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Abstract

Membrane-bound angiotensin-converting enzyme 2 (ACE2) is important in regulation of the 

renin-angiotensin-aldosterone system, but the association of cleaved soluble ACE2 (sACE2) with 

cardiovascular disease (CVD) is unclear. We evaluated the association of sACE2 with cardiac 

biomarkers, structure, and function and cardiovascular events in the Atherosclerosis Risk in 

Communities Study. sACE2 was measured in a subset of 497 participants (mean age 78±5.4 years, 

53% men, 27% black); Cox regression analyses assessed prospective associations of sACE2 with 

time to first CVD event at median 6.1-year follow-up. sACE2 was higher in men, blacks, and 

participants with prevalent CVD, diabetes, or hypertension. Higher sACE2 levels were associated 

with significantly higher biomarkers of cardiac injury (high-sensitivity cardiac troponin I and T, N-

terminal pro–B-type natriuretic peptide), greater left ventricular mass index, and impaired diastolic 

function in linear regression analyses, and with increased risk for heart failure hospitalization 

(adjusted hazard ratio per natural log unit increase [HR] 1.32, 95% confidence interval [CI] 1.10–

1.58), CVD events (HR 1.34, 95% CI 1.13–1.60), and all-cause death (HR 1.26, 95% CI 1.01–

1.57). In an elderly biracial cohort, sACE2 was positively associated with biomarkers reflecting 

myocardial injury and neurohormonal activation, left ventricular mass index, impaired diastolic 

function, CVD, events and all-cause death.
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Introduction

The renin–angiotensin–aldosterone system (RAAS) is an important regulator of blood 

pressure, but excess activation contributes to development of cardiovascular disease (CVD).1 

In pathological RAAS activation, active tissue-bound, or membrane-bound, angiotensin-

converting enzyme 2 (mbACE2) expression is increased, and increased shedding of plasma, 

or soluble, ACE2 (sACE2) into circulation results in increased sACE2 and relative 

deficiency of mbACE2.2 mbACE2 is cardioprotective,3–5 whereas increased sACE2 levels 

predict poor outcomes in patients with CHD, HF, or atrial fibrillation.6–8 Data on the relation 

of sACE2 levels and cardiovascular events are limited to relatively small cohorts of 

hospitalized patients with established CVD, with few data on the relation of sACE2 with 

cardiac biomarkers, structure, and function. We investigated the relations between levels of 

sACE2 and cardiac biomarkers, echocardiographic measurements of cardiac structure and 

function, and risk for CVD events in the Atherosclerosis Risk in Communities (ARIC) study, 

a biracial cohort of older adults with a high prevalence of CVD risk factors, to test the 

hypothesis that individuals with pathological RAAS activation have altered expression of 

sACE2, higher prevalence of CVD, elevated biomarkers of subclinical cardiac injury, 

abnormal cardiac structure and function, and increased risk for incident CVD.

Methods

Detailed methods are provided in the Supplementary Data. The Atherosclerosis Risk in 

Communities (ARIC) Study is a population-based study that recruited residents aged 45–65 
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years in 1987–1989 from 4 communities in North Carolina, Mississippi, Minnesota, and 

Maryland. A detailed description of the ARIC Study has been published.9 The study 

protocol was approved by each field center’s institutional review board and complies with 

the Declaration of Helsinki; all participants provided written informed consent. This analysis 

used data from participants in ARIC visit 5 (2011–2013; aged 66–90 years).

Of the 6538 participants in visit 5, we excluded those with self-reported race neither black 

nor white (N=14) and black participants at the Minnesota and Washington County field 

centers (N=17) because of small enrollment numbers and those with missing information on 

cardiac biomarkers (high-sensitivity cardiac troponin I [hs-cTnI] or T [hs-cTnT], N-terminal 

pro–B-type natriuretic peptide [NT-proBNP]; N=1227) to include 5280 for cardiac 

biomarker analysis. sACE2 measurements were available from a case-control study of 

incident HF for a subset of 497 individuals, 152 with prevalent CVD and 345 without 

(Supplementary Figure 1S).

The selection of the sACE2 subset from ARIC visit 5 was based on a case–control study 

design. Both cases and controls had to be free of HF at visit 5. For each case (incident HF 

between visit 5 and December 31, 2016), a matched control was selected, matched on age, 

sex, and being free of HF after the same follow-up time since visit 5 (incidence density 

sampling).

hs-cTnI was measured using a highly sensitive chemiluminescent immunoassay (Architect 

Stat Troponin-I; Abbott) on an automated chemistry analyzer (Architect i 2000sr; Abbott).10 

hs-cTnT was measured using a highly sensitive assay (Elecsys Troponin T Gen 5 STAT; 

Roche).10 NT-proBNP was measured using a electrochemiluminescent immunoassay on an 

automated analyzer (Cobas e411; Roche).11 Participants with hs-cTnI, hs-cTnT, or NT-

proBNP levels below the lower limits of detection were assigned values equal to half the 

lower limits of detection.

sACE2 protein levels were measured using the cardiovascular panel II of the Olink 

Multiplex platform (Olink Proteomics, Uppsala, Sweden) in a subset of 497 participants 

from ARIC visit 5. Cardiovascular panel II is validated with respect to sensitivity, dynamic 

range, specificity, precision (repeatability and reproducibility), and scalability.12

Echocardiography was performed according to a study-specific protocol and using uniform 

equipment by dedicated sonographers as described.13 Quantitative measures of cardiac 

structure and function were determined by a central reading center according to American 

Society of Echocardiography recommendations14; reproducibility metrics are published.13

Clinical endpoints assessed included first CHD, ischemic stroke, and HF hospitalization 

events and all-cause mortality as described.15–17 All outcomes were assessed after ARIC 

visit 5, with follow-up through December 31, 2018. Global CVD was a composite of CHD, 

stroke, and HF hospitalization events; ASCVD was a composite of CHD and stroke events. 

Median (25th, 75th percentile) follow-up periods were 6.1 (4.6, 6.8) years for global CVD, 

6.2 (5.1, 6.8) years for ASCVD, and 6.2 (5.2, 6.8) years for HF hospitalizations.
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sACE2 was modeled as a continuous variable or classified by tertiles of its distribution for 

categorical analysis. Baseline characteristics of participants were tabulated by sACE2 tertile. 

Categorical variables were expressed as count (percentage); continuous variables were 

reported as mean ± standard deviation or median (25th, 75th percentile) depending on 

normality of the data.

We modeled hs-cTnT, hs-cTnI, and NT-proBNP at visit 5 as both categorical and continuous 

variables. For the hs-cTnT categorical analysis, individuals were classified by prespecified 

cutpoints: <6 ng/L (“low”; the limit of quantification for the assay), 6 to <14 ng/L 

(“intermediate”), and ≥14 ng/L (“high”; 90th percentile in ARIC18 and 99th percentile upper 

reference in multisociety guidelines for defining myocardial infarction19). Respective 

categories for hs-cTnI were <2 ng/L (“low”; lowest integer above limit of detection), 2 to 

<10 ng/L (“intermediate”), and ≥10 ng/L (“high”; as published10). For NT-proBNP, 

individuals were classified by prespecified reference cutpoints of <100 pg/mL (low), ≥100 to 

<300 pg/mL (intermediate), and ≥300 pg/mL (high).11 For the continuous analyses, hs-cTnI, 

hs-cTnT, and NT-proBNP values were natural log (ln) transformed. We examined cross-

sectional correlations among sACE2, hs-cTnI, hs-cTnT, and NT-proBNP levels using 

Spearman rank correlation. We further assessed cross-sectional association of sACE2 with 

hs-cTnI, hs-cTnT, and NT-proBNP as categorical and continuous variables using 

multivariable logistic or linear regression models, respectively. Model 1 was adjusted for 

age, sex, and race. Model 2 was adjusted for all variables in model 1 plus total cholesterol, 

high-density lipoprotein cholesterol, smoking status, systolic blood pressure, 

antihypertensive medication use, diabetes status, lipid-lowering medication use, prevalent 

CVD (composite of CHD, stroke, and HF hospitalization), and estimated glomerular 

filtration rate (eGFR).

Linear regression models were used to assess cross-sectional association of sACE2 with 

echocardiographic measures of systolic function (left ventricular [LV] ejection fraction, 

global longitudinal strain [GLS]), cardiac structure (LV mass index [LVMi]), and diastolic 

function (left atrial volume index [LAVi], tissue doppler imaging [TDI] septal e′ and septal 

E/e′ ratio). Adjustments were made with model 1 and model 2 as above; model 3 included 

all variables in model 2 plus log hs-cTnI, log hs-cTnT, and log NT-proBNP.

Finally, we used Cox proportional hazards models to estimate the hazard ratios (HRs) and 

95% confidence intervals (CIs) for the prospective associations of sACE2 at visit 5 with time 

to first ASCVD, HF hospitalization, or global CVD event, adjusted by models 1–3 as above. 

P-trend was calculated for linear increase in log relative hazard with increasing categories. 

Sensitivity analyses were performed by stratifying the cohort into those with or without 

prevalent CVD and into NT-proBNP categories (<100, 100 to <300, ≥300 pg/mL), to 

determine if findings were consistent among individuals with or without prevalent CVD and 

across low, intermediate, and high NT-proBNP categories.

Results

Individuals in the higher sACE2 tertiles were more likely to be black men and have prevalent 

CHD, hypertension, or diabetes mellitus and higher fasting glucose, high-sensitivity C-
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reactive protein (hs-CRP), hs-cTnI, hs-cTnT, and NT-proBNP (Table 1). sACE2 levels were 

positively correlated with hs-cTnI (R=0.27), hs-cTnT (R=0.27), and NT-proBNP (R=0.18) 

(Supplementary Table 1S).

Use of ACE inhibitors/angiotensin receptor blockers or mineralocorticoid receptor 

antagonists was not associated with statistically significant differences in median sACE2 

levels. On the other hand, individuals using loop diuretics or beta-blockers had significantly 

higher sACE2 levels compared with individuals not using these medications (Supplementary 

Table 2S).

sACE2 (ln transformed) was significantly and positively associated with (ln-transformed) 

hs-cTnI (β 0.25, 95% CI 0.13–0.36), hs-cTnT (β 0.15, 95% CI 0.08–0.22), and NT-proBNP 

(β 0.29, 0.14–0.44) per log unit of sACE2, after adjusting for clinical variables (traditional 

risk factors + prevalent CVD and eGFR; model 2) (Table 2). Individuals with higher sACE2 

levels had significantly higher odds of having “elevated” hs-cTnI, hs-cTnT, and NT-proBNP 

levels after adjusting for variables in model 2 (Supplementary Table 3S).

After adjustment for demographic and clinical covariates (model 2), higher sACE2 levels 

were associated with significantly greater LVMi, larger LAVi, and higher TDI E/e′ and less-

negative GLS. Although septal e′ was associated with sACE2 levels in model 1, the 

association was not significant after adjustment for model 2. Association of sACE2 with all 

echocardiographic measures of systolic and diastolic function and cardiac structure were 

attenuated and no longer significant after further adjusting for cardiac biomarkers in model 3 

(Table 3). The results remained unchanged when individuals with prevalent CVD were 

excluded (Supplementary Table 4S).

sACE2 (ln transformed) was significantly associated with global CVD events (HR 1.34 per 

ln unit increase, 95% CI 1.13–1.60), HF hospitalization (HR 1.32 per ln unit increase, 95% 

CI 1.10–1.58), and all-cause death (HR 1.26, 95% CI 1.01–1.57) after adjusting for variables 

in model 2. Further adjusting with (ln-transformed) hs-cTnT, hs-cTnT, and NT-proBNP 

attenuated the associations, which were no longer significant. sACE2 was borderline-

significantly associated with ASCVD events when adjusted for model 1, but not after 

adjusting for model 2 (Table 4). Sensitivity analyses indicated that associations of sACE2 

with incident global CVD and HF hospitalization were unchanged and the association with 

all-cause death was attenuated when individuals with prevalent CVD were excluded 

(Supplementary Table 5S).

Discussion

Despite many animal studies demonstrating the protective role of ACE2 in cardiovascular 

physiology through ameliorating cardiac fibrosis, remodeling, and hypertrophy,3–5 relatively 

little information is available on the relation of sACE2 with CVD in humans. Our study has 

important implications in this regard. In a large elderly population-based cohort with a high 

prevalence of cardiovascular risk factors, increased sACE2 levels were associated with 

significantly higher cardiac biomarkers (hs-cTnI, hs-cTnT, and NT-proBNP), reflecting 

neurohormonal activation and cardiac inflammation and injury; echocardiographic measures 
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of myocardial hypertrophy and impaired diastolic function; and increased risk for 

cardiovascular events, driven primarily by an increased risk for HF hospitalizations.

The specific relations between mbACE2 and sACE2 protein (or circulating ACE2 activity) 

as measured in other studies are not completely understood. Active mbACE2 is shed into 

circulation as sACE2 by enzymatic cleavage by tumor necrosis factor alpha–converting 

enzyme (TACE). In states of pathological RAAS activation, mbACE2 expression is 

increased (as counter-regulatory response), and shedding into circulation is increased 

through upregulation of TACE by angiotensin II2 resulting in increased sACE2 and relative 

deficiency of active mbACE2. Therefore, circulating sACE2 protein or activity, perhaps 

similarly to BNP, serve protective biological functions but increase in counter-regulatory 

response to disease stimuli.

To our knowledge, this is the first study to investigate relations between sACE2 and 

biomarkers of cardiac injury and the largest study evaluating echocardiographic parameters. 

A recent case–cohort study in 10,753 participants in 14 countries (Prospective Urban Rural 

Epidemiology study) showed similar results as our study; increased concentrations of 

plasma ACE2 were associated with increased risk for CVD and non-CVD death, HF, and 

myocardial infarction independent of age, sex, ancestry, and traditional cardiac risk factors.
20 However, the association with echocardiographic parameters or biomarkers was not 

explored. 20

Plasma ACE2 activity is usually low in healthy individuals,21 higher in individuals with 

CVD22,23 or diabetes,24 and correlated with extent of tissue damage or CVD progression.21 

Higher plasma ACE2 activity has been associated with adverse CVD outcomes in patients 

with CHD,6 HF,7 or atrial fibrillation,8 with higher activity seen with greater infarct size, 

ventricular systolic dysfunction,7 and adverse cardiac remodeling.8

While these smaller studies measured ACE2 activity in patients with established CVD, we 

measured sACE2 protein levels in a substantially larger elderly population and observed that 

elevated plasma sACE2 levels were associated with higher odds of elevated hs-cTnI and hs-

cTnT, greater LV mass, and worse LV diastolic function, mirroring the cardiac structural and 

functional correlates that we previously reported with higher hs-cTnT levels.25 Individuals 

with higher sACE2 had increased risk for global CVD events, driven by HF hospitalization, 

independent of traditional risk factors, kidney function, or prevalent CVD. Based on these 

data, we propose that elevated sACE2 may be a marker of pathological activation of RAAS 

(Figure 1), with concomitant elevation of biomarkers of cardiac injury and abnormalities of 

cardiac structure and function resulting in increased risk for HF.

Although sACE2 levels were significantly associated with echocardiographic abnormalities 

and increased risk for HF events after adjusting for traditional risk factors, the associations 

were no longer significant after additional adjustment for cardiac biomarkers. This loss of 

significance may suggest that both sACE2 and cardiac biomarkers may be in the same 

biological pathway related to RAAS overactivation. The finding that sACE2 was associated 

with incident HF only in individuals who also had elevation of NT-proBNP may reflect 
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increased cleavage present when there is increased pressure overload and needs confirmation 

in larger studies and ideally examination of both plasma and tissue levels of ACE2.

Limitations of our study include measurement of soluble plasma (not tissue) ACE2 in only a 

subset of participants at only one time-point; moreover, the number of black participants was 

small (n=134, 27%) and may provide insufficient power to study this subpopulation. The 

correlations of sACE2 with some biomarkers was weak, even though statistically significant 

because of the large number of samples. It is hypothesized that sACE 2 concentrations are 

associated with tissue concentration. ACE2 cleaves angiotensin-II to angiotensin 1–7; 

although measuring circulating levels of both angiotensins and evaluating their associations 

with sACE2 would increase our understanding of the RAAS axis, these measurements were 

not available in ARIC. Our study cohort included an elderly population with mean age 78 

(SD 5); therefore, the results of our study may not be applicable to a younger age group. In 

addition, this study is hypothesis generating, and our proposal that increased levels of 

sACE2 and cardiac biomarkers may be useful to identify individuals with increased 

susceptibility to adverse cardiac outcomes is intended to encourage future investigation into 

this area.

In conclusion, elevated sACE2 levels were significantly and positively associated with 

increased levels of biomarkers of cardiac injury and neurohormonal activation, increased LV 

mass, impaired diastolic function, and increased risk for prospective CVD events in a large 

biracial elderly American cohort. sACE2 may therefore serve as an indicator of end-organ 

damage from pathological imbalance of the RAAS axis, which in turn increases risk for 

future CVD events.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: sACE2 and cardiac biomarkers, structure, and function: potential implication for 
CVD.
Pathological activation of RAAS as evidenced by elevated sACE2 levels was associated with 

elevated cardiac biomarkers and echocardiographic measures of cardiac structural 

abnormalities and diastolic dysfunction, and independently predicted cardiovascular events 

including heart failure hospitalizations.
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Table 1.

Characteristics across sACE2 tertiles at ARIC visit 5, 2011–2013

Variable sACE2 tertile*

18.54–55.01
(n=166)

55.09–88.84
(n=166)

90.62–1491.37
(n=165)

Age (years) 77.1±5.4 78.4±4.9 77.9±5.8 0.13

Male 38.6% 63.3% 60.0% <0.001

Black 19.9% 31.3% 30.3% 0.03

Prevalent CHD 16.6% 23.8% 30.9% 0.002

Prevalent stroke 3.0% 4.2% 6.1% 0.17

Prevalent HF 7.3% 9.8% 9.3% 0.54

Hypertension 79.1% 74.6% 87.7% 0.05

Diabetes mellitus 32.9% 29.6% 45.3% 0.02

Obesity 34.0% 34.6% 36.1% 0.69

Current smoker 7.7% 6.5% 6.9% 0.79

SBP (mmHg) 130.9±19.1 132.3±19.6 136.7±20.7 0.009

DBP (mmHg) 64.7±12.1 66.0±11.4 67.3±13.4 0.04

Pulse pressure (mmHg) 66.2±17.0 66.2±15.6 69.4±15.3 0.06

BMI (kg/m2) 28.9±6.0 28.6±5.6 29.0±5.6 0.79

Use of antihypertension medications 76.5% 78.3% 87.8% 0.009

Use of ACEi or ARB 36.4% 41.6% 43.9% 0.16

Fasting glucose (mg/dL) 112.4±31.3 110.8±24.7 121.4±43.2 0.05

Total cholesterol (mg/dL) 178.5±43.1 170.3±39.3 172.8±45.2 0.17

Triglycerides (mg/dL) 103 (76, 141) 103 (80, 136) 112 (84, 168) 0.07

HDL-C (mg/dL) 52.4±13.7 49.5±12.0 50.5±15.4 0.06

LDL-C (mg/dL) 103.0±35.4 97.3±32.6 95.4±36.9 0.03

Lipid-lowering medications 60.0% 56.6% 64.6% 0.39

eGFR (mL/min/1.73m2) 69.3±18.1 63.8±18.2 67.0±19.7 0.19

hs-CRP (mg/L) 1.8 (0.8, 4.3) 2.2 (1.1, 4.6) 3.0 (1.4, 7.4) 0.001

Cardiac biomarkers

hs-cTnI (ng/L) 3.7 (2.5, 5.4) 4.5 (3.1, 8.7) 6.9 (3.5, 12.8) <0.001

hs-cTnT (ng/L) 12 (8, 16) 15 (10, 24) 18 (12, 27) <0.001

NT-proBNP (pg/mL) 176.4 (86.2, 343.3) 231.2 (108.1, 536.3) 330.6 (121.4, 1002.0) <0.001

LVEF (%) 65.3 (60.8, 69.3) 63.6 (59.4, 67.0) 64.3 (58.1, 68.8) 0.08

LVMi (g/m2) 81.0 (68.8, 93.0) 83.0 (71.0, 99.1) 89.8 (74.2, 105.7) 0.001

LAVi (mL/m2) 26.5 (21.5, 32.6) 27.7 (22.5, 34.0) 30.0 (23.9, 37.9) <0.001

Septal e′ (cm/sec) 5.3 (4.5, 6.4) 5.3 (4.5, 6.2) 5.1 (4.3, 5.8) 0.02

Septal E/e′ 12.4 (9.5, 15.5) 11.9 (9.4, 14.9) 13.5 (10.9, 17.8) 0.004

GLS (%) −17.53
(−19.1, −16.0)

−17.1
(−18.9, −15.2)

−16.5
(−18.7, −14.8)

0.001
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*
sACE2 measured in normalized protein expression (NPX)

Significant values in bold.

Data presented as mean±SD, median (25th, 75th percentiles), or percentage. P-values for linear trend were calculated by using trend test across 
ordered groups.

Obesity defined as BMI ≥30 kg/m2

Abbreviations: ACEi: ACE inhibitors; ARB: angiotensin receptor blockers; BMI: body mass index; DBP: diastolic blood pressure; HDL-C: high-
density lipoprotein cholesterol; LDL-C: low-density lipoprotein cholesterol; LVEF: LV ejection fraction; SBP: systolic blood pressure; TR: 
tricuspid regurgitation.
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Table 2.

Association of sACE2 with hs-cTnI, hs-cTnT, and NT-proBNP as continuous variables (ln transformed) at 

ARIC visit 5

Biomarker Model Beta-coefficient* 95% CI p-value

ln–hs-cTnI 1 0.27 0.16–0.39 <0.001

2 0.25 0.13–0.36 <0.001

ln–hs-cTnT 1 0.15 0.08–0.23 <0.001

2 0.15 0.08–0.22 <0.001

ln–NT-proBNP 1 0.33 0.18–0.48 <0.001

2 0.29 0.14–0.44 <0.001

*
Increment in hs-cTnI, hs-cTnT, or NT-proBNP (log unit) per log unit increase of sACE2, where sACE2 is independent and hs-cTnI, hs-cTnT, or 

NT-proBNP the dependent variables.

Model 1: adjusted by visit 5 age, sex, and race; model 2: model 1 plus visit 5 total cholesterol, HDL-C, SBP; use of antihypertension medication, 
current smoking, diabetes status, use of lipid-lowering medication, prevalent CVD, and eGFR.
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Table 3:

Association of sACE2 as continuous variable (ln transformed) and echocardiographic parameters at ARIC visit 

5

Echocardiographic parameter Model Beta-coefficient 95% CI p-value

Ln-LVEF 1 −0.02 −0.04, 0.002 0.08

2 −0.02 −0.04, 0.002 0.07

3 −0.004 −0.03, 0.02 0.68

Ln-LVMi 1 0.06 0.02, 0.09 0.001

2 0.05 0.01, 0.08 0.009

3 0.002 −0.03, 0.03 0.91

Ln-LAVi 1 0.08 0.03, 0.13 0.001

2 0.06 0.01, 0.11 0.011

3 0.01 −0.03, 0.05 0.73

Ln-septal e′ 1 −0.04 −0.08, −0.01 0.02

2 −0.03 −0.07, 0.01 0.10

3 −0.01 −0.04, 0.03 0.76

Ln-septal E/e′ 1 0.10 0.05, 0.15 <0.001

2 0.07 0.02, 0.12 0.01

3 0.02 −0.03, 0.07 0.47

GLS 1 0.61 0.21, 1.00 0.003

2 0.53 0.14, 0.93 0.009

3 0.16 −0.21, 0.54 0.39

Significant values in bold.

Increment in LVEF, LVMi, septal e′, septal E/e′ (log unit) and GLS (%) per log unit increase of sACE2, where sACE2 is the independent and hs-
cTnI, hs-cTnT, or NT-proBNP dependent variable.

Model 1 is adjusted by age, sex, and race; model 2 is model 1 plus total cholesterol, HDL-C, current smoking, SBP, antihypertension medication 
use, diabetes status, lipid-lowering medication use, history of CVD (stroke, total CHD, and HF), and eGFR; model 3 is model 2 plus log hs-cTnI, 
log hs-cTnT, and log NT-proBNP.
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Table 4.

Risk for CVD events, HF hospitalization, ASCVD events, and all-cause death by sACE2 levels as a 

continuous variable (natural log)

Outcome n/N Model HR 95% CI P value

Global CVD 282/497 (56.7%) 1 1.41 1.20–1.65 <0.001

2 1.34 1.13–1.60 0.001

3 1.11 0.93–1.34 0.25

HF 260/497 (52.3%) 1 1.40 1.19–1.66 <0.001

2 1.32 1.10–1.58 0.003

3 1.07 0.88–1.30 0.48

ASCVD 150/497 (30.2%) 1 1.24 0.99–1.55 0.06

2 1.09 0.85–1.39 0.49

3 0.95 0.73–1.24 0.71

All-cause death 190/497 (38.2%) 1 1.26 1.03–1.54 0.02

2 1.26 1.01–1.57 0.04

3 1.01 0.80–1.28 0.91

Data are presented as number of events [n] / number at risk [N] (percent) and HR per natural log unit increase for sACE2 with 95% CI.

Model 1 is adjusted by age, sex, and race; model 2 is model 1 plus total cholesterol, HDL-C, current smoking, SBP, antihypertension medication 
use, diabetes status, lipid-lowering medication use, history of CVD (stroke, total CHD, and HF), and eGFR; model 3 is model 2 plus log hs-cTnI, 
log hs-cTnT, and log NT-proBNP.
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