolution, we may be better 
equipped to anticipate and manage species’ adaptation to climate change, habitat loss, invasive species, or emerging infectious diseases, as well 
as improve our basic understanding of the history of life on Earth. In the present article, we ask the questions when, why, and if the outcome of 
future evolution is predictable. We first define predictable and then discuss two conflicting views: that evolution is inherently unpredictable and 
that evolution is predictable given the ability to collect the right data. We identify factors that generate unpredictability, the data that might be 
required to make predictions at some level of precision or at a specific timescale, and the intellectual and translational value of understanding 
when prediction is or is not possible.
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As a fundamental unifying theory of biology, evolution  
 integrates all the disparate disciplines present in the 

modern biological sciences. Evolutionary biology provides 
a crucial toolkit to explain how life came to be as we see it 
today, with both spectacular adaptations and vulnerabilities. 
It can clarify why individuals differ from each other within 
populations, the raison d’être for personalized medicine. It 
reveals why genetic and physiological features are shared 
across the tree of life, justifying the use of nonhuman organ-
isms as models for studying our own biology. Much of the 
value of evolutionary biology is it provides critical insight 
into the history of life on Earth. But by knowing the core 
mechanisms of evolution we can also look forward and ask 
what’s next. Although it is certain that evolution will occur 
and that populations will adapt, we have a harder time pre-
dicting whether specific species will adapt fast enough to 
changing climates to avoid extinction. From a more applied 
perspective, can we anticipate whether an emerging infec-
tious disease will evolve to be more or less virulent? Or can 
we know in advance which molecular pathways an evolving 
tumor will exploit to metastasize? Can we know the adapta-
tions a crop pest or pathogen might evolve to bypass our 
current control measures? Predicting future evolution offers 
the enticing prospect of anticipating and therefore manag-
ing evolutionary outcomes of populations we value, and 
those we wish to suppress. However, biologists continue to 
disagree about how effectively we might predict future evo-
lution. Is evolution fundamentally too stochastic to predict 

(Orr 2005, Stern and Orgogozo 2009, Agrawal 2017, Bolnick 
et  al. 2018)? Or can we make effective predictions (with 
some sufficient level of precision to address practical ques-
tions), if we just have the right kind of data and models? In 
the present article, we discuss each side of this debate and 
propose means to forge a path forward.

Support for the predictability of evolution is found in both 
empirical and theoretical studies. For example, there is evi-
dence of predictable changes of genes under similar selective 
pressures within populations at relatively short timescales 
(Monroe et  al. 2016, Ramiro et  al. 2016, Hawkins et  al. 
2019). Renaut and colleagues (2014) found that two pairs 
of sunflower species undergoing similar selective pressures 
and distributed along similar latitudinal gradients adapted 
through changes in the same genomic regions, with similar 
phenotypic effects. These results are supported by theoretical 
studies showing evolution of the same traits, genes or even 
alleles (different gene versions) in closely related replicate 
lineages (Orr 2005, Renaut et al. 2014, Seehausen et al. 2014, 
Irwin et al. 2016, Ravinet et al. 2017). For instance, replicated 
invasion of marine threespine stickleback (Gasterosteus acu-
leatus) into many independent freshwater habitats reliably 
leads to evolutionary loss of bony armor via changing allele 
frequencies at a gene called EDA (Colosimo et  al. 2005). 
The extensive literature on parallel and convergent evolu-
tion points to a rather widespread tendency for evolution 
to repeat itself under similar selective pressures, implying 
predictability.
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In contrast, there are studies that support the unpredictabil-
ity or limited predictability of evolution (Takahashi et al. 2007, 
Tegze et  al. 2012, Fitzpatrick et  al. 2014, Sailer and Harms 
2017, Bolnick et  al. 2018, Langerhans 2018). Langerhans 
(2018) found limited predictability of phenotypic evolution 
in Bahama mosquito fish inhabiting blue-hole pools with or 
without predators: Differences in predation pressure between 
the pools predicted less than half the morphological variation 
among populations. There may be many equally functional 
solutions to a given adaptive challenge (many-to-one map-
ping), either for protein structure (Sailer and Harms 2017) or 
for morphological structures (Alfaro et al. 2004). Therefore, 
knowing that selection favors a particular function might 
not allow one to predict what genetic or morphological traits 
should evolve (Alfaro et al. 2004). Compounding this unpre-
dictability, much of evolutionary change is inherently stochas-
tic (random), relying on the input of randomly generated new 
mutations and of random fluctuations in allele frequency due 
to finite population size (i.e., genetic drift). The combination 
of stochasticity and many-to-one mapping suggest that even 
if we can predict future natural selection, the genotypes and 
phenotypes that respond to that selection may be fundamen-
tally unpredictable.

Almost surely, the truth lies somewhere between these 
extreme stances that evolution is predictable or not. Our 
ability to make predictions depends on the biological level at 
which we seek to predict. For example, we can reliably predict 
that birds living at high altitudes evolve increased oxygen car-
rying capacity in response to lower oxygen partial pressure 
and that this arises via changes in hemoglobin (Natarajan 
et al. 2016). This level of prediction is desirable to understand 
the potential for organisms to diversify to specific niches over 
time. However, the specific nucleotides or amino acid changes 
that enable that adaptation are unpredictable in this system 
(Natarajan et al. 2016). Therefore, at the molecular level, even 
within a subset of organisms, the specific genes or combina-
tions of genes needed or which mutations are important 
remains unknown. We argue that this would be a desirable 
level of prediction for evolutionary biology. In this article, we 
begin by articulating why evolutionary prediction is a desir-
able goal and what we mean by prediction, considering various 
possible levels of biological organization and different times-
cales. We then summarize the arguments both for unpredict-
ability and predictability and enumerate the many layers of 
information we need for successful prediction at chosen levels 
of biological precision and timescales. The approach of under-
standing evolutionary prediction as a probabilistic continuum 
can increase our chance of success by integrating informa-
tion and tools from the fields of molecular biology, genetics, 
developmental biology, cell biology, evolutionary theory, ecol-
ogy, phylogeny, paleontology, and biomathematics. Although 
there is no question that evolution will occur, what we want 
to understand is our current ability to predict the outcomes 
of this process, its speed, and its underlying mechanisms. To 
invert a famous quote from a great evolutionary biologist of 
the mid-twentieth century, Theodosius Dobzhansky, we argue 

that nothing in evolution is predictable except in light of the 
rest of biology.

Why do we wish to predict evolution?
Given accelerated change in global environmental drivers 
such as climate change, land use changes, introduced spe-
cies, and emerging infectious diseases this is a critical time 
to address whether we can make predictions about evolution 
(Pau et  al. 2011, Lassig et  al. 2017). From a conservation 
standpoint, we might wish to predict specific populations 
or species that are likely to be at risk for extinction. Or we 
might wish to predict (or create) the specific genotypes 
and phenotypes that will allow a species or population to 
adapt and resist extinction in the face of global climate 
change. A farmer might need to predict the rate and tim-
ing of resistance to a pesticide or herbicide or the response 
of an agricultural system to an introduced pest or dis-
ease. Evolutionary prediction also applies to human health. 
Modern medicine is facing a crisis associated with the 
evolution of multispectrum antibiotic resistance in human 
pathogens. Evolutionary prediction could allow the devel-
opment of novel treatment regimes that might prevent the 
evolution of drug resistance in pathogens. Similarly, in the 
Sars-Cov-2 pandemic causing COVID-19, there is extensive 
interest in predicting the virus’s evolutionary trajectory (e.g., 
Kober et al. 2020, Rehman et al. 2020). Specifically, will the 
virus evolve to be more or less virulent? How will various 
social distancing policies alter this evolutionary trajectory? 
Viral evolution forecasts are especially crucial in designing 
vaccines, to ensure the vaccines (and the immunity they 
produce) have a long-lasting effect.

However, the complex organization of biological systems 
and process of evolution means that prediction needs to be 
approached and understood on multiple levels. For example, 
we know that rising temperatures and ocean acidification 
present significant challenges to coral species throughout 
the globe. Do we need to predict the likelihood of extinc-
tion for a given population or species of coral? Do we need 
to predict the specific biochemical pathways or processes 
and underlying genes that will respond to selection under 
these conditions so we can identify (or create) appropriate 
genotypes to facilitate adaptation and prevent extinctions? A 
similar example in human health might be the evolution of 
human macrophage attack in Escherichia coli. Experimental 
evolution in pathogenic E. coli has shown these bacteria can 
evolve resistance to the human immune system (Ramiro 
et al. 2016). These experiments demonstrated that the bio-
chemical pathway in which adaptation occurred (the elec-
tron transport associated with energy producing catabolism) 
could be reliably predicted, but that the specific genes and 
mutations that conferred resistance could not be predicted 
(Ramiro et al. 2016). This result illustrates the point that our 
ability to predict varies with the level of biological organiza-
tion being studied. In a similar vein, cancer evolution during 
growth and metastasis within patients is often highly idio-
syncratic, varying from patient to patient, making it difficult 
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to develop broadly effective, anticipatory therapies that head 
off tumor evolution. Prediction, in this case, would improve 
our ability to generate patient specific treatment regimes, but 
the scale and scope of the goal are quite different from either 
of the other examples above.

Evolutionary prediction: “I do not think it means 
what you think it means”
When discussing evolutionary prediction, we must first set-
tle on a shared vision of what it means to predict. Biologists 
often use the term predict rather loosely, conflating a variety 
of related but distinct ideas. The word derives from the 
Latin verb praedicere, which itself merges prae (prior or in 
advance), and dicere (to say). The Merriam-Webster dic-
tionary defines predict as “to declare or indicate in advance.” 
This is most often used in terms of making statements about 
future events. But it is important to recognize that scientists 
can also make predictions about the as-yet-unmeasured out-
come of a historical event (sometimes called retrodiction). 
For instance, knowing the rules of molecular evolution, 
we can use the DNA sequences for a set of related species 
to make a probabilistic prediction about the homologous 
DNA sequence in an as-yet-unsequenced related species. 
Or, knowing the genetic basis of evolutionary loss of armor 
in freshwater stickleback in many watersheds, we can predict 
with confidence that a particular sequence of the gene EDA 
will occur in a previously unstudied lake population of this 
fish.

For this article, we are specifically interested in the nar-
rower use of prediction in terms of statements of future 
evolutionary events. Therefore, we will not be discussing 
the very large and well-established literature building and 
documenting biology’s understanding of evolutionary his-
tory, except where it provides tools or data that illuminate 
future evolution. With this emphasis on predicting evolu-
tionary future, it is helpful to briefly consider the discipline 
of future studies (Poli 2017). Researchers in this field distin-
guish between the terms forecast versus prediction. Forecasts 
are typically precise and quantitative and are often based 
on a theoretical model or perhaps time series analysis of 
historical data that can be projected into the future with 
quantitative estimates of confidence or error. Prediction, in 
contrast, is often used to describe qualitative and subjec-
tive statements, sometimes based on informed intuition. In 
keeping with common usage within evolutionary biology, 
we stick with the term prediction for most of this article as 
the overarching concept, of which forecasting is a quantita-
tive subset.

One can make useful predictions at many different bio-
logical levels of organization and timescales, as well as with 
various degrees of precision. At the simplest level, we can 
confidently state that evolution (genetic change) will take 
place, whether because of natural selection or genetic drift 
(figure 1a). Meta-analyses have confirmed that evolutionary 
forces are pervasive in natural populations, including natural 
selection (Caruso et  al. 2017), sexual selection (Kingsolver 

et al. 2010), gene flow (Frankham 2015), nonrandom mating 
(Jiang et al. 2013), and genetic drift (Leinonen et al. 2007). 
Because evolution is ubiquitous, predicting its existence is 
trivial and does not provide actionable information.

A slightly more useful statement would be that, in a given 
constant environment, a population’s mean fitness should 
increase over time, as is laid out in Fisher’s fundamental 
theorem of natural selection (Fisher 1930, Shaw 2019). 
Furthermore, this model predicts that the rate of increase in 
mean fitness will be proportional to the genetic variance in 
fitness traits. In other words, populations that have greater 
genetic variation in traits associated with fitness reach mean 
fitness more rapidly by natural selection. The necessary 
assumptions are nontrivial. First, there must be genetic 
variation for traits affecting fitness (and therefore genetic 
variation in fitness). Second, selection must be strong 
enough to overwhelm genetic drift (equivalently, population 
sizes must be large enough that genetic drift is weak). Third, 
environmental change and density-dependent competition 
can both reduce mean fitness faster than adaptation can 
occur, by changing the phenotypic optimum of the fitness 
landscape faster than the population can approach (McGill 
and Brown 2007). Predicting that adaptation will occur is 
preferable to the generic statement that evolution will take 
place, because it specifies a metric (mean fitness), direction 
(increasing mean fitness to an adaptive landscape peak), 
and a rate (figure 1b). However, it lacks mechanistic detail 
and so has relatively little utility for applied problems. Note 
also that mean fitness can increase through nonevolutionary 
means, via adaptive phenotypic plasticity, matching habitat 
choice, or niche construction (Edelaar and Bolnick 2019), or 
by environmental change that increases reproductive success 
for all individuals (e.g., increased resource availability).

A more useful and interesting goal is to predict which of 
the vast array of traits are likely to evolve in response to a 
particular selective challenge (e.g., an environmental change; 
figure 1c). Not all traits will evolve: Many may be at equilibria 
(e.g., subject to stabilizing selection), lack genetic variation, 
or are neutral so their evolution is too slow to be relevant to 
the timescale in question (Kumar and Subramanian 2002). 
But, typically, at least some genes and traits are likely to be 
evolving at any point in time; the question is merely which 
ones (figure 1d). Typically, evolutionary biologists first seek 
to specify which phenotypic traits are evolving (and how 
they affect fitness), then turn to the question of which genes 
underlie this trait, a topic to which we will return later.

If we can identify traits that will evolve over the relevant 
timescale, we might then aspire to an even greater degree 
of predictive power: in what direction the traits will change 
(figure 1e). Predicting directionality should generally be 
within our reach because it simply requires knowledge of 
the sign of the slope of the selection gradients acting on the 
population means of the relevant traits, but see below for 
issues associated with predicting multivariate phenotypes. 
Better still, can we make a quantitative forecast? By what 
amount (e.g., fold change, standard deviations, proportion) 
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will the evolving traits change over a 
specified unit of time? What is our 
uncertainty around this forecast? Such 
quantitative forecasting is an achievable 
end goal for quantitative geneticists, 
given information about heritability and 
selection acting on one or more traits 
over a short timescale, which may be 
plugged into the multivariate breeder’s 
equation (see the glossary in box 1). 
A related goal is forecasting changes 
in the full trait distribution (e.g., vari-
ance, kurtosis, covariance), but this is 
a harder problem. There is no simple 
equation, akin to the breeder’s equation, 
for forecasting the evolution of genetic 
covariances and higher moments. 
Phenotypic plasticity poses a substan-
tial challenge for quantitative forecasts 
of trait change. Plasticity is the ability 
of a given genotype to produce multiple 
alternative phenotypes, depending on 
the environment. As a result, pheno-
typic distributions can therefore change 
without any evolution, or plasticity can 
amplify or obscure heritable changes in 
traits. We lack methods to forecast plas-
tic trait changes in as-yet-unobserved 
environmental conditions.

The quantitative genetic approach 
often treats genetic, molecular, cellu-
lar, and developmental mechanisms 
as a black box, focusing on emergent 
and readily observable traits (e.g., size, 
shape, or behavior). A more complex 
goal is to predict evolution and action 
of finer-scale mechanistic traits (which 
we might call upstream traits) that 
ultimately generate the traits of inter-
est at the organismal level. Examples 
might include timing and levels of gene 
expression, pathway activity, enzymatic 
activity or concentrations, developmen-
tal patterning, and so on. We could also 
study these upstream traits to attempt to 
predict which ones will evolve, in what 
direction, and by how much (figure 1c 
and 1e, respectively). This approach 
lets us predict not just evolution of the 
obvious traits, but could also provide a 
mechanistic explanation of how these 
trait changes are actuated by changes in 
gene expression, development, environ-
ment, and so on. Ultimately, all the phe-
notypic traits we might choose to study 
arise from changes in the expression 

Figure 1. Precision and scales of evolutionary forecasting. As was described in 
the text, there are varying degrees of precision and scale at which evolution may 
be forecast. (a) Nearly all traits and genes are subject to evolutionary change, 
making this the most reliable but least precise prediction. (b) In a constant 
environment, populations with sufficient genetic variation will evolve toward 
fitness peaks that increase mean fitness (Fisher’s fundamental theorem of natural 
selection). We can therefore forecast that adaptation will occur even if we are 
uncertain of the specific traits or genes driving this adaptation. A more precise 
prediction would specify the traits (c) or genes (d) that will drive evolutionary 
change. (e) Even greater precision comes from forecasting the magnitude and 
direction of trait evolution (the black line) using quantitative methods such as 
the breeder’s equation, which requires information on genetic and phenotypic 
covariances (G, P, represented by the grey oval) and selection strength (red 
dashed line). (f) Forecasting requires information on environmental settings, 
which may allow us to make predictions for numerous populations spanning 
a range of environmental settings: To what extent will these evolve in parallel 
or diverge? (g) Interacting species (species 1 blue and species 2 black lines, 
respectively) can drive each other’s evolution through ecological interactions, 
such as character displacement between competitors, which requires community-
level forecasting. (h) We may seek to forecast how evolutionary change by species 
within a community alter ecosystem properties, which can feed back to change 
interactions among and selection on those communities. The gray box that 
encompasses the top four panels is the focus of this article, the lower two panels (f) 
and (g) are not specifically addressed in the present article. Abbreviations: GP–1, 
heritability; R, response to selection; S, strength of selection.
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Box 1. Glossary.

Adaptive evolution. In the present article, we use adaptive evolution as a subset of evolutionary outcomes that are driven by natural 
selection (as opposed to random evolutionary change e.g., genetic drift), which leads to increased mean fitness through time.
Allelic segregation. Segregation of alleles occurs during gamete formation because of meiotic cell division. This and Mendel’s principle 
of independent assortment explain why each gamete produced by a diploid organism is unique in terms of its genetic complement.
Breeder’s equation. The breeder’s equation R = S × h2 describes the response to selection (R) as a function of the strength of selec-
tion (S) and the heritability of a phenotypic trait (h2). It is used to forecast the evolutionary response of complex multigenic traits to 
either natural or artificial selection. Multivariate approaches incorporate the response of multiple traits that are genetically correlated.
Density dependence. The population ecology processes in which a population’s growth rates are regulated by its density. For example, 
as a population gets larger, resource limitations result in slower population growth or even decline.
Coevolution. The process by which reciprocal selection drives evolutionary change in two or more partner species. A common 
example of this would be arms-race coevolution in which defensive adaptations, such as increased toxicity drive, increased toxin resis-
tance in a predator. In some cases, this is also used to describe cospeciation in which pairs or groups of lineages diverge together—for 
example, feather mites and birds.
EDA. The EDA gene encodes a transmembrane signaling protein, Ectodysplasin, involved in early development. This gene is present 
throughout animal lineages and regulates the interaction between ectoderm and mesoderm.
Effective population size (Ne). A measure of the potential for genetic drift to change allele frequencies due to unbalanced (not 50:50) 
sex ratios, temporal variation in population size, overlapping generations, and other real-world properties of populations.
Epigenetic. Epigenetic effects are changes in gene function that can be inherited but are not caused by changes in DNA sequence (i.e., 
mutations). Instead these typically come from modification of maternal or paternal DNA molecules such as DNA methylation that 
change gene expression.
Epistatic interactions. Epistatic interactions describe phenotypic effects that result from nonadditive interactions between alleles at 
different loci or between mutations within a single gene. Nonadditive effects imply that the phenotypic effects of alleles at one gene 
are changed by the genotype at another gene or between different alleles in a single gene. These interactions can generate genetically 
based phenotypic variation that is not passed from one generation to another because alleles at different loci segregate independently, 
disrupting epistatic interactions.
Gene flow. Gene flow describes the movement of alleles between populations of a species. In cases in which populations are fully 
reproductively isolated from each other gene flow is zero, and any gene flow via hybridization is called introgression. Gene flow tends 
to homogenize otherwise diverging populations, although it may also provide genetic variation on which selection can act.
Genetic architecture. The term genetic architecture describes the underlying genetic basis of traits (number of loci, their effect sizes, 
recombination rates, epistasis, dominance), as well as the variation within or among populations.
Genetic covariances. In evolutionary quantitative genetics, the genetic covariance is a measurable summary statistic, capturing the 
effects of pleiotropy and link disequilibrium in generating correlated values of two or more inherited traits. The strength of the covari-
ances determine the extent to which selection on one trait drives evolutionary change in another trait (from Agrawal and Stinchcombe 
2009)
Genetic drift. Genetic drift describes an evolutionary process in which sampling error generates changes in allele frequencies across 
generations. Unlike changes in allele frequencies associated with natural selection changes in allele frequencies associated with genetic 
drift are random.
Genotype. The genetic makeup of an organism or individual.
Genotype–environment (G×E) interactions. The differential response to environmental variation by different genotypes. These 
interactions can reflect that fitness of a particular genotype is dependent on its environment and that the relative fitness of two or more 
genotypes can change depending on the environment.
Heritability. Heritability describes the proportion of phenotypic variation in a character or trait that results from genetic variation. 
In its broadest sense it can be characterized by the slope of the line that describes the relationship between mean parental trait values 
and mean offspring trait values.
Homologous. In the present article, we use the term homologous to describe genes that share functional and structural similarities 
because of common ancestry. A homologous protein is one that is structurally and functionally similar in different lineages because 
of common ancestry.
Indel. An indel is an insertion or deletion mutation in a region of DNA. This can consist of single nucleotide insertions or deletions 
or the insertion (or deletion) of multiple nucleotides.
Link disequilibrium. Nonrandom association of alleles at different genes within a population because of reduced recombination 
generated by physical proximity on a chromosome.
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of genes (where, when, how much), their translation 
(speed, timing, splicing), and subsequent protein func-
tion (folding, active site properties, dynamics, transport, 
degradation, interactions). These all have their roots in 
the sequence, packaging, and epigenetic modification of 

DNA. Therefore, many biologists feel that the ultimate 
question of evolutionary prediction is to anticipate the pre-
cise genetic changes underlying evolution. We can define 
distinct levels of predictive precision within this ultimate 
question of genetic forecasting (box 2).

Box 1. Continued.

Mean fitness. Mean fitness describes the average fitness of all individuals in a population. In the present article, we use individual fit-
ness in its classic Darwinian definition; for example, an individual’s (or a genotype’s) fitness is directly proportional to its reproductive 
contribution to breeding individuals of the next generation.
Metapopulations. An ecological concept that incorporates real world spatial and temporal structures of species and populations. The 
concept predicts that most species consist of subpopulations in which individuals can freely interbreed connected into larger meta-
populations in which movement of individuals (and alleles) is possibly but more limited. The metapopulation model also explicitly 
incorporates spatial and temporal environmental variation to understand the ecological and evolutionary trajectories of species.
Multivariate phenotypes. A multivariate phenotype approach (as opposed to univariate phenotype) incorporates more than one trait 
in analyses that assess the genetic basis of complex characters (such as disease or pathogen susceptibility). This approach incorporates 
multiple individual characters to enhance the power of the analysis.
Parallel evolution. The tendency for two or more replicate populations to evolve similar adaptive solutions (e.g., same gene, or mor-
phology) to a shared environmental challenge. Parallel evolution is widely considered to be diagnostic evidence that evolution can be 
predictable.
Paralogs. Two or more similar genes, coexisting within the same species’s genome, that are the result of gene duplication events
Phenotype. The phenotype of an organism or individual describes the sum total of all observable traits or characteristics. It can include 
(but is not limited to), morphology, physiology, and behavioral characteristics.
Pleiotropy. When polymorphism at a single gene gives rise to correlated variation in two or more distinct phenotypic traits
Population genetics. A field of genetics that deals with mathematical description of the change in allele frequencies within and 
between populations.
Price equation. In the present article, we use the Price equation in its original form to represent the change in a trait or allele frequen-
cies across two generations. The Price equation (Price 1972) incorporates the covariance between fitness and traits (or allele) to provide 
a quantitative description of the change in trait values across a single generation.
Quantitative genetics. A field of genetics that deals with the evolution of complex traits that typically result from the interaction of 
multiple genes and the environment. This approach allows the quantification, measurement, and prediction of the change in trait 
means of populations, even when the specific genetic basis of those traits is unknown.
Recombination. During recombination alleles from maternal and paternal chromosomes are swapped resulting in novel combinations of 
alleles in offspring chromosomes. This process does not generate new mutations but generates novel genotypes in the offspring generation.
Selection differentials and selection gradients. Selection gradients and selection differentials both provide estimates of a trait’s 
relationship with fitness. However, they are quantitatively different. Selection gradients are univariate estimates produced by linear 
regression (i.e., the slope of the line describing the relationship between trait values and fitness), whereas selection differentials are 
multivariate and represent the partial regression coefficients of the slope describing the relationship of a trait’s contribution to fitness.
SNP. A single nucleotide polymorphism or a mutation of a single position in a DNA molecule that is variable within or among 
populations.
SPL transcription factors. Squamosa promoter binding-like (SPL) proteins are plant specific transcription factors with a regulatory 
function in multiple biological processes. Transcription factors are important in regulating the rate of gene expression.
Stabilizing selection. Stabilizing selection is a form of natural selection in which phenotypic extremes are selected against and phe-
notypes closer to the mean in a population have higher fitness. In theory, this form of selection should reduce the variance for a trait 
in a population without shifting the mean of the trait. A classic example of this is birth weight for human children in which low birth 
weight reduces the survival rate of the child and high birth weight reduces the survival of the mother.
Standing genetic variation. The standing genetic variation describes the current sum total of genetic variation within and among 
populations.
Transitions and transversions. These terms differentiate between types of mutations in DNA molecules. Transitions are DNA sub-
stitutions in which a purine base (A or G) or a pyrimidine base (C or T) is exchanged (e.g., G replaces A or C replaces T) in a DNA 
molecule. Transversions are the replacement of a purine (or pyrimidine) base with its “opposite.” For example, replacement of A with 
T or G with C.
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The preceding kinds of evolutionary predictions are all 
concerned with evolution that is occurring within a par-
ticular focal population (changes in trait distributions and 
genotype frequencies in a defined group of individuals; 
figure 1a–1d). However, evolution is more complex in that 
it occurs among populations connected through networks 
of gene flow and spatial variability (e.g., metapopulations). 
Prediction at the level of the species range might include 
the specific traits that will evolve in individual popula-
tions, leading to population divergence, and the role of gene 
flow among populations in constraining this divergence 
(figure 1f). From an ecological standpoint, this level of pre-
diction would also include the establishment or extinction 
probability of individual populations.

Although the preceding points concern evolution within 
a focal species, ecological interactions between species 
(e.g., competition, predation, parasitism, mutualism) can 
drive simultaneous coevolution in two or more species 
(Thompson 1989). Each species is subject to selection to 
increase the benefits, or mitigate costs, of their interaction 
(figure 1g, species 1 and 2 as blue and black lines, respec-
tively). The resulting evolution within each species changes 
the nature of their interspecific interactions, which, in turn, 
changes the selection that their partners or antagonists 
experience (so-called eco–evo feedback loops, Genung et al. 
2011, Post and Palkovacs 2009). Therefore, evolutionary 
forecasts may need to account for coevolutionary dynamics 
and therefore consider multiple species concurrently.

Moving to a still larger scale, we could instead focus on 
predictions about emergent community and ecosystem 
properties rather than a particular species. For example, we 
can confidently predict that in any biological community, 
given enough time there will emerge guilds of primary pro-
ducers, consumers, and predators. There will be communi-
ties evolving to certain kinds of body size distributions, rates 
of energy conversion, and abundance distributions. These 
higher-level predictions are easiest to make over very long 
timescales when environments remain stable. Our goal in 

the present article is to focus on the precision and scales of 
evolutionary forecasting that encompass the points made 
in figure 1a–1e and not to address prediction at the level of 
figure 1f and 1g.

To summarize, we frequently use predict evolution as a 
shorthand that encompasses a wide range of goals with vary-
ing degrees of precision, qualitative or quantitative, applied 
to various scales of organization (e.g., genes, genomes, 
phenotypes, performance or fitness, species, communities) 
because of a range of mechanisms (e.g., selection, genetic 
drift, gene flow, genetic architecture, species interactions). 
Beyond defining what we mean by prediction, it is equally 
crucial that we clearly specify the timescale over which our 
prediction applies. Predictions for some of these combina-
tions seem well within our reach at present, others seem like 
moonshots that may require a heroic effort employing all 
our current theory and technologies, or some may be funda-
mentally impossible.

Although evolutionary history is well understood, and 
evolutionary theory provides a powerful and well-validated 
means of understanding that history, our ability to make 
long-term quantitative forecasts of future evolution remains 
beyond our reach. Is that simply because we lack sufficient 
information at present? We believe it is important that we 
distinguish between two distinct views: H1 is that evolution 
is fundamentally unpredictable, not because we lack suf-
ficient knowledge but because it is truly too stochastic for 
forecasts at any useful degree of precision. H2 is that evolu-
tion is predictable, if we simply had the right models and 
sufficient data to make effective forecasts.

H1. Evolution is not predictable, no matter how much we mea-
sure.  Stephen Jay Gould famously argued in Wonderful Life: 
The Burgess Shale and the Nature of History (1989) that evo-
lution would not repeat itself; if we rewound the tape of life 
and replayed it from the Cambrian, we would be unlikely 
to end up with anything like humans. In this spirit (and on 
a shorter time span), we posit that evolution is inherently 

Box 2. Distinct levels of predictive precision in molecular evolution.

Evolution will occur in a particular group of genes (e.g., gene ontology category, pathway, family of paralogs).

Evolution will occur in a particular gene.

Evolution of that gene will entail changes in particular motifs or properties of a protein (e.g., a shift in polarity or shape, or within a 
particular active site).

Evolution will entail changes in frequency of particular genetic variants (e.g., single nucleotide polymorphisms [SNPs], indels, gene 
copy number, chromosomal rearrangements). Precise evolutionary forecasting might go so far as to predict the direction, magnitude, 
and speed of allele frequency change, ideally with appropriate confidence intervals.

Predicting evolution of single gene is insufficient because evolution is rarely a single gene process. For instance, initial adaptive changes 
might impose costs that require compensatory mutations after. Therefore, for true predictive power, we should aspire to scale up the 
goals in figure 1a–1e to multiple genes, how they interact, and—ultimately—the whole genomic shebang (many genes, architecture, 
and epigenetics).
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unpredictable at the molecular and population level. This is 
because of the unpredictability of many factors scaling from 
molecular to environmental mechanisms.

Ultimately, evolution is dependent on the random pro-
cess of genetic mutation. Although probabilistic aspects of 
mutation are quantifiable and therefore somewhat predict-
able (e.g., rates, variation in transitions versus transversion, 
mutational hotspots within the genome), in the near term, 
we cannot predict exactly which mutations will occur, where, 
or when. Even if we know the genes and genetic pathways 
that should be important under a specific selective pressure, 
reliance on de novo genetic mutation (e.g., mutation-limited 
evolution) makes it difficult to forecast the specific genetic 
changes enabling future adaptation. The counterargument 
(detailed later in this article) is that in large populations all 
possible mutations will occur with some regularity.

Conversely, selection on standing genetic variation may 
be easier to forecast. During meiosis in sexual organisms, 
recombination adds an additional element of stochastic 
genetic variation, creating new combinations of linked 
alleles, as well as mutations and chromosomal rearrange-
ments on which selection can act. As with mutation, recom-
bination hotspots and cold spots mean that crossing over 
events are not equally probable across the genome.

Genetic drift then adds an element of random changes 
in the frequency of existing alleles. Which adults succeed 
in reproducing and the number of surviving offspring are 
somewhat random. Even an individual carrying a beneficial 
mutation that confers higher expected fitness may fail to 
find a suitable habitat, or may be killed by a pathogen or 
predator, leading to the loss of their beneficial mutation. For 
individuals who do succeed in reproducing, allelic segrega-
tion during meiosis means that the resulting offspring will 
carry a random sample of their parents’ alleles, changing 
allele frequencies in finite populations. The net effect of 
these stochastic processes is a modest random change in 
allele frequencies.

Population genetics has a robust set of model-based 
descriptions of these stochastic processes. Given data on 
the distribution of mutation rates, recombination rates, 
and effective population size, we can forecast a probability 
distribution of rates and magnitudes of allele frequency 
change over a specified time. These forecasts can account for 
mutational and recombination hotspots, across the genome. 
But the realization of this probabilistic process (e.g., the 
particular mutations) is fundamentally unpredictable in the 
immediate future. Over the longer term, there are enough 
opportunities for new mutations and drift so that, through 
the law of large numbers, the probabilistic predictions 
become more useful. This is an important example of how 
the particulars of evolution may be in a sense more predict-
able in the longer term, contrary to the usual assumption 
that short-term evolution is easier to forecast.

The inherent stochasticity of mutation and genetic drift 
is compounded by epistatic interactions within and among 
genes. The phenotypic and fitness effect of a given mutation 

depends on the carrier’s genotype at other loci. Therefore, 
the order in which substitutions occur has a dramatic impact 
on both the magnitude and sign of their phenotypic and fit-
ness effects and probability of fixation (Costanzo et al. 2010). 
The inherent randomness of the outcomes of the mutational 
process means that unpredictable early substitutions impede 
our ability to predict the fitness effects of later substitutions. 
This mutation-order effect changes the fitness effects of sub-
stitutions, so it may prove inherently impossible (as opposed 
to impractical) to precisely forecast long-term evolution of 
epistatic gene networks (Sailer and Harms 2017).

There are also barriers to effective evolutionary predic-
tion that arise from a fundamentally indeterministic aspect 
of biology, rather than stochasticity. Many-to-one mapping 
describes the idea that there are many solutions (genotypes, 
phenotypes) that yield equivalent functional outcomes. 
Consequently, natural selection could favor any of a number 
of solutions to a particular adaptive challenge. For many 
phenotypic traits, there exist numerous combinations of 
morphological structures that can yield identical functional 
effects (Wainwright et al. 2005). For example, the four-bar 
linkage lever system of labrid fishes’ jaws serves to translate 
force into motion, generating a lever mechanical advantage 
determining the capacity to produce forceful (crushing) 
bites versus fast movement useful for evasive prey. Because 
of the structural complexity of the four-bar lever system, 
there exist many morphological solutions (head shapes) 
with identical functional effects (e.g., precisely the same 
mechanical advantage coefficient). Assuming selection acts 
on function (e.g., the ability to generate forceful or fast jaw 
opening), then the evolution of underlying skeletal mor-
phology is unpredictable in the sense that many skeletal 
shapes yield identical function (any one of which might 
evolve), although still other skeletal shapes are selected 
against (Alfaro et al. 2004).

The environments in which some organisms or popula-
tions exist may prove so variable or unstable that a consis-
tent model (or prediction) of environment and genotype 
by environment (G×E) interactions may not be possible as 
timescales increase. For instance, chaotic dynamics in eco-
logical communities suggest that there are fundamentally 
unpredictable changes in conditions (as opposed to our 
theories being incomplete; Hastings et  al. 1993). However, 
timescale matters. Over short to medium timescales (years 
to decades), chaotic dynamics mean that we have no capac-
ity to predict future environmental conditions that could 
impose selection on our focal organisms (dependent on 
population dynamics). Over very long timescales (centuries 
to millennia), chaotic systems can remain within stable 
attractors (lacking global catastrophic events), defining a 
field within which conditions are bounded. Likewise, sto-
chastic processes such as weather might be unpredictable 
over short timescales (days to weeks) but follow predictable 
long-term trends (e.g., global warming over the coming cen-
turies, or even cyclic dynamics such as Milankovitch cycles). 
Considering these timescales and relaxing the need to know 
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the exact species, and given predictable long-term trends and 
the conserved structure of ecological guilds, we should be 
able to make some predictions (e.g., at a minimum, we could 
predict there will be herbivores, carnivores, dominant strat-
egies). However, these predictions will not help us resolve 
many of the questions and applications of forecasting evolu-
tion we highlighted earlier.

H2. Evolution is predictable; we just don’t know how yet (models and 
data).  Our poor performance at correctly forecasting evolu-
tionary outcomes (spanning molecular through organismal 
to ecosystem levels) may result from incomplete models of 
evolutionary and biological processes, or insufficient data 
to parameterize such models. Note that there already exists 
a large literature of evolutionary theory that provides key 
building blocks of such a model, drawing on both popula-
tion genetics and quantitative genetics (e.g., the breeder’s 
equation; Walsh and Lynch 2018). This literature has led 
to useful computational tools such as SLiM (Haller and 
Messer 2019), that can carry out whole-genome forward-
in-time, spatially explicit population genetic simulations 
with many of the evolutionary processes we might wish to 
incorporate: recombination, mutation, selection, and migra-
tion. However, even this powerful new tool excludes other 
processes that we know shape the direction of evolution, 
including epistasis, genotype-to-phenotype mapping, plas-
ticity, species interactions, population dynamics, and others 
detailed below. Then, when we have a satisfactory evolution-
ary forecast model in hand, to apply this model to any real 
biological system would require extensive, perhaps prohibi-
tive empirical data to parameterize the model and generate 
the desired forecasts. Therefore, to forecast evolution as 
defined earlier (figure 1 and box 2), we need both conceptual 
progress and data, which we detail below.

Genotype to phenotype prediction
To develop predictions from the genotype to phenotype, we 
argue that we may first need a better understanding of the 
process of mutation (Kumar and Subramanian 2002). This 
includes variation in mutation rates for different kinds of 
molecular changes, at different places within the genome 
(mutational hot or cold spots). Limited data on mutation 
rates exist for a few species (e.g., Ellegren 2003, Smeds et al. 
2016), but their precision can be improved and we need to 
determine whether the data can be generalized among spe-
cies, among individuals or genotypes within species, and 
within genomes. For short-term evolutionary prediction, de 
novo mutation has negligible effect on evolution simply for 
lack of generational time (with some possible exceptions; 
e.g., Pigliucci and Müller 2010, Hawkins et al. 2019). Because 
the outcomes of mutation are fundamentally random, we 
will generally not be able to predict when (or whether) a 
specific mutation at a specific locus will occur. But over long 
timescales or in large populations, the law of large numbers 
provides aggregate statistical predictive power. In very large 
populations with large per-base mutation rates (e.g., HIV 

within a patient; Cuevas et al. 2015), one can reliably predict 
that every feasible mutation will occur within a short time 
span, so the random nature of individual mutations ceases 
to matter. Even in humans, we can expect a new mutation 
at every nucleotide in the genome every year: 140 million 
humans are born per year globally, each with about 40 de 
novo point mutations (Donald et al. 2011), introducing more 
new mutations per year (5.6 billion) than there are nucleo-
tides in the human genome (3.2 billion).

Next, we require the ability to forecast how a given 
genetic change (e.g., SNP, indel) will produce a change 
in phenotype and function. This problem encompasses 
almost the entirety of biology, from genetics to develop-
ment, physiology, immunology, cell biology, biomechanics, 
and others, requiring understanding of protein function, 
gene networks, patterning, and so on. Detailed evolution-
ary forecasting may be dependent on making significant 
progress in multiple disciplines of biology. Researchers are 
currently getting around this difficulty by reverse engineer-
ing this process. For instance, genomic methods are being 
employed that target genes of potential large effect for selec-
tion experiments by either losing or suppressing these genes 
(Monroe et  al. 2016, Wang et  al. 2018). We can observe 
physiological, developmental, or protein structural changes 
for many model organisms in controlled experiments that 
manipulate genes of large effect (e.g., losing or suppressing 
genes by knockout or knock down genomic methods). From 
these inferences, researchers have made progress toward 
describing mutations that could, individually or collectively, 
achieve protein or expression changes (e.g., Xu et al. 2016, 
Younis et al. 2018). We can now do a better job of predicting 
evolution through studying function to genotype mapping, 
instead of genotype to function mapping. This approach is 
especially valuable in applied practice. If we seek to predict 
how a specific organism will evolve in response to a particu-
lar environmental change, this strategy narrows the scope 
of problems to consider. For instance, in Arabidopsis, Chao 
and colleagues (2017) examined the importance of SPL tran-
scription factors in thermotolerance by manipulating heat 
conditions for genetically modified and wild-type plants 
and measuring differences in expression level in down-
stream genes activated in an abiotic stress tolerance pathway. 
Equivalently, if we think of selection imposed by a novel 
pathogen, we might immediately narrow our focus onto 
immune genes, and in particular the most relevant of those 
genes (e.g., pattern recognition genes such as the major 
histocompatibility complex; Radwan et  al. 2020). But by 
narrowing our focus on specific genes, we might miss other 
adaptive pathways that respond to the same selective pres-
sure (e.g., glucose aversion versus insecticide resistance in 
cockroaches; Wada-Katsumata et  al. 2011). Encouragingly, 
theoretical models combined with bioinformatic data seem 
to predict accurately the evolved distribution of biophysical 
properties of proteomes (the collection of all the proteins in 
a species; Zeldovich et al. 2007, Zou et al. 2014). Therefore, 
there is hope.
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Taking a broader view, the mapping of genotype to phe-
notype (described above) is contingent on many factors 
including the environment that modifies trait expression 
(with possible G×E interactions). Also, because of epistasis, 
genetic variation at one gene can modify the phenotypic 
effect of alleles at other genes. Therefore, predicting phe-
notypic effects of mutations must consider genome wide 
allele frequency data, and the phenotypic effects of possible 
epistatic interactions (Huang et al. 2012, Csilléry et al. 2018). 
Three-way gene interactions and higher order epistasis are 
computationally challenging to model, but are exponentially 
more abundant (although weaker) than pairwise interac-
tions (Kuzmin 2018). In practice, therefore, evolutionary 
forecasting requires an understanding of G×E interactions 
and epistatic modifications of the genotype to phenotype 
mapping, which requires knowing genome-wide allele fre-
quencies (for epistasis) and the range of environmental 
conditions experienced at multiple levels of organization. 
This appears to be a potentially insurmountable task without 
model simplification given the high dimensionality of the 
data required.

Overall, we need a better understanding of the impact of 
genomic (genetic) architecture on the response of individual 
genes to selection. Studying organisms from across the 
tree of life, researchers found genomic regions with clus-
ters of loci of high adaptive value, and these clusters were 
in parallel within lineages and identified for multiple taxa 
(Yeaman 2013, Holliday et al. 2016, Raeymaekers et al. 2017). 
Chromosome inversions tend to suppress recombination in 
heterozygotes and may act as reservoirs of standing genetic 
variation (Morales et al. 2019). Conversely, inversions mean 
that different genes tend to be inherited together, so oppos-
ing selection on different genes within an inversion can lead 
to an evolutionary conflict that slows or prevents adaptation. 
Therefore, to fully understand how chromosome inversions 
limit adaptation, we need an empirical description of how 
architecture varies within a focal population (e.g., inversion 
polymorphisms, and their effects on key genetic properties 
such as recombination and mutation rates). In other cases, 
strong selection pressure with a high fitness cost may result 
in rapid adaptation within a species that is similar in pheno-
type across populations but varies in the genetic architecture 
or genomic regions (e.g., the genetic architecture for female 
choosiness against interspecific mating between species of 
Aedes; Burford Reiskind et al. 2018). In these cases, we need 
to know what combinations of genes are contributing to 
the genetic architecture of the phenotype of interest (e.g., 
Lehner 2013, Forsberg et al. 2017). Given improvements in 
the conceptual process and quality and quantity of data, we 
can address the question of forecasting evolution.

Selection forecast
To forecast evolution, we need to go a step further and link 
phenotypes to fitness. At the coarsest level this could entail 
statistical description of covariation between phenotype 
and fitness (e.g., for the Price equation; Price 1972, Queller 

2017), or between genotype and fitness. Currently, we have 
the statistical tools for this approach. Although this might 
suffice for making predictions over very short timescales, 
a lack of mechanistic understanding in this approach lim-
its future projections in changing environmental contexts. 
Projecting into the future requires a functional understand-
ing of how traits affect fitness, drawing on biomechanics, 
behavior, ecology, and so on. We lack the capacity, at present, 
to model how present-day traits, let al.one traits that do not 
yet exist, generate variation in fitness in as-yet-unobserved 
environments. However, with improved conceptual models 
and quality data we can begin to tackle these questions.

As we gain better understanding of genetic process, 
and selection, we can use existing tools of quantitative or 
population genetics to forecast the course of evolution. This 
genetic knowledge can in some instances be simplified by 
omitting mechanistic detail and taking a quantitative genetic 
approach (e.g., the breeder’s equation), or population genet-
ics for the rare case of simple single-gene traits (Walsh and 
Lynch 2018). This is an established approach that works well 
over short timescales, but will break down over longer tim-
escales because we are still refining our mechanistic models 
of how genetic variance–covariance matrices themselves 
evolve (we know that they do evolve; Roff 2000), and how 
selective pressures will change. Therefore, the more mecha-
nistic approach outlined in the above genotype to phenotype 
predictions provides a potentially robust framework, but one 
that is harder to parameterize (if possible at all). Whether 
one takes a mechanistic, quantitative, or population genet-
ics approach, the key is incorporating knowledge about the 
available genetic variation, how this affects fitness, and how 
response to the resulting selection is constrained.

Forecasting evolutionary responses to known selective 
pressures works well when the present-day environment can 
be safely trusted to remain constant. However, selection on 
focal species depends on abiotic conditions, and biotic inter-
actions, both of which change through time and we must 
forecast for evolutionary prediction. To do so, we will need 
to draw on fields ranging from meteorology (climate change 
being a major driver of evolution during the Anthropocene), 
to toxicology (from human pollution), to epidemiology and 
ecology more generally. We therefore need detailed data on 
the present-day state of multivariate environmental and eco-
logical factors (e.g., species densities of predators, parasites, 
prey, competitors, mutualists), and the rules of how these 
change through time (e.g., how species interact to drive each 
other’s changing population densities).

With models of changing environmental conditions in 
hand (e.g., the Earth system models used by the IPCC 
for environmental changes; IPCC 2014), we need to draw 
inferences about changing selection pressures. To do so, we 
need to revisit the phenotype to function to fitness map-
ping by describing how this mapping (particularly function 
to fitness) changes depending on the future environments 
(including possible future communities and interactions). 
This will allow us to forecast how the fitness landscape will 
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shift through time to favor different trait values, trait combi-
nations, and genotypes at various points in the future.

Finally, the selective pressures acting on a focal species 
may depend on the genotypes of other species, not just 
their presence, absence, or abundance. Therefore, evolution 
by other species may modify the direction of evolution of 
our focal species (i.e., Darwin’s tangled bank). Conversely, 
evolution by our focal species can have reciprocal effects 
on the abundance, genotypes, phenotypes, and fitness of all 
the other species with which it interacts directly (or perhaps 
indirectly; Whitham et al. 2003, Johnson and Stinchcombe 
2007). Therefore, effective evolutionary forecasts might also 
need to consider entire multispecies communities simulta-
neously in these ecoevolutionary feedback loops.

The above information we need to know to forecast evolu-
tion is sobering. And it is likely we will never know enough 
to effectively forecast evolution with high levels of precision 
and mechanism over long timescales and in natural environ-
ments. This reflects both constraints on our input data, and 
fundamental stochasticity of biological processes at all levels 
of organization. However, in many cases we don’t need to 
have absolute precision for practical predictive outcomes. 
Returning to the subject of what we seek to predict, it may 
be sufficient to predict that adaptation will occur (Fisher’s 
fundamental theorem), or that a given trait will increase 
or decrease. For example, predictive evolutionary models 
are used to determine influenza strain vaccines annually. 
Although there is limitation in the accuracy of the current 
models used and evolution of the virus is not entirely pre-
dictable, the partial level of accuracy still provides an effec-
tive annual vaccine (Agor and Ozaltin 2018). Likewise, in 
conservation efforts we can predict that in cases of genetic 
rescue, if we introduce new alleles to a very small, endan-
gered population, issues involving inbreeding depression 
can be improved. This may be all the information needed 
for a critically endangered population, but more advanced 
knowledge about population level adaptations in gene pools 
across a species’s range will help improve models to predict 
potential outbreeding depression consequences if deleterious 
alleles are introduced into an already threatened population 
(Frankham et al. 2011) or help conservation biologist weigh 
the relative risks of inbreeding or outbreeding depression 
in a given threatened organism (Edmands 2007). Although 
precise prediction of evolution is an important goal of evolu-
tion biology, our current state of evolutionary prediction still 
enables many important practical outcomes.

Conclusions
In the present article, we have asked the fundamental ques-
tion, is evolution predictable at all, and, if so, under which 
circumstances? Clearly, forecasting would help us address 
many applied questions needing biological solutions, such 
as forecasting the rapid evolution of infectious disease or 
preventing extinction. Forecasting also has value in many 
applied questions needing biological solutions including 
tumor growth, rapid evolution of infectious diseases such 

as HIV and the flu, resistance to control approaches in 
pathogens and pests, and changing ecosystem services. To 
the extent evolution is deterministic and predictable, what 
information and modeling capacity do we need? Will we 
ever have sufficient data and models? Or is evolution too 
fundamentally stochastic for comprehensive prediction at 
all levels of organization? We argue that although any inher-
ent unpredictability is more of an issue for the precision 
of quantitative or molecular evolutionary processes, less 
precise predictions are easier. We also argue our ability to 
forecast precisely will always be timescale dependent. We 
highlight in the present article that there are many cases in 
which evolution does converge on the same outcome repeat-
edly. In situations when evolution is clearly predictable, the 
questions are when does this happen and why and what can 
we learn from these situations. We argue that distinguishing 
between H1 and H2 is useful to address this question and 
more. Furthermore, research and data generated testing H2 
will provide important knowledge about the evolutionary 
process in general and help us improve forecasting mod-
els with greater levels of precision than we currently have. 
Technological and computational advances in the Biological 
Sciences, particularly at the genomic level, offer hope that 
increasing precision and accuracy will be possible moving 
forward. Ultimately, to apply evolutionary forecasts, we will 
need an integrated approach encompassing spatiotempo-
ral dynamics and tools generated across multiple fields of 
biology.
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