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Abstract
Extracellular NAD represents a key signaling molecule in different physiological and pathological conditions. It exerts 
such function both directly, through the activation of specific purinergic receptors, or indirectly, serving as substrate of 
ectoenzymes, such as CD73, nucleotide pyrophosphatase/phosphodiesterase 1, CD38 and its paralog CD157, and ecto ADP 
ribosyltransferases. By hydrolyzing NAD, these enzymes dictate extracellular NAD availability, thus regulating its direct 
signaling role. In addition, they can generate from NAD smaller signaling molecules, like the immunomodulator adenosine, 
or they can use NAD to ADP-ribosylate various extracellular proteins and membrane receptors, with significant impact on 
the control of immunity, inflammatory response, tumorigenesis, and other diseases. Besides, they release from NAD sev-
eral pyridine metabolites that can be taken up by the cell for the intracellular regeneration of NAD itself. The extracellular 
environment also hosts nicotinamide phosphoribosyltransferase and nicotinic acid phosphoribosyltransferase, which inside 
the cell catalyze key reactions in NAD salvaging pathways. The extracellular forms of these enzymes behave as cytokines, 
with pro-inflammatory functions. This review summarizes the current knowledge on the extracellular NAD metabolome 
and describes the major biochemical properties of the enzymes involved in extracellular NAD metabolism, focusing on the 
contribution of their catalytic activities to the biological function. By uncovering the controversies and gaps in their charac-
terization, further research directions are suggested, also to better exploit the great potential of these enzymes as therapeutic 
targets in various human diseases.
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Introduction

NAD has a well-recognized role in intracellular energetic 
metabolism both as a coenzyme of several dehydrogenases 
and as a co-substrate for enzymes controlling transcription of 
metabolic genes. NAD-dependent reactions are also involved 
in a large variety of cellular processes, including genomic 
stability, mitochondrial homeostasis, stress response, senes-
cence, with profound effects on health, longevity, and age-
related diseases [1–3]. Notably, also in the extracellular 
environment, NAD is a major signaling molecule, with a 

significant impact on various physiological and pathologi-
cal processes [4]. In fact, once released into the extracel-
lular space following oxidative stress, tissue injuries, and 
infections, extracellular NAD (eNAD) behaves as a danger 
signal and influences the immune system by regulating gran-
ulocytes activation and apoptosis [5, 6] and by selectively 
affecting the survival and suppressor function of regulators T 
cells [7]. Extracellular NAD also regulates the proliferation 
and migration of mesenchymal stem cells, as well as their 
immunomodulatory activity, thus contributing to maintain 
an optimal stem cell niche for the proper growth of hemopoi-
etic progenitors and stem cells in the bone marrow [8]. In 
addition, it behaves as a neurotransmitter in enteric, periph-
eral, and central nervous systems [9].

Under normal physiological conditions, in mamma-
lian serum, NAD circulates in the low micromolar range, 
between 0.1 and 0.5 µM; however, under inflammatory 
conditions, its concentration can increase up to 10  µM 
[10]. Several mechanisms of endogenous NAD release 
have been recognized, including (1) regulated efflux 
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through Cx43 hemichannels, as reported in many cell 
types [11–13], (2) release from synaptic and secretory 
vesicles together with classical neurotransmitters [14], and 
(3) passive leakage across the membrane, as observed in 
dying cells [15].

Extracellular NAD can exert its signaling function both 
directly, by binding specific P2Y or P2X purinergic recep-
tors [9], and indirectly, by serving as substrate for the gener-
ation of smaller signaling molecules, like the immunomodu-
lators adenosine (ADO) and cyclic ADP ribose (cADPR), 
or for the covalent modification of functional extracellular 
proteins and receptors. Various ectoenzymes use NAD as the 
substrate, namely CD73, nucleotide pyrophosphatase/phos-
phodiesterase 1 (NPP1, also known as PC-1 and CD203a), 
CD38, CD157, and ecto ADP-ribosyltransferases (ARTC). 
With their activity these enzymes control eNAD levels, pro-
duce smaller signaling molecules, and release from eNAD 
various pyridine metabolites, like nicotinamide (Nam), nico-
tinamide riboside (NR), and nicotinamide mononucleotide 
(NMN), that form an extracellular pool of potential NAD 
precursors. Indeed, these metabolites can be taken up by 
the cell and used for the regeneration of intracellular NAD 
(Fig. 1).

Notably, two enzymes involved in intracellular NAD bio-
synthesis are also found in the extracellular environment. 
They are nicotinamide phosphoribosyltransferase (NAMPT) 
and nicotinic acid phosphoribosyltransferase (NAPRT) that 
catalyze key reactions in the intracellular NAD salvaging 
pathways [16]. The circulating forms of these enzymes 
have a cytokine-like behavior, with pro-inflammatory func-
tions [17]. Whether they might contribute to eNAD produc-
tion using the available NAD precursors has not yet been 
demonstrated.

Several reviews have covered in the years the multiple 
pathophysiological roles of the enzymes responsible of the 
metabolism of eNAD and its metabolites in immunomodu-
lation, inflammation, tumorigenesis, and other diseases. 
However, limited attention has been paid to their catalytic 
properties and the contribution of their catalytic activity to 
the signaling function. In this review, after a description 
of the eNAD metabolome, we summarize the biochemical 
properties of the enzymes involved in eNAD metabolism.

Extracellular pyridine metabolites

Several nucleotidases are present on the mammalian cell 
surface that can catalyze the cleavage of eNAD, generating 
signaling molecules and, at the same time, releasing NAD 
building blocks that can be reused to maintain the intracel-
lular levels of the coenzyme. The catalytic activities of these 
NAD hydrolyzing ectoenzymes are summarized in Fig. 2. In 
particular, ARTC, CD38, and CD157 hydrolyze the N-gly-
cosidic bond of NAD, simultaneously transferring the ADP 
ribose (ADPR) moiety to specific acceptor proteins (in case 
of ARTC) or water (in case of CD38 and CD157), releasing 
Nam as the common product. CD73 and NPP1 hydrolyze 
the NAD pyrophosphate bond, yielding the two mononu-
cleotides AMP and NMN. NMN can be further dephospho-
rylated to NR by CD73 itself, although very recently the 
activity of CD73 on NMN and NAD has been disputed [18].

The pyridine metabolites released by these ectoenzymes, 
i.e., Nam, NR, and NMN, can enter the cell and can be used 
to regenerate NAD (Fig. 1). Nam, which has been found to be 
actively imported, although its transporter is still unknown 
[19, 20], is salvaged to NAD through the consecutive actions 

Fig. 1   Interplay between extracellular and intracellular pyridine 
metabolism. Schematic overview of the extracellular pyridine 
metabolome and the major reactions catalyzed by NAD-metaboliz-
ing ectoenzymes. Once imported into the cell, extracellular pyridine 
metabolites are used to generate intracellular NAD. Abbreviations 

of metabolites and enzymes are described in the text. Enzymes are 
sketched here, and in Figs.  2 and 3, based on their biological qua-
ternary assembly, as determined by available 3D structures. Dashed 
arrows indicate metabolites’  fluxes or enzymes’ secretion
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of the enzymes NAMPT and nicotinamide mononucleotide 
adenylyltransferase (NMNAT) [21]. NR can enter the cell 
through equilibrative nucleoside transporters [22, 23] and 
converted to NAD by the activities of NR kinase (NRK) 
and NMNAT [24]. Alternatively, in the extracellular space 
NR can be converted to Nam by the activity of CD157 [25]. 
Some studies have shown that NMN needs to be processed 
to NR prior to enter the cell [23, 26–28], whereas other stud-
ies support the direct uptake of the mononucleotide [29, 30]. 
The complexity in the detection and quantification of NR 
and NMN is the major reason why the mechanism of NMN 
transport into the cell is still under debate [28, 31], and why 
we still lack a clear picture of NR and NMN availability in 
the extracellular space. In particular, contrasting data have 
been provided on the levels of plasma NMN, which is either 
undetectable or circulating from 7 nM to about 50 µM [26, 
32–35]. Nanomolar concentrations of NMN have been deter-
mined in the human cerebrospinal fluid, and both NR and 
NMN in the nanomolar range have been found in ascites 
exudates of tumor-bearing mice [22, 36], although these 
measurements should be taken with caution as the origin of 
these molecules from contaminating cells cannot be ruled 
out. Determination of NR, NMN, and NAD in biological flu-
ids remains a challenging task, mainly due to limited avail-
able information on the stability of the molecules during 
sample handling and processing [36].

Very recently, the reduced form of NR (NRH) has been 
demonstrated to be an effective NAD precursor in mam-
malian cells and mice [37, 38]. Once inside the cell, with 
a mechanism yet to be identified, NRH is phosphorylated 
to NMNH by adenosine kinase, and the formed NMNH 
is adenylated to NADH by NMNAT. It is still unknown 

whether NRH is a physiological metabolite, but it is tempt-
ing to speculate that it might derive from the degradation 
of extracellular NADH, which, together with NAD, might 
be released by dying cells under inflammatory conditions 
[37].

The extracellular NAD metabolome also includes Nam 
and nicotinic acid (NA). In human plasma, Nam and NA, 
which are mostly of dietary origin, range from 0.3 to 
40 µM and from 80 to 200 nM, respectively [33, 35, 39]. 
An additional circulating pyridine metabolite is quino-
linic acid (QA), the end product in the kynurenine path-
way of tryptophan catabolism. In plasma, QA circulates 
at low micromolar level, but it significantly increases fol-
lowing infections or immune challenge [40], likely deriv-
ing from cells of the immune system that accumulate 
substantial levels of QA upon stimulation [41]. Increased 
levels of QA are also found in the cerebrospinal fluid 
of patients with neurodegenerative disorders [42]. Both 
NA and QA can be taken up by cells and used to synthe-
tize NAD after their intracellular conversion to NAMN 
by the enzymes NAPRT and QAPRT, respectively [21] 
(Fig. 1). Although NA transporters have been identified 
in the SLC5A8 and SLC22A13 transmembrane proteins 
[43, 44], the mechanism of QA release and uptake is still 
unknown.

The presence of deamidated pyridine nucleosides and 
nucleotides in extracellular fluids has been poorly inves-
tigated so far, and contrasting data on their occurrence 
in human plasma have been reported [35, 45]. It has 
been shown that human cultured cells can synthesize and 
release nicotinic acid riboside, which can be utilized by 
other cells as NAD precursor [46].

Fig. 2   NAD metabolizing 
ectoenzymes. The activities 
of the ectoenzymes on NAD 
and its derivatives are shown. 
Abbreviations of metabolites 
are described in the text
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Enzymes involved in extracellular NAD 
metabolism

NAD hydrolyzing ectoenzymes

Ecto‑5′‑nucleotidase CD73

CD73 catalyzes the dephosphorylation of extracellular 
AMP to ADO, and represents the major control point of 
extracellular ADO levels [47]. Once formed, ADO binds 
to specific G-protein-coupled cell surface receptors and 
mediates diverse anti-inflammatory, angiogenic and vaso-
active effects. CD73 is expressed in several tissues and 
cells, including immune cells like macrophages, lympho-
cytes, regulatory T cells and dendritic cells. It is upregu-
lated by hypoxia and by several inflammatory mediators, 
and is overexpressed in several cancer types [48]. Within 
the tumor microenvironment, CD73-derived ADO results 
in tumor-driven immune suppression [49, 50] and pro-
motes tumor angiogenesis [51, 52]. Indeed, cancer cells 
exploit the ADO signaling to escape from the deleteri-
ous activity of immune cells [53]. Several in vivo studies 
on murine models confirm a direct role of the enzyme 
in tumor growth and metastasization and show its poten-
tial targeting as a promising anticancer immunotherapy 
[54–56].

CD73 is a zinc-homodimeric protein of about 
60–80  kDa, anchored to the plasma membrane at its 
C-terminus through a glycosylphosphatidylinositol (GPI) 
link. It is highly glycosylated, with glycosylation con-
tributing about 6 kDa [47]. Whether de-glycosylation 
affects the catalytic activity is controversial [57, 58]. 
The enzyme has a broad specificity for both ribo- and 
deoxyribo-nucleoside 5′-monophosphates, and AMP is 
the best substrate with a Km value in the low micromo-
lar range. Maximal activity is exhibited at pH ranging 
from 7 to 8. It is competitively inhibited by ATP, ADP 
and adenosine methylene diphosphate (AMPCP), with 
Ki values in the low micromolar range. UDP, GDP, CDP, 
and the corresponding monophosphates, as well as con-
canavalin A and xanthine derivatives are also inhibitors 
[59, 60]. The enzyme shows some FAD pyrophosphatase 
activity, with a Km for FAD similar to that for AMP, but 
with a 100-fold lower activity [61].

The three-dimensional structure of human CD73 has 
been solved in complex with various ligands, including 
adenosine and AMPCP, revealing an extensive active 
site closure movement involving its N- and C-terminal 
domains that would permit substrate binding and product 
release [62].

The high sequence and structural homology of human 
CD73 with H. influenzae NadN, an enzyme that hydrolyzes 

NAD to NMN and AMP, and successively NMN to NR, 
and AMP to ADO [63, 64], suggested that CD73 might 
have been endowed with the same activities [65]. Indeed, 
the human recombinant enzyme was found to be able to 
degrade NAD to NMN and AMP, and to dephosphorylate 
both NMN and AMP, yielding NR and ADO, respectively 
[64] (Fig. 2). However, the rate of ADO formation from 
NAD was about 160-times lower than that from AMP, rais-
ing the question whether CD73 uses NAD in vivo. Studies 
in cultured cells and tissues demonstrated that endogenous 
CD73 can sustain intracellular NAD biosynthesis by con-
verting eNAD into eNR that enters the cell and contributes 
to NAD formation [22, 66]. Likewise, in endothelial cells, 
CD73 inhibits inflammation by modulating intracellular 
NAD levels through the conversion of eNMN into eNR 
[67]. However, the involvement of CD73 in the catabolism 
of eNAD and eNMN, and in the sustainment of intracellu-
lar NAD biosynthesis has been disputed in a recent study, 
showing that inhibition of CD73 nucleotidase activity or 
CRISPR/cas9-mediated knockout of the corresponding 
gene did not change the NAD content in a cell line model 
supplemented with exogenous NAD and/or NMN [18]. 
Furthermore, the same study could not confirm the NAD 
nucleotidase activity of human recombinant CD73. Fur-
ther investigations are therefore warranted to indisputably 
assess the role of CD73 in the catabolism of eNAD.

Nucleotide pyrophosphatase/phosphodiesterase 1 (NPP1)

NPP1 (also known as PC-1 and CD203a) is a member of the 
ecto‐nucleotide pyrophosphatase/phosphodiesterase I family 
of enzymes. It hydrolyzes pyrophosphate- and phosphoester 
bonds in several nucleotide substrates, including nucleoside 
triphosphates and diphosphates, dinucleosides polyphos-
phates, 2′,3″-cyclic GAMP (cGAMP), NAD, and ADPR, 
releasing AMP as the common product. NNP1 is widely 
expressed in both lymphoid organs and nonlymphoid tissues 
and cells, including hepatocytes, human airway epithelial 
cells, the synaptic membrane of rat brain, chondrocytes, and 
osteoblasts [68]. A soluble form of NPP1 deriving from the 
intracellular processing of the membrane-bound enzyme has 
been identified in mouse serum and ascites fluid [69]. A 
major function of NPP1 is in bone mineralization and soft-
tissue calcification, thanks to the generation of pyrophos-
phate from the hydrolysis of extracellular ATP, which func-
tions as a negative regulator of calcification by inhibiting 
hydroxyapatite crystals formation [70]. Furthermore, NPP1 
has been linked to insulin resistance and type 2 diabetes for 
its ability to interact with the insulin receptor and to inhibit 
the subsequent signaling [71]. The enzyme expression has 
been reported to be elevated in brain cancer cells, with a 
positive correlation between protein expression and tumor 
grade [72, 73]. In summary, the pathological role of NPP1 in 
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cancer, insulin resistance, and calcification diseases has been 
clearly established, and the array of novel enzyme inhibi-
tors is constantly growing [74, 75]. More recently, with the 
discovery that the enzyme is able to hydrolyze cGAMP, a 
dinucleotide with an important role in innate immunity, the 
involvement of NPP1 in the immune response has also been 
established [76]. Indeed, by lowering cGAMP levels, NPP1 
affects the activation of the STING pathway, thus impair-
ing the immune response. The concomitant generation of 
AMP from cGAMP can exacerbate the immunosuppressive 
activity of the enzyme, as AMP can be dephosphorylated to 
ADO by CD73.

NPP1 is a type II transmembrane glycoprotein of about 
120 kDa (with glycosylation accounting for about 20 kDa), 
with a short N-terminal intracellular domain, a single trans-
membrane domain, and a large extracellular domain contain-
ing the catalytic site [47]. Disulfide bonding between the 
transmembrane domains mediates the protein homodimeri-
zation on the cell surface [77].

ATP is the preferred substrate among nucleoside triphos-
phates, with a Km value in the low micromolar range. Lower 
catalytic efficiency is reported for AP4A and cGAMP [78]. 
AMP competitively inhibits the NPP1 reaction, and in vivo, 
this might prevent complete hydrolysis of substrates [79]. 
Optimum pH is between 9 and 10; at pH 7.4, the enzyme 
exhibits about 20% of its maximal activity [59].

The crystal structures of the extracellular domain of 
the mouse enzyme in complex with different nucleo-
side monophosphates, cGAMP and the nonhydrolysable 
3′,3″-cyclic GAMP, have been solved, providing an expla-
nation for the broad substrate specificity and mechanism 
of catalysis [80, 81]. The extracellular domain contains 
a nuclease-like domain, a catalytic domain with two zinc 
ions bound within the active site, and two somatomedin 
B-like domains that act as a flexible anchor linking the cat-
alytic domain to the transmembrane region of the protein. 
Although catalytically inactive, the nuclease-like domain is 
required for catalysis and is essential for the translocation of 
NPP1 from the endoplasmic reticulum to the plasma mem-
brane [82].

The enzyme’s ability to efficiently hydrolyze NAD is 
described in several reports. NPP1 isolated from membrane 
preparations from mouse and rat liver hydrolyzes NAD at a 
rate significantly higher than that reported with ATP, with 
a Km value in the low micromolar range [83, 84], whereas 
NPP1 from the plasma membrane of rat C6 glioma cells 
hydrolyzes NAD at a rate which is half that of ATP [85]. A 
partially purified preparation of enzyme from human pla-
centa showed a Km for NAD of 0.33 mM [86]. Furthermore, 
in human bronchial epithelial cells, the enzyme has been 
shown to metabolize also ADPR to AMP and ribose phos-
phate [87]. In vivo, the degradation of eNAD into AMP by 
NNP1 has been observed to occur in various cell types [88, 

89], suggesting that the sequential action of NPP1 and CD73 
can contribute to the formation of adenosine starting from 
extracellular NAD. In this view, NAD would be directly 
hydrolyzed to NMN and AMP by the NAD pyrophosphatase 
activity of NPP1, and AMP would be converted to ADO 
by CD73 (Fig. 3). On the other hand, it has been clearly 
established that NNP1 is involved in ADO formation from 
eNAD in the presence of CD38 (see below). In this pathway, 
NAD is hydrolyzed to Nam and ADPR by CD38, ADPR is 
subsequently converted to AMP by NPP1, and finally, AMP 
is dephosphorylated to ADO by CD73 (Fig. 3) [90, 91].

CD38

CD38 is both a cell surface receptor and an enzyme cata-
lyzing the conversion of NAD into signaling metabolites, 
namely cADPR, ADPR, and nicotinate adenine dinucleotide 
phosphate (NAADP), that are all relevant Ca2+-mobilizers 
(Fig. 2). As a receptor, on the surface of immune cells, it 
associates with other proteins forming signaling complexes 
involved in the regulation of cell adhesion, differentiation, 
and proliferation. Its expression is upregulated after stimu-
lation with cytokines, interferon and endotoxins, contrib-
uting to pro-inflammatory phenotypes in innate immune 
cells [92]. CD38 is also involved in the modulatory func-
tions of regulatory T lymphocytes, as well as in their gen-
eration [93]. CD38-deficient mice show impairment in the 
humoral immune responses, regulatory T cells development, 
neutrophil chemotaxis, dendritic cell trafficking, and show 
increased susceptibility to bacterial infections [92]. In addi-
tion, CD38 has been identified as a cell-surface marker in 
hematologic cancers such as multiple myeloma and chronic 
lymphocytic leukemia and has been shown to play a role in 
cancer immune tolerance [94, 95].

CD38 has been characterized as type II and type III 
plasma membrane protein, occurring in two opposite mem-
brane orientations, with extracellular and cytosolic cata-
lytic site, respectively. A type III form is also present in 
the membranes of intracellular organelles, like nucleus, 

Fig. 3   Extracellular NAD conversion to adenosine. The sequential 
action of the involved enzyme is shown. Abbreviations of metabolites 
are described in the text
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mitochondria, and lysosomes [96]. The type II is the domi-
nant form of CD38, and the human protein is a glycoprotein 
of about 45 kDa, with glycosylation accounting for roughly 
25% of the molecular mass [97], and dispensable for the 
catalytic activity [96]. CD38 also occurs in soluble form 
both in the cytosol and in the extracellular space [98]. Its 
presence is not limited to immune cells, but the protein is 
constitutively expressed in most tissues where it represents 
the major NAD consuming enzyme, significantly contribut-
ing to NAD homeostasis by affecting the availability of both 
extracellular and intracellular NAD and NMN [99–101]. It 
is, therefore, able to modulate the activity of intracellular 
and extracellular NAD-dependent enzymes, like sirtuins [99, 
101], and ARTC [102], respectively. Its levels significantly 
increase in mouse tissues during aging, and this raise is the 
major contributor to the age-related NAD decline [99].

CD38 catalyzes the hydrolysis of the NAD glycosidic 
bond, releasing Nam and forming both ADPR and cADPR 
[103–105] (Fig. 2). ADPR is the major product, whereas 
only traces of cADPR are produced. A single intermediate 
in the active site is responsible for the hydrolysis and cycli-
zation reactions [106]. The resolution of the crystal struc-
ture of the human enzyme in complex with NAD, ADPR, 
and the intermediate provided insights into the mechanism 
of multiple catalysis and paved the way for the design of 
enzyme’s inhibitors [107, 108]. In the crystal, CD38 is a 
monomer, which is in keeping with data suggesting that 
soluble CD38 exists in a catalytically active monomeric 
form [109], and the full-length protein can dimerize on the 
cell surface [110]. Km for NAD is reported to range between 
15 and 56 µM [106, 111–113], and slightly higher values 
have been determined for NADP (65 µM) [111] and NAADP 
(104 µM) [114]. CD38 also hydrolyzes NMN, with a Km 
of about 149 µM and a kcat, which is fivefold higher than 
that for NAD [106]. An additional substrate is cADPR (Km, 
224 µM) that is hydrolyzed to ADPR, although with a rate 
which is only 16% that of NAD hydrolysis [111]. Optimum 
pH depends on the hydrolyzed substrate: NAD hydrolysis 
shows a broad optimum pH ranging from 6 to 8, NAADP 
hydrolysis is optimal between pH 4 and 5, whereas NADP 
hydrolysis is essentially pH independent in the range 4–8 
[114, 115]. Nam and ADPR are noncompetitive and compet-
itive inhibitors, respectively, with Ki values in the millimolar 
range [106, 111]. ATP and GTP inhibit CD38 at micromolar 
concentrations [108]. At acidic conditions and in the pres-
ence of suitable amounts of NA, CD38 can catalyze a nucle-
obase exchange reaction between NA and the Nam moiety of 
NADP, yielding NAADP [115]. The mechanism of NAADP 
formation in vivo has remained elusive until the recent find-
ing that CD38 produces NAADP in lysosomes, using NAAD 
as the NA donor for the exchange reaction [116] (Fig. 2).

The products of the CD38-catalyzed reaction cADPR, 
NAADP, and ADPR are all intracellular second messengers 

targeting different calcium channels and stores [117, 118]. 
By modulating their levels, type III CD38 fully controls mul-
tiple calcium-dependent processes, including inflammation, 
insulin and oxytocin secretion, cardiogenesis, and cardiac 
function [119]. Recent studies have shown that the role in 
calcium signaling of extracellular cADPR produced on the 
cell surface by type II CD38 is minimal. Indeed, modula-
tion of the ectoenzyme’s expression does not affect cellu-
lar cADPR levels [120]. On the other hand, type II CD38 
significantly contributes to the generation of ADO from 
eNAD. In fact, on the surface of immune cells, once ADPR 
is produced by CD38, it is converted to AMP by NPP1, and 
AMP is further dephosphorylated to ADO by CD73 [91] 
(Fig. 3). The last step of this pathway is shared with the 
classical CD39/CD73 pathway that is responsible of the 
production of ADO from eATP. In the classical pathway 
CD39 converts eATP into AMP, which is then transformed 
to Ado by CD73. The CD38/NPP1/CD73 pathway has been 
shown to be operative together with the classical pathway 
in different populations of lymphocytes, as well as in mela-
noma and myeloma cells, and in different cell subsets of 
the bone marrow niche in multiple myeloma patients, where 
ADO production results in tumor-driven immune suppres-
sion [121]. Interestingly, the microvesicles released into the 
niche from the plasma membrane of activated or neoplastic 
cells express the enzymes of both pathways, being so able to 
produce ADO from both ATP and NAD [122]. ADO is also 
an important neuromodulator in the central nervous system 
with roles in inflammation, sleep, memory, and cognition, 
and several lines of evidence indicate that eNAD can be 
converted to ADO in cultured nervous cells, like microglia 
and astrocytes [123, 124].

Recent studies indicate that, besides directly sustaining 
the production of pro-inflammatory mediators from eNAD, 
the upregulation of CD38 in activated immune cells might 
reduce the NAD availability to pathogens; thus, limiting 
infections [125].

CD157

A paralog of CD38, likely arisen from duplication of an 
ancestral gene, is CD157 (also referred to as bone marrow 
stromal antigen BST-1), a dimeric GPI-anchored glycopro-
tein of about 42–50 kDa, present on the surface of several 
types of cells, and also detected in sera and exudates [126]. 
As a receptor, it regulates cell adhesion and migration, and 
is a marker of adverse prognosis in some types of tumors. 
It shares about 30% sequence identity and a high degree 
of structural similarity with CD38 [107, 127]. A recombi-
nant form of human soluble CD157 displays NAD glyco-
hydrolase and cADPR hydrolase activities, with a catalytic 
mechanism similar to CD38, although with an optimum pH 
at 4.0. In the presence of metal ions, like Zn2+ and Mn2+, 
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the enzyme retains its maximal activity up to 6.5 [128]. Dif-
ferently from CD38, CD157 is a poor catalyst. It hydrolyzes 
NGD, a NAD analog used to assay the enzymatic activity, 
with a Km of about 610 µM, which is about 300-fold higher 
than the Km value exhibited by CD38, at a rate that is about 
1000-fold lower than that of the CD38-catalyzed reaction 
[106, 129, 130]. Even though this would suggest that the 
enzymatic activity of CD157 is not relevant in vivo, studies 
performed in mouse cultured cells show that CD157 con-
tributes to cADPR generation, although to a lower extent 
than CD38 [131], and the generated cADPR has a biological 
effect [132, 133]. To our knowledge, the role of CD157 as an 
ectoenzyme in human has not been investigated.

Notably, while no hydrolysis of NR has been reported for 
CD38, CD157 prefers to hydrolyze NR rather than NAD, 
with a catalytic efficiency very close to that exhibited by 
CD38 towards NAD, and a Km value for NR of about 6 nM, 
suggesting that it might be evolved from CD38 to bind and 
hydrolyze NR in vivo [25].

Ecto‑ADP‑ribosyltransferases

Protein ADP‐ribosylation is a reversible post‐translational 
modification that alters the function of the target protein 
or provides a scaffold for the recruitment of other proteins 
[134]. It is catalyzed by ADP ribosyltransferases (ARTs), 
that transfer the ADPR moiety of NAD to a specific amino 
acid side chain in the target protein with the concomitant 
release of Nam (Fig. 2). The cholera toxin-like ARTs fam-
ily, named ARTC, constitutes a family of eukaryotic ARTs, 
structurally related to the ADP-ribosylating bacterial tox-
ins, that catalyze arginine-specific mono-ADP-ribosylation. 
They are GPI-anchored to the cell membrane, or secreted 
into the extracellular space [135]. The family is constituted 
by several members with distinct tissue distribution and pref-
erentially expressed on epithelial and inflammatory cells, 
such as lymphocytes and leukocytes [136, 137]. The best 
characterized are ARTC1 and ARTC2, the latter only found 
in rodents. ARTC1 is expressed predominantly in the heart, 
skeletal muscles, and airway. On the surface of the airway 
epithelial cells, it modifies the defensin human neutrophil 1, 
which is released following lung inflammation, thus reducing 
its antimicrobial and cytotoxic activities and consequently 
affecting the inflammatory response [138]. In the muscle 
cells, under basal conditions, ARTC1 ADP-ribosylates sev-
eral different proteins on the cell surface and extracellular 
space, associated with cell adhesion, muscle contraction, 
and regulation of signal transduction [134]. Murine ARTC2, 
which exists in two allelic variants ARTC2.1 and ARTC2.2, 
is preferentially expressed on the surface of mature T cells 
[139] and is involved in the so-named NAD-induced cell 
death (NICD). Indeed, the low micromolar concentration 
of extracellular NAD released upon inflammation or tissue 

injury is enough for this enzyme to catalyze the ADP-ribo-
sylation of the P2X7 purinergic receptor [15]. Modification 
of the receptor leads to its gating; thus, triggering a series of 
responses, finally resulting in rapid apoptotic cell death [15, 
140]. This mechanism closely resembles that of bacterial 
ARTs, which act as killer toxins invading the mammalian 
host and inducing death by ADP-ribosylating host proteins 
[141, 142]. Regulatory T cells, which express a high level of 
P2X7, are particularly sensitive to NICD, whereas activated 
effector T cells are protected from NCID due to the shed-
ding of ARTC2 activity [143, 144]. In fact, in these cells, 
ADP-ribosylation of P2X7 results in the release of specific 
proteases that cleaves ARTC2 from the membrane, thus 
changing its targets from membrane proteins to secretory 
proteins [145]. These findings have established the clear 
role of eNAD in the homeostasis of murine T cells through 
ARTC2 activity [10]. In humans, the gene encoding ARTC2 
is a pseudogene. Beside ARTC1 and ARTC2, three addi-
tional ARTs forms have been described: the poorly charac-
terized ARTC5, which is a secreted enzyme, and the inactive 
proteins ARTC3 and ARTC4 [137].

The in vitro characterization of murine ARTC1 and vari-
ants ARTC2.1 and ARTC2.2 has been performed on the 
recombinant proteins expressed in eukaryotic cells and E. 
coli, respectively. ARTC1 was demonstrated to catalyze 
ADP-ribosylation of arginine-rich histones and to per-
form auto-ADP-ribosylation [146] [147]. Differences 
were observed in the properties of variants ARTC2.1 and 
ARTC2.2, depending on the species: while in mouse both 
variants behave as ARTC1, in rats only ARTC2.2 is able to 
catalyze auto-ADP-ribosylation. Evidence is reported that 
the auto-ADP ribosylation is multimeric, representing an 
ADPR polymer rather than multiple sites of mono-ADP-
ribosylation [148]. In addition, while ARTC1 is endowed 
with a very low NAD glycohydrolase activity, such activ-
ity is readily measurable for both rat variants. In particular, 
a dominance of the hydrolase activity over the transferase 
activity has been reported for rat ART2.2 [149], with an 
NAD hydrolysis rate that is at least 500-fold higher than 
other ARTs [150].

The crystal structure of the ectodomain of rat ARTC2.2 
has been solved in its apo-form and in complex with NAD, 
TAD, NADH and a nicotinamide analog, [150, 151], reveal-
ing a substantial structural similarity with bacterial ARTs 
toxins. Based on structural analyses, a catalytic mechanism 
has been proposed that explains how NAD hydrolysis and 
auto-ADP-ribosylation might occur.

NAD biosynthetic ectoenzymes

Along with ectoenzymes that consume eNAD, the extracel-
lular environment is inhabited by enzymes endowed with 
the potentiality to synthetize NAD precursors starting from 
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circulating Nam and NA. They are NAMPT and NAPRT, 
which inside the cell catalyze the transfer of the phosphori-
bosyl moiety of PRPP to Nam and NA, generating NMN and 
nicotinate mononucleotide (NAMN), respectively (Fig. 1). 
The two reactions are key steps in the NAD salvaging routes. 
In particular, enzymatic studies suggest that in human, 
NAMPT is mainly involved in maintaining steady-state 
NAD levels by recycling back to the coenzyme the nicoti-
namide, which is generated from the intracellular consump-
tion of NAD. On the other hand, NAPRT has been proven 
to be essential in boosting NAD levels under conditions of 
cellular stress [16]. An interesting feature of both enzymes 
is that they are secreted into the extracellular milieu, where 
they behave as cytokines, with pro-inflammatory function 
[152]. The mechanism of their secretion and their physi-
ological function in the extracellular space is still uncertain. 
Whether they might contribute to eNAD biosynthesis is still 
unknown, although the absence of detectable levels of the 
PRPP substrate in plasma seems to rule out the in situ cata-
lyzed formation of NMN and NAMN [33]. In addition, no 
data exist on the extracellular occurrence of the enzymes 
that convert the mononucleotides into NAD, i.e., NMNAT 
and NAD synthetase. The finding that eNAD concentration 
raises under inflammatory conditions, which is in keeping 
with its role as a danger signal, suggests that it likely derives 
from the lysis of dying cell. In these conditions, as dying 
cells also release their intracellular pool of ATP and PRPP, 
the NAD biosynthetic activities of extracellular NAMPT and 
NAPRT would become relevant, further enhancing eNAD 
levels, thus contributing to the modulation of the inflamma-
tory response [153].

Nicotinamide phosphoribosyltransferase

Extracellular NAMPT (also known as visfatin/pre-B cell 
enhancing factor, PBEF) is secreted by various cell types, 
including neutrophils, microglia, macrophages, and adi-
pocytes. The release of the enzyme is induced by cellular 
stress, nutritional cues, and inflammatory signals, and once 
secreted, the protein triggers various intracellular signaling 
pathways on a variety of cell types, including immune cells, 
adipocytes, and cancer cells [154]. In general, eNAMPT is 
endowed with proliferative, anti-apoptotic, pro-inflamma-
tory, pro-angiogenic, and metastatic properties. Accord-
ingly, circulating eNAMPT levels are frequently increased 
in patients with acute or chronic inflammation [155].

The molecular mechanism of eNAMPT signaling is still 
unknown. Although the extracellular protein is enzymati-
cally active [156], some studies show that the cytokine-
like function of eNAMPT is independent of the enzymatic 
activity [157]. In vitro and in vivo experiments have dem-
onstrated the ability of the protein to directly bind Toll-like 

receptor 4 (TLR4) [152, 158] and C–C chemokine receptor 
type 5 [159, 160], which might explain how the protein acti-
vates the inflammatory response.

The secreted form of the enzyme is shown to be able 
to induce intracellular NAD biosynthesis in several mice 
tissues with consequent health benefits, including lifespan 
extension and maintenance of the hypothalamic function 
[161, 162]. The hypothesis is that eNAMPT might catalyze 
NMN formation directly in the extracellular space, thus 
supplying cells with this NAD precursor. This would imply 
the presence of suitable extracellular levels of the enzyme’s 
substrates to support the catalytic activity. However, while 
Nam is present in the extracellular space, PRPP is undetect-
able [33]. The recent evidence that eNAMPT is carried in 
extracellular vesicles suggests that it might enhance NMN 
and hence NAD biosynthesis upon internalization in the 
target tissue [162, 163]. This finding also discloses a possi-
ble mechanism of NAMPT secretion through exosomes and 
microvesicles, which is in keeping with the lack of cytokine-
specific secretion sequences in the protein, and the inability 
of typical inhibitors of Golgi-dependent protein secretion to 
inhibit NAMPT secretion.

The significant duality in eNAMPT function between the 
pro-inflammatory effects on the one hand and the protective 
effects on the other has been recently ascribed to a shift of 
the circulating protein from a monomeric and catalytically 
inactive form to a dimeric active form [34]. In particular, 
at the physiological circulating concentration (1 ng/ml), 
eNAMPT behaves as an active dimeric enzyme, whereas 
at higher concentrations, as observed in the serum of type 2 
diabetes (about 5 ng/ml), the protein is mainly in the inactive 
monomeric form. Notably, the monomer has pro-inflamma-
tory effects and mediates pancreatic beta-cell dysfunction, 
whereas the dimer enhances beta-cell function via NAD-
dependent mechanisms [34].

An additional molecular difference between intracellular 
and extracellular NAMPT is the acetylation extent, and dea-
cetylation of the intracellular enzyme by SIRT1 and SIRT6 
seems to control the enzyme’s secretion [161, 164].

Nicotinate phosphoribosyltransferase

The extracellular form of NAPRT has been characterized 
very poorly. It circulates in human plasma at concentrations 
similar to eNAMPT, in the range 1.5–2 ng/ml, but its levels 
significantly increase in acute inflammatory diseases, like 
sepsis and septic shock [152]. In septic patients, a significant 
association between high levels of circulating NAPRT and 
mortality has been observed, suggesting that eNAPRT might 
be a novel risk factor for sepsis. Experiments performed 
in human cultured cells showed that eNAPRT induces an 
inflammatory response in macrophages and triggers their 
differentiation from circulating monocytes. These effects 
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have also been reported for eNAMPT and, in both cases, are 
independent of the enzymes’ catalytic activity, but rely on 
the binding of the proteins to the TLR4 receptor [152]. Such 
a common mechanism of action can be likely explained by 
the high degree of structural similarity between the human 
proteins [165]. Interestingly, bacterial NAMPT and NAPRT, 
although sharing with the mammalian counterparts a very 
similar overall architecture, are not able to elicit an inflam-
matory response and, accordingly, are not TLR4 ligands. 
This finding might be exploited to identify the structural 
determinants responsible for the interaction of the two 
human proteins with the receptor, with the ultimate aim to 
interfere with their inflammatory function.

Conclusions

There is an arsenal of NAD metabolizing enzymes in the 
extracellular space and on the cell membrane that act as 
enzymes, receptors, and cytokines, with a significant impact 
on intracellular signaling pathways. Among them, CD38, 
CD157, and ARTC are enzymes that use NAD as the pre-
ferred substrate, and the involvement of their catalytic activi-
ties in various biological processes, such as immunomodu-
lation and inflammation, has been clearly established. On 
the other hand, CD73 and NPP1, which do not use NAD as 
the preferred substrate, remain less characterized in their 
NAD hydrolyzing activity, and further studies are needed 
to investigate their involvement in the generation of ADO 
from eNAD in vivo. By catalyzing their reactions, the NAD 
hydrolyzing enzymes release small pyridine metabolites, 
like Nam, NMN, and NR that can sustain intracellular NAD 
biosynthesis, as demonstrated by several studies. However, 
how these metabolites, as well as those exogenously admin-
istered, are able to maintain or even increase intracellular 
NAD levels is still a matter of investigation. A recent work 
has clearly established that studies on pyridine supplementa-
tion and uptake preformed on cultured cells can be severely 
affected by the culture conditions, since the serum used in 
the culture medium, even in a heat-inactivated form, con-
tains enzymes responsible of an efficient degradation of 
NAD and its intermediates [27]. Taken into consideration 
the presence of such activities will allow to get a clearer 
picture of eNAD metabolism.

Interestingly, the intracellular NAD biosynthetic enzymes 
NAMPT and NAPRT can be secreted into the extracellular 
space where they exert a pro-inflammatory function. We 
have still very little information on the molecular and cata-
lytic properties of the extracellular proteins and the possible 
differences with the intracellular counterparts. Likewise, our 
knowledge of the amount of substrates and effectors of the 
catalyzed reactions in the extracellular space is still very 
limited to establish whether they might contribute to eNAD 

homeostasis. Similarly, whether their catalytic activity is 
responsible for the cytokine-like behavior is still an open 
question.

In conclusion, by uncovering the controversies and gaps 
in the enzymology of eNAD metabolism, this review sug-
gests further research directions to better define the physi-
ological and pathological roles of the enzymes, and to better 
exploit their great potential as therapeutic targets in various 
human diseases.
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