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Abstract Expanded polystyrene (EPS), which is difficult

to decompose, is usually buried or incinerated, causing the

natural environment to be contaminated with microplastics

and environmental hormones. Digestion of EPS by meal-

worms has been identified as a possible biological solution

to the problem of pollution, but the complete degradation

mechanism of EPS is not yet known. Intestinal microor-

ganisms play a significant role in the degradation of EPS by

mealworms, and relatively few other EPS degradation

microorganisms are currently known. This study observed

significant differences in the intestinal microbiota of

mealworms according to the dietary results of metage-

nomics analysis and biodiversity indices. We have pro-

posed two new candidates of EPS-degrading bacteria,

Cronobacter sakazakii and Lactococcus garvieae, which

increased significantly in the EPS feeding group popula-

tion. The population change and the new two bacteria will

help us understand the biological mechanism of EPS

degradation and develop practical EPS degradation

methods.
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Introduction

Expanded polystyrene (EPS) is mainly used for disposable

or short-term products owing to its light weight and low

price. Polystyrene ([-CH(C6H5)CH2 -]n) is known to be

very difficult to biodegrade due to its high molecular

weight, hydrophobicity, and strong structural stability

[1, 2]. Therefore, most EPS waste is currently disposed of

in landfill or by incineration [3]. The degradation of EPS

requires ultraviolet (UV) light and oxygen [4]. Therefore,

burying EPS will block UV light and oxygen and will make

it more stable, so that decomposition takes even longer.

Incineration requires a large amount of energy and creates

toxic substances, such as dioxin [2]. Because of this

degradation stability, most of the EPS waste is dispersed in

nature, such as in the soil, rivers, lakes, and seas, creating

microplastics [5, 6]. It has been reported that microbial

decomposition of styrene, a monomer of polystyrene, is

converted to phenylacetyl-CoA through four enzymatic

reactions, and then decomposed by entering the TCA cycle

[7].

Microbial biodegradation of petroleum compounds

causing environmental pollution is being studied in an

environmentally friendly way [8]. One new solution to the

EPS problem is the mealworm’s ability to break down

plastics. Mealworms (yellow mealworm) are the larvae of

Tenebrio molitor, which can be found all over the world,

including Korea [9]. The life cycle of T. molitor has four

stages – egg, larva, chrysalis, and adult – resulting in a

complete transformation. They are widely used as biolog-

ical research models because they are easy to handle and to

breed using oats, wheat bran grain with potato, cabbage,

carrots, and apples [10, 11]. In addition, mealworms have a

high protein content and are excellent as a food [12].
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Since the mechanisms of chemical and physical changes

in the biodegradation and mineralization of polystyrene by

mealworms were identified [10], mealworms have become

a new solution to the EPS problem. In addition to meal-

worms, Zophobas morio larvae (superworms) and Tenebrio

obscurus larvae (dark mealworms) are also able to degrade

EPS [13, 14]. The most researched subject in EPS

biodegradation is the mealworm owing to its ease of

breeding and shorter metamorphic periods compared with

other insects [13]. A survey of 22 countries, including

Korea, found that mealworms in all regions consume EPS

and that chewing and digesting EPS are considered uni-

versal characteristics of mealworms [9]. The microorgan-

isms in the mealworm gut play a significant role in EPS

degradation [15]. Indeed, EPS biodegradation may be due

to the application of enteric microorganisms. It has been

suggested that enteric microorganisms release extracellular

oxidative enzymes that assist EPS degradation [9], but the

exact mechanism is unknown. The first EPS-degrading

microorganism was Exiguobacterium sp. YT2 [15], and

then others were identified, including Rhodococcus ruber

[9]. According to a previous study [15], gentamicin

inhibited the growth of Exiguobacterium sp. YT2 and

eventually reduced the EPS degradation of the mealworms.

However, another study suggested the possibility of the

presence of other EPS-degrading bacteria based on the

greater inhibition of EPS degradation by citopcin than

gentamicin [16]. There are a wide variety of bacterial

species in the intestine of mealworms, and the intestinal

microbial flora change according to its diet [17]. Currently,

there are a few types of EPS-degrading microorganisms,

and there are still more that are unknown. The discovery of

more EPS-degrading microorganisms and their biological

mechanisms will reveal the biological mechanism of EPS

degradation. In this study, we observed changes in the

intestinal microbiota according to the EPS diet of the

mealworms.

Materials and Methods

Mealworms and Chemicals

Mealworms (T. molitor larvae) in Fig. 1a were purchased

from ‘nb Mealworm Insect Farm’ (Yangju, Korea). Meal-

worms were bred in 8 L boxes made of polypropylene and

were fed with either bran or EPS for the experiment. Bran

was also purchased from ‘nb Mealworm Insect Farm’, and

EPS was provided by Woosung Resin Co., Ltd. (Gimhae,

Korea). EPS is a spherical (bead) plastic containing an

effervescent gas, which was produced as a bead from the

styrene monomer of Lotte Chemical Co. (Seoul, Korea).

The polystyrene was foamed approximately 55 times.

Beads consisted of 93%–96% EPS (CAS number:

9003–53-6), 4%–7% pentane (CAS number: 109–66-0),

and less than 1% 1,2,5,6,9,10-hexabromocyclododecane

(CAS number: 3194–55-6), with a diameter of

0.4–1.7 mm.

The bran and EPS were treated prior to feeding. The

bran was sterilized at 121�C for 10 min in an autoclave

then dried in an oven at 80�C for 10 min and cooled at

room temperature. The EPS was sterilized for 10 min at

80�C and then cooled at room temperature. Saline solution

(0.85%, w/v) was prepared by mixing 17 g of NaCl with 2

L of distilled water and sterilized for 20 min at 121�C
using an autoclave.

Breeding Mealworms

After receiving the mealworms, they were fed with bran for

4 days for stabilization and separated from the bran and

feces. The separated mealworms were divided into four

groups, two groups for bran feeding and two for EPS

feeding. The groups had similar total weights:

22.0 ± 0.5 g. All groups were fed at room temperature on

a controlled diet for 2 weeks. The breeding boxes were

kept closed to maintain humidity and to prevent contami-

nation and were covered with boxes to create a dark

environment. The lid was opened twice a day to ventilate

the boxes for 5 min. In order to minimize the intake of non-

feeding substances, carcasses, shells, and pupa were

removed twice daily.

Extracting the Digestive Tract of Mealworms

Mealworms were separated from the EPS and bran, and

each group was weighed for comparison. A three-stage

pretreatment was performed before the digestive tract was

extracted. The mealworms were immersed in 75% ethanol

for 1 min and washed twice with saline solution. The head

and the tail of the pretreated mealworms were each grasped

using tweezers and carefully pulled apart to separate the

mealworm’s digestive tract. The separated digestive tract

with around 1 g for each sample was immediately depos-

ited into a tube and stored in a freezer at -80 �C until

analysis. The extracted digestive tract was not washed, and

only those without damage were used for further analysis.

Microbial Flora Analysis by Metagenomics

Intestinal microbial analysis of the extracted digestive tract

was conducted by Macrogen Inc. (Seoul, Korea). The order

number was HN00116441. The all collected frozen

extracted digestive tract of mealworms was send to

Macrogen Inc. without any further treatment. The 16S

rRNA gene library of the intestinal microorganisms was
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prepared using Herculase II Fusion DNA Polymerase

Nextera XT Index Kit V2 according to 16S Metagenomic

Sequencing Library Preparation Part #15,044,223 Rev.

B. The nucleotide sequences of the prepared library were

analyzed by next-generation sequencing using Illumina

platform. A MiSeq Reagent Kit v3 was used for the

sequencing process. The raw sequence data were assem-

bled with FLASH (1.2.11) [18], pre-processed and clus-

tered with CD-HIT-OUT [19], assigned taxonomical

positions with QIIME-UCLUST program and RDP-16S

rRNA database. The statistically analysis for alpha- and

beta-diversity were calculated with QIIME [20] or

according formulas described by Przemieniecki et al. [21].

Random taxa with the density of less than 0.1% were not

included in the analysis.

Results and Discussion

Changes in the Weight of Mealworms by Diet

Previous studies have already demonstrated that meal-

worms ingest and degrade EPS and that intestinal

microorganisms play an important role in this degradation

[10, 15]. The irregular shape of the spherical EPS suggests

that mealworms ingest EPS (Fig. 1b). After a controlled

diet for 2 weeks, the bran-fed group increased in weight by

15.20%, but the EPS-fed group decreased in weight by

13.52%. This observation is consistent with those of pre-

vious studies [10, 22–24]. EPS provides barely enough

energy for mealworms to survive.

Changes to Microbial Flora in the Digestive Track

by Diet

From the 16S rRNA sequences analysis of mealworm

intestinal microorganisms for a metagenomics analysis, the

read counts were 32,211 and 30,952 for the bran-fed group

and 37,771 and 42,807 for the EPS-fed group. The com-

position of the microbial flora at the taxonomic stage is

presented in Table 1. The intestinal microbial flora com-

position of the bran-fed group was significantly different

from that of the EPS-fed group. The intestinal microbial

flora of mealworms depend on food [25]. It was shown that

the food ingested by mealworms was mostly discharged

from the middle and rear intestines after up to 2 days [26].

Before the experiment, all the mealworms were reared on

the same farm and fed the same bran in the same breeding

box for 4 days before being randomly divided into two

groups. Therefore, it was expected that the intestinal

microbial flora would be similar between the two groups.

The difference in intestinal microbial flora between the

bran-fed and EPS-fed group was mainly dietary. Fifteen

species of intestinal bacteria were identified in the bran-fed

group, but only seven species of bacteria were identified in

the EPS-fed group (Table 1). The reduced microbial

diversity of the EPS-fed group might be due to the chem-

ical simplicity of EPS.

Biodiversity indexes (Table 2) showed a high difference

level between bran and EPS diets. The average population

density was similar in both variant (* 6.6). The Sørensen–

Dice coefficient reached 64%. The shannon index for the

bran-fed group was 1.691, while for the EPS-fed group it

was 0.731. The domination index was 1.4 times higher for

Fig. 1 Mealworms and their diet of EPS. a Mealworms used in this study. b Beads of EPS after 2 weeks. The irregular sphere shape indicates

that EPS was ingested by the mealworms
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the bran-fed group compared to the EPS-fed group. The

average population density of bacterial community in both

variants was similar, however other indices were signifi-

cantly different. The diversity of the bacterial community

in the EPS variant was as much as 2.3 times lower than in

the community observed in the bran-fed group. This indi-

cates a severe reduction in the number of taxa in the EPS

diet, as evidenced directly by the Sørensen-Dice index

indicating the disappearance of almost half of the taxa

compared to the bran-based diet. Nevertheless, three

species of bacteria were dominant in the EPS-based diet,

with Spiroplasma velocicrescens still remained the domi-

nant taxa in both diets. This indicates that Spiroplasma spp.

is necessary for the proper functioning of the digestive

system of insects. The appearance of Lactococcus garvieae

and Cronobacter sakazaki show their possible contribution

to EPS degradation [11, 17, 27, 28].

By evaluating the strains with significant differences in

diet, it was possible to suggest the microorganisms

involved in EPS degradation. Spiroplasma velocicrescens

Table 1 Population changes in the intestinal microbial flora by diet. Identified strains with a population density of less than 0.1% in both the

bran-fed group and the EPS-fed group are not presented in this table

Phylum Class Order Family Species Population density (%)

The bran-fed

group

The EPS-fed

group

Firmicutes Bacilli Bacillales Bacillaceae Bacillus
alkalinitrilicus

9.13 0.00

Lactobacillales Bacillus velezensis 0.96 0.00

Enterococcaceae Enterococcus hirae 5.94 4.08

Lactobacillaceae Lactobacillus
crispatus

1.09 0.00

Lactobacillus
graminis

6.44 3.04

Lactobacillus
johnsonii

0.11 0.00

Lactobacillus
salivarius

1.38 0.00

Pediococcus
pentosaceus

10.16 0.48

Streptococcaceae Lactococcus
garvieae

4.82 36.86

Lactococcus
taiwanensis

2.40 0.41

Clostridia Clostridiales Clostridiaceae Clostridium oryzae 5.28 0.00

Peptostreptococcaceae Clostridioides
difficile

0.25 0.00

Ruminococcaceae Faecalibacterium
prausnitzii

0.20 0.00

Proteobacteria Gammaproteobacteria Enterobacterales Enterobacteriaceae Cronobacter
sakazakii

0.77 25.47

Tenericutes Mollicutes Entomoplasmatales Spiroplasmataceae Spiroplasma
velocicrescens

50.53 29.66

Table 2 The biodiversity

indices of bacterial community
Indices The bran-fed group The EPS-fed group

Average population density 6.631 6.667

Number of taxa 15 7

Sørensen–Dice coefficient 0.636

Dominance index 0.696 0.497

Diversity index 1.691 0.731
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represented 50.53% of the microorganisms in the bran-fed

group, but this decreased to 29.66% in the EPS-fed group.

Pediococcus pentosaceus represented 10.16% of the bran-

fed group but only 0.48% of the EPS-fed group. Bacillus

alkalinitrilicus represented 9.13% of the bran-fed group but

was not detected in the EPS-fed group. The population

density of these three strains was significantly reduced by

EPS feeding, suggesting that they are unlikely to be

involved in EPS degradation.

The population density of Cronobacter sakazakii,

belonging to the Enterobacteriaceae family, was increased

by 24.70% in the EPS-fed group. Similar changes in the

Enterobacteriaceae family following EPS feeding were

observed in previous studies [13], and microbes, suggested

to be Aeromonas sp. and Klebsiella pneumoniae by 16S

rRNA analysis, are known to grow on polystyrene [14],

even though they were not identified in this study. All these

results suggest that the Enterobacteriaceae family is highly

involved in EPS degradation. EPS degradation by C.

sakazakii has not been observed; however, considering that

C. sakazakii can grow on abiotic surfaces, such as stainless

steel or polyester plastic [29], the results of this study

indicate that this microorganism may be involved in the

degradation of EPS.

The population density of the Streptococcaceae family

was 30.05% higher in the EPS-fed group than in the bran-

fed group. This observation was in contrast to a previous

study [13]. The presence of the Lactococcus genus in the

intestine of mealworms has been reported in several pre-

vious studies [27, 28]. However, previous studies have

shown that the population density of the Lactococcus genus

was very low, regardless of diet [17], or less when feeding

with EPS than with bran [9]. Therefore, based on the

results of this study, it was proposed that Lactococcus

garvieae may be involved in EPS degradation. Although it

is not known whether they live in the intestine of meal-

worms, L. lactis, L. curvatus, L. brevis, and L. reuteri form

a biofilm on the surface of polystyrene [30], and L. lactis

subsp. cremoris (strain SK11) has a KEGG pathway

associated with styrene degradation (BioModels Database

Identifier: BMID000000076767 [31]). L. taiwanensis and

L. garvieae were also identified in this study. However, the

EPS diet caused very opposite effects on the two strains.

The difference that showed the opposite of the change in

distribution by the EPS feeding at the species level sug-

gests that the EPS degrading ability is different at the

species level of the microorganism or at a lower taxonomic

rank.

Microorganisms that exist independently in nature must

be prepared for various environmental stresses. However,

microorganisms that coexist within the host depend on the

homeostasis provided by the host and perform host-specific

metabolism [32, 33]. Polystyrene intake by mealworms

will contribute to the enrichment of intestinal symbiotic

microbes involved in the degradation of polystyrene. This

is an excellent model for biodegradation of polystyrene in

nature, and provides an optimal place to find related

microorganisms. In this study, a list of microorganisms

involved in the degradation of expanded polystyrene is

proposed by presenting the intestinal microbiota of meal-

worms that ingested expended polystyrene using a

metagenomic analysis. This will be the fundamental data

for confirming the ability to degrade polystyrene by the

symbiotic microorganisms from the mealworm, and con-

ducting researches on the its biological mechanism in the

future.
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