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Abstract

Pancreatic cancer affects both male and female individuals with higher incidences and death rates 

among the male population. Detection of this malignancy is delayed due to the lack of symptoms 

in the early-stage cancer, which makes it extremely difficult to treat. Identifying effective 

strategies has been a challenge for improving the survival rates in pancreatic cancer patients. 

Resistance to chemotherapy is often developed in pancreatic cancer treatment. Although many 

strategies are under clinical trials to target certain markers associated with cancer, 

immunotherapeutic approaches are currently gaining importance. Immunotherapy for pancreatic 

cancer is in the limelight after preclinical research showed some promise. Immunotherapy 

approaches were tested along with other treatment options to enhance the treatment effect. 

Adoptive cell transfer and immune checkpoint inhibitors are currently in clinical trials. The Food 

and Drug Administration approved pembrolizumab in a fast-tracked review for advanced 

pancreatic cancer patients. Pembrolizumab blocks the checkpoint protein, programmed cell death 

protein 1 (PD-1), on T cells to boost the response of the immune system against cancer cells, 

thereby shrinking tumors. The recent developments in immunotherapy and the early success in 

other cancers are encouraging to further test immunotherapy in pancreatic cancer. The 

combination of pembrolizumab and pelareorep, an isolate of human reovirus, is in phase II clinical 

study in metastatic disease. Depending on the results of current clinical trials and testing, the 

strategies in the pipeline are expected to increase the use of immunotherapy in the clinical testing 

setting. Success in immunotherapy is urgently needed to address the side-effects, treating patients 

with advanced disease and reducing metastasis for increasing the survival rate in pancreatic cancer 

patients.
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I. INTRODUCTION

Pancreatic cancer is one of the deadliest cancers for both men and women, with exocrine 

pancreatic ductal adenocarcinoma (PDAC) making up 85% of the cancers and endocrine 

pancreatic cancers making up less than 5%.1-6 Pancreatic cancer is the fourth leading cause 

of death in both genders, and survival for all stages combined is 9%.7 There were 56,770 

new cases in the United States in 2018, with an estimated 45,750 deaths.8 The highest 

prevalence is in the male population of the developed world. Pancreatic cancer is considered 

one of the deadliest cancers because of its late detection. Currently, no tests are available for 

the early detection of pancreatic cancer, and thus, there have been minimal advances in 

treatment.

Many risk factors can contribute to the development of pancreatic cancer, some of which 

include tobacco use, obesity, exposure to certain chemicals, diabetes, and chronic 

pancreatitis. Genetic syndromes can also be risk factors that can contribute to the 

development of pancreatic cancer (Table 1).

II. TYPES OF PANCREATIC CANCER

A. Exocrine Tumors

Pancreatic cancer is divided into two types: exocrine and endocrine. Exocrine cancers, such 

as PDAC, are formed in glands that secrete fluids and make up the majority of pancreatic 

cancer. The most common site for exocrine tumors of the pancreas is in the pancreatic duct. 

Patients with early stages of PDAC present with general symptoms such as fatigue, 

weakness, and loss of appetite. Later stages of the disease may present with more common 

symptoms such as jaundice and severe abdominal pain.9 However, these symptoms are very 

vague and as a result, pancreatic cancer is typically not diagnosed until it is already in the 

later stages.

B. Endocrine Tumors

Endocrine tumors are not as common as exocrine tumors and are usually benign. Because 

these tumors effect hormone production, they are called pancreatic neuroendocrine tumors 

(PNETs). PNETs develop from multipotent stem cells in the pancreatic epithelial lining.10 

They are categorized as nonfunctional or functional. Nonfunctional pancreatic 

neuroendocrine tumors (NF-PNET) do not cause symptoms because they do not cause the 

production of hormones, or the hormones they secrete do not cause symptoms. On the other 

hand, functional pancreatic neuroendocrine tumors (F-PNET) produce hormones that cause 

symptoms.11

Because NF-PNETs do not cause the emergence of specific syndromes, they are diagnosed 

incidentally or because the tumor mass is causing symptoms. Common symptoms are weight 

loss, abdominal pain, a palpable mass, and jaundice.12 Hormones that can be secreted by 

NF-PNET include chromogranin A, ghrelin, HCG subunits, neurotensin. Levels of 

chromogranin A are the most widely used test for NF-PNET.13,14
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Two of the most frequently occurring F-PNET tumors are insulinomas and gastrinomas. 

Insulinomas are the most common F-PNET and they secrete excess of insulin. Symptoms 

include hypoglycemia, visual disturbances, headaches, weakness, sweating, palpitations, and 

tremors.15 The next most common F-PNET is gastrinomas. Most of these are found in the 

duodenum, then the pancreas, and surrounding tissues.16 Gastrinomas can cause the 

Zollinger-Ellison syndrome due to the high production of gastrin. Also, because of this, 

patients can develop peptic ulcers and gastroesophageal reflux disease (GERD). 

Approximately 20%–30% of gastrinomas have been associated with the gene Multiple 

endocrine neoplasia type 1 (MEN1)17 In addition, several laboratory exams that can be 

performed to confirm the diagnosis of gastrinoma: FSG levels, basal acid output, stomach 

pH, and secretin levels.18

III. DIAGNOSIS

A. Imaging

Different imaging and screening modalities can be used as diagnostic tools for pancreatic 

cancer. Computed tomography (CT) scans are usually the first line of diagnostic imaging 

used when pancreatic cancer is suspected. Multidirectional CT scans can determine the size 

of the tumor and how far it has spread due to its ability to reconstruct 3D images. In 

addition, CT scans have advanced spatial resolution and sensitivity of up to 96% and 

accuracy of 86.8%. The lower cost and easy accessibility of CT scans make them the 

preferred choice over other diagnostic methods such as magnetic resonance imaging (MRIs). 

CT scans should be performed with IV contrast agents in both the pancreatic parenchymal 

phase and the portal venous phase.19

Endoscopic ultrasound (EUS) is one of the most sensitive techniques in pancreatic cancer 

detection; it has a higher sensitivity for detecting solid lesions that are smaller than 2 cm 

when compared to CT scans. EUS also has the option to be combined with fine-needle 

aspiration (FNA) to obtain tissue samples.20-25 With EUS, patients are able to avoid 

unnecessary exposure to ionizing radiation. However, advanced training is needed to operate 

the ultrasound, and there is significant variability among operators of the device.19

MRIs have a similar sensitivity for the detection of pancreatic cancer compared to CT scans. 

However, they have the advantage of being able to image larger areas of the abdomen at one 

time and not exposing the patient to ionizing radiation. Pancreatic cancer is shown on MRIs 

as a hypointense mass on T1-weighted MRIs and a slightly hyperintense mass on T2-

weighted MRIs. When looking at the diffuse weighted images (DWIs), the apparent 

diffusion coefficient (ADC) is low in pancreatic cancer due to the increased cellularity and 

fibrotic changes that occur at sites of the cancer.20-25 These changes prevent the free 

movement of water, which results in a low ADC.

B. Biomarkers

The most common biomarker screened for in pancreatic cancer is the serum carbohydrate 

antigen 19-9 (CA 19-9). Although this is the only biomarker approved by the FDA, its 

specificity and sensitivity for pancreatic cancer are 77.6% and 75.4%, respectively. CA 19-9 
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can also be present in other gastrointestinal cancers. Carcinoembryonic acid (CEA) and CA 

242 are two other biomarkers that can be tested for pancreatic cancer; however, they are not 

highly sensitive and specific for pancreatic cancer. CEA has a specificity of 81.3% and a 

sensitivity of 39.7%, whereas CA 242 has a specificity of 83% and a sensitivity of 67.8%. 

Therefore, CA 19-9 has the highest sensitivity and CA 242 has the highest specificity for 

pancreatic cancer.26

IV. PANCREATIC CANCER TREATMENT

A. Current Treatment Options

Surgical resection and adjuvant therapy involving chemotherapy alone or alongside radiation 

are the widely used options for the treatment of this malignancy. The chemotherapy regimen 

is planned typically using the chemotherapeutic agents, capecitabine, erlotinib, fluorouracil, 

gemcitabine, irinotecan, leucovorin and oxaliplatin.

V. IMMUNOTHERAPY

Immunotherapy is a heavily emerging science founded on the idea of manipulating the 

mechanisms of the body’s immune system to allow for recognition of antigens of our 

choosing. Currently, the three most significant approaches to immunotherapy are checkpoint 

inhibitors, vaccination, and adoptive T-cell transfer.

A. Checkpoint Inhibitors

In an effort to avoid autoimmunity and immunopathologic conditions, the immune system 

contains various fail-safe type mechanisms to regulate the development and function of its 

effector cells.27-31 Exploiting such a mechanism has brought about the concept of immune 

checkpoint therapy, a treatment that has shown promise in clinical settings and has brought 

much attention to the field of cancer immunotherapy. The belief is that the ability of the 

tumor to gain control over these inhibitory pathways gives it the power to suppress the action 

and development of immune cells before they have the chance to carry out their anti-tumor 

functions. The process of T-cell suppression in regard to tumors is most notable via 

interactions between the activated T-cell cytotoxic T-lymphocyte-associated protein 4 

(CTLA-4) and the dendritic cell CD 80/86. Another way is through T-cell programmed cell 

death protein 1 (PD-1) binding to PD-L1, which resides on tumor cells. In a healthy 

individual, both of these processes are normal physiologic mechanisms to avoid 

autoimmunity and immune system dysfunction. In cancer patients, the tumor has seized 

control of these T-cell suppressive mechanisms to promote its survival.32-37 The emergence 

of checkpoint inhibitors such as anti-CTLA-4, anti-PD-L1, and anti-PD-1 antibodies allows 

for the disinhibition of the tumor override mechanisms, reinstalling the antitumor T-cell 

effector functions (Fig 1).29,38-41

B. Preclinical Research

Several checkpoint inhibitors have been developed to target the previously described 

interactions. One of which is ipilimumab (YERVOY®), a humanized antibody that prevents 

the interaction between CTLA-4 and B7, and thereby enables increased T-cell activity. 
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Preclinical evidence for CTLA-4 blockade has emerged primarily from prostate cancer 

murine models, which have demonstrated a five-fold reduction in tumor incidence when 

combined with an irradiated tumor vaccine.11,42-50

1. Clinical Trials—The success in preclinical studies led to the development of a human 

CTLA-4 antibody, which eventually underwent a double-blind, placebo-controlled phase III 

trial that compared the standard treatment of dacarbazine alone, to treatment in combination 

with ipilimumab in patients with metastatic melanoma. Ipilimumab gained FDA approval for 

use in metastatic melanoma in March 2011, after phase III studies showed a significant 

increase in survival with the addition of ipilimumab in patients.51-54

VI. VACCINATION

The idea behind vaccination in the setting of cancer involves tumor-associated antigens 

(TAAs), which are molecular components of the tumor cells. Although TAAs can vary in 

identity, the therapeutic benefit comes from using TAAs to incite the immune system against 

the tumor. TAA vaccines can be in the form of DNA, protein (antigen), DCs, or even whole 

cancer cells that are used to inoculate the immune system against the cancer. TAAs can even 

be derived from cancer-cell DNA mutations that differentiate the tumor cells from the 

normal cells of that tissue (Fig. 2). More specific and effective TAAs are constantly being 

researched. The more specific the TAA is to the cancer, and different it is from the normal 

tissue, the safer the treatment should be.55-59

A. Preclinical Trials

Preclinical trials have shown early success in the development of functional cancer vaccines. 

Gomez et al. showed this success in a B16 melanoma murine model.60-65 Melanoma cell 

lines were transduced with the gene coding for the MCPyV small T (ST) antigen, an antigen 

critical to the pathogenesis of Merkel cell carcinoma. From this antigen, they produced a 

DNA-coated particle vaccine (pcDNA3-MCC/ST). They administered the vaccine to ST-

expressing cancerous mice and recorded significant levels of an ST-targeted T-cell immune 

response. Upon completion of a strict vaccination schedule, the tumor volumes of pcDNA3-

MCC/ST vaccinated mice were significantly lower than that of the control.

1. Clinical Trials—Success in preclinical trials, such as those previously mentioned, 

have led to clinical trials and even to the development of Sipuleucel-T, the first ever FDA-

approved cancer vaccine for the treatment of prostate cancer.66 Sipuleucel-T is a cellular 

vaccine consisting of serum mononuclear cells and antigen presenting cells (APC) activated 

against the prostate-specific PA2024 fusion protein. In a randomized double-blind placebo-

controlled phase III trial concerning metastatic castration-resistant prostate cancer patients, 

512 patients received either Sipuleucel-T or a placebo. The Sipuleucel-T group showed a 

significant immune response to the antigen of vaccination along with a 22% decrease in risk 

of death or 4.1-month increase in median survival time over the placebo.67 Receiving FDA 

approval for this new class of treatment shines a light on the enormous potential for cancer 

vaccination therapy and has broadened the field of immunotherapy in general.
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VII. ADOPTIVE T-CELL TRANSFER (ACT)

ACT involves the identification and collection of T-cells based upon their specific antigen-

recognition capabilities, or for the purpose of modification of receptor function. The two 

main methods for achieving these are the collection of tumor-infiltrating lymphocytes (TILs) 

and the engineering of chimeric antigen receptor (CAR) T cells.

Tumor-infiltrating lymphocytes are lymphocytes that have migrated out of the bloodstream 

and to the site of the tumor. These lymphocytes are obtained from the patient along with 

dendritic cells (DCs) and tumor DNA. The tumor DNA will be sequenced for the 

identification of mutations. Once identified the mutations, or neoepitopes, they are exposed 

to the DCs for uptake. These primed DCs are cultured together with the TILs and undergo 

expansion ex vivo. The TILs are then administered to the patient along with the cytokine 

interleukin-2 (IL-2) to enhance anticancer immunity.

CAR T-cells, are an emerging therapy with a similar mechanism. However, these T cells are 

extracted from the peripheral blood. The T cells undergo a modification process that yields 

an engineered T-cell receptor allowing the cells to bind a specific antigen residing on the 

surface of the tumor cells. These cells are expanded ex vivo and administered to the patient 

(Fig. 3).55-59,68

A. Preclinical Research

Early in the CAR T-cell development, the first-generation cells resulted from the cloning of 

the intracellular CD3-zeta chain domain. Upon fusion with CD8, CD4, or CD25 

extracellular domains, evidence of T-cell activation was apparent following antigen 

stimulation. Despite this early success, in murine models, the CD3-zeta fusion chain in CAR 

T-cells failed to significantly inhibit tumor growth due to suboptimal production of IFN-γ 
leading to eventual anergy. Although these CAR T-cells were equipped to initiate antigen-

specific cytotoxicity, they failed to sustain significant T-cell expansion.

The second-generation CAR T cells combatted the issue of anergy or activation-induced cell 

death (AICD) with the addition of a CD28-based chimeric costimulatory receptor (CCR). 

This second-generation T-cell was able to mediate IL-2 synthesis, to support T-cell 

expansion following antigen interaction, and to improve tumor rejection function overall in 

murine models. These second-generation T-cells were then engineered to target CD19 

surface antigens due to the presence of CD19 presence in the majority of B-cell 

malignancies. This first occurred nearly 20 years ago. Since then, clinical trials have shown 

significant results.69-74

1. Clinical Trials—In refractory B-cell lymphomas, CD19 targeting CAR T-cells 

(CTL019) showed promising results.15 In a study of 28 lymphoma patients administered 

CTL019 cells, a significant response was noted in 64% of the cohort. It was reported that 

57% of patients underwent complete remission, and patients in remission at the 6-month 

mark remained so at 39.7 months. Due to these and other supporting results, CTL019-

directed T cells received unanimous approval from the FDA advisory committee for the 

treatment of relapsed or refractory B-cell acute lymphoblastic leukemia (ALL).75-80
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Currently, in pancreatic cancer research, no treatment regimens offer long-term benefits for 

late-stage patients. This may be due, in large part, to the uniquely suppressive tumor 

microenvironment (TME) of pancreatic cancer. Pancreatic tumors contain a dense 

desmoplastic stroma that limits blood and drug deliveries, enhancing immune escape of the 

tumor. Also, a severe combination of hypoxia, decreased pH, and significant interstitial fluid 

pressure contribute to tumor survival and downregulation of antitumor immune cells. This 

TME is thought to be a major limiter of pancreatic-based immunotherapy. Another major 

hindrance to the use of immunotherapy in pancreatic cancer is the uniquely low level of 

mutation and neoantigen formation in tumors. The mutation quantity may be correlated with 

increased potential for immunotherapy effectiveness. This also leads to lower levels of TILs, 

which combat the effectiveness of drugs, such as checkpoint inhibitors that exert their effects 

by promoting TIL activity.81-85

VIII. IMMUNOTHERAPY IN PANCREATIC CANCER

A. Checkpoint Inhibition

Although checkpoint inhibitors have shown efficacy in immunotherapy in some cancers, 

pancreatic cancer remains largely unsusceptible to their lone effects. This is likely due to the 

low levels of tumor-infiltrating lymphocytes and immunogenicity in pancreatic cancer as 

mentioned previously. A 0% overall response rate (ORR) was found in patients treated with 

an anti-PD-L1 monoclonal antibody, further demonstrating the ineffectiveness of checkpoint 

inhibition monotherapy.60-64 New PD-1 inhibitors pembrolizumab and nivolumab have 

received approval for therapy in melanoma, but they remain in the clinical trial phase of 

testing for pancreatic cancer. The most hopeful advances to checkpoint inhibition in 

pancreatic cancer seem to be combination therapy with chemotherapeutic agents. In a recent 

phase I study, the safety profile of the chemotherapeutic agent gemcitabine and CTLA-4 

checkpoint inhibitor tremelimumab was examined. This combination showed success in the 

production of tolerable side effects, with 7 of 28 patients showing relatively stable disease 

for over a 10-week period. Despite these minor progressions, much work is yet to be done to 

find more efficacious treatments regarding checkpoint inhibition in PC.

B. Vaccines

Cancer vaccines have also been limited in their effectiveness due to the reasons previously 

mentioned. However, some progress has been seen in a preclinical murine model using the 

GVAX vaccine in combination with a checkpoint inhibitor. This vaccine is comprised of PC 

cells that have been irradiated and engineered on a genetic level to produce granulocyte 

macrophage colony-stimulating factor (GM-CSF). GM-CSF is a cellular signaling molecule 

that initiates the priming of T cells, presentation of antigens, and tumor-directed cytolytic 

action. In this study, GVAX was combined with an anti–PD-1 checkpoint inhibitor. The 

therapy promoted the secretion of IFN-γ and expansion of activated T-cells within the tumor 

microenvironment of mice receiving the combination therapy.81-85 Mice that were 

administered either treatment alone did not show these results, indicating that it was the 

synergistic effect of the combination therapy that was responsible. Combination therapy 

seems to be a growing idea at this point; however, more research needs to be done to develop 

vaccinations with increased specificity and potency.
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C. Adoptive T-cell Transfer

Adoptive T-cell transfer (ACT) is made difficult in PC by the immunosuppressive TME 

along with previous lack of a suitable antigen for the CAR. The latter issue has recently been 

overcome by engineering the CAR T cell to recognize mesothelin, a protein with minimal 

expression in normal cells but with significant expression in pancreatic cancer cells. 

Mesothelin is thought to play a part in tumor aggressiveness, malignancy, and potentially 

metastasis. A concluded phase I clinical trial with mesothelin-targeted CAR T cells 

accomplished disease stability in two of the six patients who underwent therapy. The results 

showed that the treatment was well-tolerated and pointed toward evidence of antitumor 

effects in pancreatic cancer. A study of the usefulness and safety of using antimesothelin 

CAR T-cells in conjunction with chemotherapeutic drugs (e.g., cyclophosphamide) in 

metastatic pancreatic cancer patients is currently ongoing as a nonrandomized phase I/II 

clinical trial (Table 2).81-85

IX. RECENT ADVANCEMENTS

Recent therapy options for pancreatic cancer are aimed at reducing the immunosuppressive 

TME. By targeting the immunosuppressive cells within the TME, immunotherapy options 

for treatment are more likely to be effective. The first of these targets is CSF1R. CSF1R is 

located on the tumor associated macrophages (TAM). The binding of CSF1 to CSF1-R 

allows for TAMs to proliferate and survive longer which then aids in tumor growth, 

resistance to treatments, and tumor metastasis. When CSF1-R is inhibited, fewer TAMs are 

present. This allows for a higher immune response, increases tumor regression, and 

increases survival.86

Another therapy option is targeted at the JAK/STAT pathway. Overactivation of this pathway 

by interferons upregulates the expression of PD-L1, as well as suppresses cytotoxic T-

lymphocytes, in tumor cells. The use of JAK/STAT inhibitors can not only reduce the 

overexpression of PD-L1 but also reduce the growth of tumors and increase survival rates. 

This therapy can increase the response to anti–PD-L1 immunotherapies.82

X. FUTURE PERSPECTIVES

Pancreatic cancer is one of the most fatal cancers due to its late detection and 

aggressiveness. Therapeutic advancement in immunotherapy, such as vaccines and adoptive 

T-cell inhibitors, give hope to the future prognosis of pancreatic cancer. However, due to the 

highly immunosuppressive tumor microenvironment (TME) of the cancer, even these 

advances are proving to be of minimal help. Combination treatments of chemotherapy, 

immunotherapy, and radiation therapy work best to induce long-term antitumor activity and 

increase the body’s T-cell response. More research needs to be done into the optimal timing, 

order, and dosing of the different treatment options to best fight the disease.86

Research is being conducted on altering the TME to make the tumor more susceptible to 

treatment. The TME is a barrier to pharmacological intervention, increases the tumors 

progression, and increases tumor angiogenesis and stromal formation. Therapies targeted at 

inhibiting TGF-β, which aids in immunosuppression and stroma formation, are being further 
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developed as a way to weaken the tumor defenses and allow drugs to enter the TME.87-92 

Additionally, new technology is being developed that looks into T-cell receptor gene 

sequencing. This technology allows for a more detailed look into the number of T cells that 

are attacking the tumor as well as the specificity of those T cells.57,93-97 Much more 

research needs to be done to investigate whether this is an effective antitumor treatment 

method.

XI. CONCLUSION

Pancreatic cancer continues to be one of the leading causes of cancer-related deaths in both 

males and females. The development of new therapies has been slow due to the continual 

late diagnosis of pancreatic cancer. Immunotherapy has shed a light on a very dim future for 

many individuals. The use of checkpoint inhibitors diminishes the ability of cancer cells to 

downregulate T-cell proliferation. Vaccinations and adoptive T-cell transfer both increase the 

specificity of T cells to attack specific cancer cells. However, the use of these therapies alone 

is not enough. Although not completely treatable, combinations of immunotherapy, 

chemotherapy, and radiation therapy have proven to be the most effective method in the 

treatment of pancreatic cancer. In addition, altering the TME to be less immunosuppressive 

could lead to more successful treatments. Ultimately, immunotherapy has offered new and 

exciting opportunities for the treatment of pancreatic cancer, but much more research still 

needs to be done to ensure a higher success rate.
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ABBREVIATIONS:

ACT adoptive T-cell transfer

ADC apparent diffusion coefficient

AICD activation-induced cell death

ALL acute lymphoblastic leukemia

APC antigen presenting cells

CA carbohydrate antigen

CAR chimeric antigen receptor

CCR chimeric co-stimulatory receptor

CEA carcinoembryonic acid

CSF1R colony-stimulating factor 1 receptor

CT computed tomography
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CTLA4 T-cell cytotoxic T-lymphocyte-associated protein 4

DC dendritic cells

DWI diffuse weighted images

EUS endoscopic ultrasound

FDA Federal Drug Administration

ENA fine-needle aspiration

F-PNET functional pancreatic neuroendocrine tumors

GERD gastroesophageal reflux disease

GM-CSF granulocyte macrophage colony-stimulating factor

IFN-γ interferon gamma

MEN1 multiple endocrine neoplasia type 1

NF-PNET non-functional pancreatic neuroendocrine tumors

ORR overall response rate

PD-1 programmed cell death protein 1

PDAC pancreatic ductal adenocarcinoma

PNET pancreatic neuroendocrine tumors

TAA tumor-associated antigen

TAM tumor-associated macrophage

TGF transforming growth factor

TIL tumor-infiltrating lymphocyte

TME tumor microenvironment
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FIG. 1: 
Checkpoint inhibition. Antibodies are created against specific receptors or ligands that 

prevent T-cell proliferation.
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FIG. 2: 
Vaccines against tumor cells. Tumor associated antigens (TAAs) are extracted from tumor 

cells and used to create vaccines. Once injected, the TAAs in the vaccine activate T-cells 

specifically against the tumor cells.
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FIG. 3: 
Adoptive T-cell transfer. T cells are removed from the peripheral blood and engineered to 

have tumor specific receptors.
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