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Abstract

Purpose of Review: The development of the skeleton is controlled by cellular decisions 

determined by the coordinated activation of multiple transcription factors. Recent evidence 

suggests that the transcriptional regulator proteins, Yes-associated protein (YAP) and 

transcriptional co-activator with PDZ-binding motif (TAZ), could have important roles in directing 

the activity of these transcriptional programs. However, in vitro evidence for the roles of YAP and 

TAZ in skeletal cells has been hopelessly contradictory. The goal of this review is to provide a 

cross-sectional view on the state of the field and to synthesize the available data toward a unified 

perspective.

Recent Findings: YAP and TAZ are regulated by diverse upstream signals and interact 

downstream with multiple transcription factors involved in skeletal development, positioning YAP 

and TAZ as important signal integration nodes in an hourglass-shaped signaling pathway. Here, we 

provide a survey of putative transcriptional co-effectors for YAP and TAZ in skeletal cells. 

Synthesizing the in vitro data, we conclude that TAZ is consistently pro-osteogenic in function, 

while YAP can exhibit either pro- or anti-osteogenic activity depending on cell type and context. 

Synthesizing the in vivo data, we conclude that YAP and TAZ combinatorially promote 

developmental bone formation, bone matrix homeostasis, and endochondral fracture repair by 

regulating a variety of transcriptional programs depending on developmental stage.

Summary: Here, we discuss the current understanding of the roles of the transcriptional 

regulators, YAP and TAZ in skeletal development, and provide recommendations for continued 

study of molecular mechanisms, mechanotransduction, and therapeutic implications for skeletal 

disease.
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Introduction:

Édouard-Alfred Martel (1859–1938) is perhaps the most famous cave explorer of all time. 

He was obsessed with cartography, specifically underground cartography, i.e., the mapping 

of caves (Hunt 2018). Martel’s innovation was to divide a cave into distinct cross-sections, 

or “coupés” (Figure 1).

In 1889, Martel became the first explorer to reach the bottom of the Gouffre de Padirac, a 

100m-deep chasm in southwest France. Of the experience, he wrote: “The unknown draws 

us irresistibly forward. No man has gone before us in these depths, no one knows where we 

go nor what we see, nothing so strangely beautiful was ever presented to us, and 

spontaneously we ask each other the same question: are we not dreaming?” (Chevalier 

1951).

In many ways, being a scientist is like being a 19th c. cave explorer: you walk into the dark 

with a backpack full of candles and begin to illuminate one cavern after another. But you 

also spend the vast majority of your time stumbling in the dark, stubbing your toes, making 

wrong turns. Once a fissure is illuminated, you don’t set up camp in the light, but rather 

continue straight for the darkest corner with a cold draught and leave the light behind.

In this review article, we seek to provide a coupé of the cave system that represents the 

developmental biology of the skeleton, with specific focus on the transcriptional regulators, 

Yes-associated protein (YAP) and transcriptional co-activator with PDZ-binding motif 

(TAZ). This is a story of numerous discoveries and some wrong turns and dead ends, but 

ultimately of new depths to be plumbed and caverns to be explored.

Development of the skeleton

The development of the skeletal elements occurs through two types of bone formation: 

intramembranous or endochondral ossification. Intramembranous ossification occurs by 

direct differentiation of mesenchymal cells into bone-depositing osteoblasts (Karsenty 

2008), and is the dominant mechanism of bone formation in the craniofacial bones and the 

clavicles. The embryonic bone collar that forms the early cortical bone, in the long bones 

also occurs through intramembranous ossification of perichondrium-resident mesenchymal 

progenitors. In contrast, endochondral ossification (i.e., “through cartilage”) occurs first 

through differentiation of condensed mesenchymal cells into chondrocytes, which form a 

cartilage anlage, or template, that will be remodeled and replaced by bone. The transition 

from cartilage to bone initiates with growth plate chondrocyte hypertrophy. The fate of these 

hypertrophic chondrocytes has been long debated (Shapiro et al. 2005). Evidence since the 

1970s has pointed to the possibility of hypertrophic chondrocytes to transform into bone 

cells (Kahn and Simmons 1977; Roach 1992). Recent reports using inducible Cre-based 

lineage-tracing have shown direct chondrocyte transformation into bone cells during 

development (L. Yang et al. 2014; G. Yang et al. 2014; Zhou et al. 2014; Ono et al. 2014; 

Jing et al. 2015) and fracture repair (C. Bahney et al. 2014; C. S. Bahney et al. 2014; Hu et 

al. 2017). The process of bone development is therefore an exquisitely coordinated sequence 

of cellular decisions: proliferation, (trans-)differentiation, mobilization, etc.
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Each of these cellular decisions is controlled by the coordinated activation of specific 

transcriptional programs. Thus, transcription factors are the master regulators of cell identity 

and decision making (Takahashi et al. 2007). The variety of transcription factors involved in 

skeletal development have been reviewed in detail elsewhere (Karsenty 2008), but new 

insights continue to emerge. A mechanistic understanding of how transcription factors 

regulate skeletal development is critical to understand the biology of the musculoskeletal 

system and to enable the development of therapeutic interventions for musculoskeletal 

disease. Careful work over the past decades has enhanced our understanding of the 

mechanisms by which transcription factors control skeletogenesis, yet many questions 

remain.

A key question is: how is the symphony of these transcription factors conducted during bone 

development? It is clear that different cells express different transcription factors to different 

degrees, but beyond expression, the regulation of transcriptional activity is critical and 

poorly understood. For example, chromatin organization and epigenetic mechanisms are 

important mediators of transcription factor activity in bone development, reviewed in 

(Wijnen and Westendorf 2019). However, transcription factors can also be regulated by 

transcriptional co-activators/co-repressors, which are proteins that bind to and form 

complexes with transcription factors and directly regulate their activity.

Yes-associated protein (YAP, also known as YAP1 and YAP65) and transcriptional co-

activator with PDZ-binding motif (TAZ, also known as WWTR1) are transcriptional 

regulators whose primary function is to bind to other proteins, including many transcription 

factors (Sudol 1994). Orthologs of the Drosophila protein, Yorkie, YAP and TAZ share 

~42% homology at the amino acid level (Kaan et al. 2017). Thus, YAP and TAZ can exhibit 

either convergent or divergent function, depending on context. For example, mice harboring 

a global deletion of YAP die early in embryogenesis (Morin-Kensicki et al. 2006), while 

TAZ knockout mice live to maturity, despite phenotypic deformities in various organ 

systems (Hossain et al. 2007). Both YAP and TAZ lack DNA-binding domains and cannot 

induce gene expression by themselves but require binding to co-effector transcription factors 

to drive or repress gene expression. The TEAD family of transcription factors (TEAD1–4) 

are the canonical transcriptional partners for YAP and TAZ. Complementarily, the TEAD 

proteins possess DNA-binding domains, but lack transcription activation domains, providing 

specificity for YAP/TAZ-TEAD (Vassilev et al. 2001).

YAP and TAZ also co-regulate many transcription factors that are involved in bone 

development, homeostasis, and repair. Here we have collected a list of transcription factors 

known to be involved in bone development or the function of skeletal cells and tabulated 

their known or putative regulation by YAP and/or TAZ (Table 1). The table is broken into 

two categories: I) transcription factors for which co-regulation by YAP/TAZ has been 

demonstrated in skeletal cells, II) transcription factors with known roles in skeletal cells for 

which YAP/TAZ binding has been studied in non-skeletal cell types.

The YAP/TAZ hourglass.

Multiple upstream cues converge on YAP/TAZ activation to regulate downstream outcomes. 

Therefore, the cellular role of YAP and TAZ is highly context-dependent and determined by 
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the integrated upstream cues and the available transcriptional co-effectors. This mode of 

regulation positions YAP/TAZ at the bottleneck of a biological signaling “hourglass,” where 

collective upstream inputs can generate different downstream outcomes via YAP/TAZ 

activation and transcription factor binding (Figure 2).

YAP/TAZ activity is controlled by their subcellular location: either inside or outside the 

nucleus. To function as transcriptional regulators, YAP and TAZ must bind transcription 

factors in the nucleus. Cytosolic retention therefore de-activates YAP/TAZ-driven 

transcriptional activity. YAP/TAZ subcellular localization is controlled by three primary, 

interconnected mechanisms: the Hippo pathway, mechanical cues, and biochemical cues. 

Collectively, these three upstream drivers of YAP/TAZ subcellular localization and the 

downstream transcriptional co-effectors regulate the function of YAP and TAZ within a cell.

Regulation of YAP/TAZ activity by the Hippo Pathway: YAP and TAZ are the 

terminal effectors of the Hippo pathway (Huang J et al 2005) (Huang et al. 2005), a kinase 

cascade that inhibits YAP and TAZ by sequential Serine phosphorylation. The majority of 

the core components of the Hippo pathway are conserved across species and can be 

categorized into core components, upstream regulators and downstream effectors (B. Zhao, 

Li, and Guan 2010). Briefly, the Hippo pathway initiates with the Sterile 20 (Ste20) family 

protein kinases MST1 and MST2, which become activated upon binding to and 

phosphorylation of Salvador. MST1/2 then phosphorylate LATS1 and/or LATS2, which are 

a part of the nuclear Dbf2-related (NDR) family of protein kinases. LATS kinases are also 

activated when phosphorylated by MPS One Binder Kinase activator-like 1A and 1B 

(MOB1A and MOB1B) proteins. LATS kinases phosphorylate YAP and TAZ and inhibit 

their activity as transcriptional coactivators. Phosphorylation of YAP by LATS 1/2 at Ser127 

(or TAZ at S87) initiates a progressive phosphorylation of multiple Serine residues and 

facilitates binding to 14–3-3 proteins to sequester YAP/TAZ in the cytoplasm (B. Zhao, Li, 

and Guan 2010) and initiate ubiquitin-mediated proteasomal degradation by the E3 ubiquitin 

ligase β-TRCP. YAP can also be phosphorylated by other proteins that are not a part of the 

core Hippo pathway, which can lead to its degradation or stabilization depending on which 

residue has been phosphorylated (B. Zhao, Li, and Guan 2010). Non-phosphorylated 

YAP/TAZ translocate to the nucleus and form a complex with their co-effector transcription 

factors, bind to gene promoters or enhancers, and activate or repress the expression of target 

genes.

Regulation of YAP/TAZ by Growth Factors—YAP/TAZ activity is also orchestrated by 

growth factor signaling in both Hippo-dependent and -independent manners. For example, 

lysophosphatidic acid (LPA) and sphingosine 1-phosphosphate act through G12/13PCRs to 

inhibit LATS1/2 and promote nuclear translocation of YAP (Moya and Halder 2019). 

Independent of the Hippo pathway, YAP/TAZ activity can be regulated by alternative Wnt 

signaling via Frizzled (FZD) receptors (Park et al. 2015). Likewise, platelet-derived growth 

factor (PDGF) signaling can directly signal to YAP via Src Family kinases (SFK) that 

catalyze activating tyrosine phosphorylation of YAP (Smoot et al. 2018). Interaction of 

YAP/TAZ with growth factors is contextual, and different growth factors have been found to 

regulate YAP/TAZ/Hippo activity differentially depending on cell type and experimental or 
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physiologic context. Discretion is recommended when applying prior findings to a new cell 

type or context.

Mechanoregulation of YAP and TAZ—YAP and TAZ are also activated by mechanical 

cues. In 2006, Engler et al. demonstrated that mechanical properties of the extracellular 

matrix influence progenitor cell fate (Engler et al. 2006). Five years later, two independent 

groups linked these matrix stiffness-dependent cell lineage decisions to the 

mechanosensitive nuclear localization of YAP and TAZ (Dupont et al. 2011)(Wada et al. 

2011). Both papers showed that YAP and TAZ translocate to the nucleus in response to 

matrix rigidity, but are sequestered in the cytosol in soft ECM environments (Dupont et al. 

2011)(Wada et al. 2011). The Dupont et al. paper showed that this mechanoactivation of 

YAP/TAZ was necessary for the matrix stiffness-dependent switch between adipogenic and 

osteogenic differentiation of bone marrow stromal cells (Dupont et al. 2011). In this section, 

we will briefly summarize the current state of knowledge on the mechanisms by which YAP 

and TAZ are controlled by mechanical cues, including mechanosensation at the plasma 

membrane that leads to cytoskeletal remodeling and cytosolic signal transduction to effect 

YAP/TAZ nuclear localization (Figure 3).

Mechanosensation: YAP/TAZ-activating mechanical cues first reach the cell at the plasma 

membrane through cell-matrix, cell-cell, and cell-environment interactions. Forces between 

cells and their extracellular matrix are transduced in part by integrins, which are 

transmembrane adhesion molecules that couple the ECM to the cytoskeleton at focal 

adhesions (Sun, Guo, and Fässler 2016). Force production by the actomyosin cytoskeleton 

via talin-bound integrins (Sun, Guo, and Fässler 2016) induces conformational changes in 

nascent integrin engagements, promoting integrin clustering and increasing affinity for 

intracellular ligand binding (Sun, Guo, and Fässler 2016), (Horton et al. 2016). Recruitment 

of focal adhesion-stabilizing proteins, including vinculin, and paxillin (Martino et al. 2018) 

in turn initiate intracellular signaling cascades including Rho/ROCK and FAK/Src to 

promote further actomyosin contractility and subsequent YAP/TAZ nuclear localization. 

Forces between cells are transduced in part by cadherins, a family of transmembrane 

adhesion receptors that form adherens junctions, coupling the actomyosin cytoskeleton and 

transcription factor activation to intercellular mechanical force transduction (Cosgrove et al. 

2016). Other forces exerted on cells by their environment, such as fluid shear stress, can be 

transduced in part by mechanosensitive ion channels, such as the Piezo channels. These 

mechanically gated, stretch-activated channels modulate the influx of ions, such as Ca2+, 

into the cytosol (Pathak et al. 2014). Pathak and colleagues first demonstrated that YAP is 

activated downstream of Piezo activation in neural stem cells (Pathak et al. 2014), and recent 

data by Ellefson et al. show that myosin II activation produces membrane tension at focal 

adhesions to activate local Piezo1 channels, providing a direct mechanosensory link between 

actomyosin tension, Piezo-mediated Ca2+ flux, and YAP/TAZ activation (Ellefsen et al. 

2019).

Mechanotransduction: Inside the cell, these mechanical cues are transduced by both 

physical and biochemical means to control the phosphorylation status and localization of 
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YAP and TAZ (Dupont 2016). Here, we will briefly discuss the actomyosin cytoskeleton and 

the prototypical mechano-activated Rho/ROCK and Src signaling pathways.

The actin-myosin cytoskeleton provides support, structure, and protection, and is the 

primary effector of motion in the cell. The actin cytoskeleton assembles from monomeric 

globular (G)-actin, which polymerizes to form filamentous (F)-actin (Aragona et al. 2013; 

Driscoll et al. 2015; Dupont et al. 2011). F-actin-bound non-muscle myosin II generates 

tensile forces in the actin cytoskeleton to regulate a variety of cell processes including 

polarity, cytokinesis, differentiation, and motility. In 2011, Sansores-Garcia and colleagues 

observed that altering F-actin dynamics in both drosphila and mamallian cells influenced 

Yorkie/YAP nuclear localization, such that increased F-actin organization promoted 

Yorkie/YAP activation (Sansores-Garcia et al. 2011). Actin dynamics are regulated in part by 

the Rho/ROCK pathway. Forces generated at the ECM activate the Rho GTPases, to activate 

ROCK, which phosphorylates and inactivates myosin light chain (MLC) phosphatase, 

promoting MLC activation (Maekawa et al. 1999; Aragona et al. 2013). Myosin activation 

induces tension generation, stress fiber formation, and recruitment of stabilizing proteins to 

the connections between the cell and the extracellular matrix at focal adhesions (Oakes et al. 

2012). Remarkably, increased cytoskeletal tension causes YAP/TAZ nuclear localization 

(Aragona et al. 2013; Dupont et al. 2011).

The Src pathway is both a direct and indirect regulator of YAP/TAZ phosphorylation and 

activation. Src acts upstream of the Hippo pathway kinase, merlin, to promote LATS1/2-

mediated YAP/TAZ phosphorylation and inactivation (Sabra et al. 2017), but can also 

directly phosphorylate YAP1 on three separate tyrosine residues (Y341/357/394) in its 

transcription activation domain, independent of the Hippo pathway (P. Li et al. 2016)

(Elbediwy et al. 2018). In addition to responding to cytoskeletal tension, YAP/TAZ can also 

regulate the cytoskeleton in a feedback loop. Our recent data implicate YAP and TAZ in 

transcriptional feedback regulation of the cytoskeleton (Mason et al. 2019).

The mechanisms that control the nuclear shuttling of YAP/TAZ continue to emerge, but 

YAP/TAZ localization appears to be an equilibrium process that occurs without physical 

binding to a fixed component in either the nucleus or the cytoplasm (Ege et al. 2018). In 

addition to phosphorylation status, evidence suggests that physical deformation of the 

nucleus through the LINC complex is required for YAP/TAZ translocation (Driscoll et al. 

2015), and recent data suggest that physical stretching of the nuclear membrane is necessary 

to open the nuclear pore complex to allow YAP translocation (Elosegui-Artola et al. 2017). 

However, protein shuttling through the nuclear pore complex may also be guided by 

importins and exportins which act through nuclear localization and nuclear export sequences 

(NLS; NES) (S. Wang et al. 2016; Ege et al. 2018). It was long thought that YAP/TAZ 

lacked defined NLS, but recent studies by Kofler, et al. identify an NLS in the transcription 

activation domain of TAZ, overlapping with the LATS phosphorylation site and a NES in the 

TEAD-binding domain (Kofler et al. 2018). Taken together, these observations establish 

YAP and TAZ as important transcriptional regulators that respond dynamically to 

mechanical cues and form a mechanistic link between physical stimuli and cell behavior.
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Different types of mechanical stimuli in bone: Importantly, bone cells experience a variety 

of mechanical stimuli through development, disease, and repair. In the embryo, fetal 

movement and muscle forces are critical for the proper development of the skeleton (Hogg 

and Hosseini 1992). In adulthood, bone-lining osteoblasts are exposed to matrix strain 

(Martin et al. 2015) and bone marrow shear stress (Curtis et al. 2018). Within the osteocyte 

lacunar-canalicular system, osteocytes likewise respond to mechanical forces, predominantly 

as a consequence of fluid flow through the lacunar/canalicular system, as reviewed 

elsewhere (Weinbaum 2009), (Jenneke Klein-Nulend et al. 2013), (Schaffler et al. 2014). 

Whether YAP/TAZ mechanosignaling is necessary for bone physiology in vivo has not yet 

been studied.

Current understanding of the roles of YAP and TAZ in bone

Insights from in vitro studies—Although identified as critical regulators of 

mesenchymal progenitor cell differentiation, the evidence for positive vs. negative roles for 

YAP and/or TAZ during osteogenic differentiation in vitro is complicated. Studies have 

demonstrated both pro- and anti-osteogenic functions of both YAP and TAZ, depending on 

the context. Differences in experimental and cellular context may partially explain the 

conflicting evidence, but further study is necessary. Here, we discuss the existing evidence 

for both YAP and/or TAZ in both promoting and inhibiting in vitro osteogenic differentiation 

in model and primary skeletal cells.

A majority of the evidence for YAP and/or TAZ in inhibiting in vitro osteogenic 

differentiation is focused on YAP. YAP was first reported to suppress osteoblastic 

differentiation through sequestration and transcriptional repression of RUNX2 in ROS17/2.8 

rat osteosarcoma cells (Zaidi et al. 2004). Sen and colleagues found that, in mouse bone 

marrow stromal cells (BM-MSCs), nuclear YAP inhibited RUNX2-mediated initiation of 

osteogenic differentiation while YAP nuclear export enhanced osteogenic differentiation 

(Sen et al. 2015). More recently, activator protein 2a (AP2a) was shown to recruit YAP and 

release the inhibition of RUNX2 by forming a YAP-AP2a protein complex, resulting in 

elevated osteogenic differentiation (Lin et al. 2019). Similarly, Basu-Roy and colleagues 

observed that SOX2 antagonized YAP expression to reduce osteogenic differentiation and 

maintain stemness in mOS-482 mouse osteosarcoma cells while YAP overexpression in 

primary mouse osteoblasts inhibited alkaline phosphatase activity and osteogenic 

differentiation (Basu-Roy et al. 2015). Seo and colleagues identified YAP as a target of 

SOX2 that antagonized activation of WNT/β-catenin target genes to inhibit osteogenic 

differentiation in both a model stem cell line (C3H10T1/2) and primary bone marrow 

stromal cells (Seo et al. 2013). With respect to TAZ, Park and colleagues implicated both 

YAP and/or TAZ as mediators of alternative WNT signaling via antagonizing WNT/β-

catenin signaling, and found that either YAP or TAZ overexpression inhibited WNT/β-

catenin signaling and osteogenesis (Park et al. 2015).

In contrast, YAP has also been found to promote osteogenic differentiation in vitro. YAP 

overexpression enhanced, while YAP depletion inhibited, osteogenic differentiation in 

MC3T3-E1 cells (B. Yang et al. 2019). In BM-MSCs, over-expression of a constitutively-

active YAP mutant (YAP5SA) promoted osteogenic differentiation even under conditions 
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more favorable for adipogenesis (Dupont et al. 2011). Further, enhanced YAP activation by 

cytoskeletal contractility in differentiating BM-MSCs promoted the osteogenic capacity both 

in the context of topographical cues (X. Liu et al. 2019) and mechanical stimulation (Xue et 

al. 2017). Both pharmacological treatment and RNAi-depletion of YAP inhibited 

topographyinduced osteogenic differentiation in BM-MSCs (H. Pan et al. 2017). In addition 

to topographical cues, reductions in extracellular pH inhibited osteogenic differentiation by 

suppressing YAP in BM-MSCs (Tao et al. 2016). Finally, olfactomedin-like protein 

(OLFML1) negatively regulated mineralization in primary calvarial osteoblasts by inhibiting 

YAP nuclear translocation, consistent with a role for YAP promoting osteogenic 

differentiation in vitro (Murakami et al. 2018).

In contrast to YAP, evidence for TAZ is largely consistent and indicates a role for TAZ in 

promoting in vitro osteogenic differentiation. TAZ was first identified as a RUNX2 co-

activator and inhibitor of the adipogenic nuclear receptor, PPARγ, in C2C12 cells (Hong et 

al. 2005; Hong and Yaffe 2006). More recent evidence in both C2C12 and C3H10T1/2 cells 

further found that TAZ promoted osteogenic differentiation through both RUNX2- (J. Feng 

et al. 2015; Mi Ran Byun, Sung, et al. 2014) and β-catenin- (M R Byun et al. 2014) 

dependent transcription. Similar work by Byun and colleagues observed that TAZ activation 

downstream of FGF2 and ERK mediated RUNX2-related osteogenic gene expression (Mi 

Ran Byun, Kim, et al. 2014). Similar to YAP, both topographical cues and mechanical 

stimulation affected TAZ-dependent in vitro osteogenic differentiation in BM-MSCs. For 

example, both nano-topographical surfaces (Qian et al. 2017; Hwang et al. 2017) and 

extracellular matrix stiffness (Hwang et al. 2015) promoted osteogenic differentiation 

through nuclear TAZ activation. Furthermore, simulated microgravity depolymerized F-actin 

and reduced TAZ nuclear translocation, which hindered osteogenic differentiation in BM-

MSCs (Chen et al. 2016). Conversely, fluid shear stress stimulated TAZ nuclear localization 

and increased osteogenic differentiation (Kim et al. 2014). Lastly, pharmacological 

activation of TAZ enhanced osteogenic differentiation in adipose-derived stem cells (Zhu et 

al. 2018) while BM-MSCS from mice with heterozygous global deletion of TAZ exhibited 

defective in vitro osteogenic differentiation (Xiao et al. 2018).

In addition to their individual roles, a few studies have modulated both YAP and TAZ during 

in vitro osteogenic differentiation. For example, Park and colleagues found that RNAi-

mediated depletion of YAP/TAZ in BM-MSCs reduced alkaline phosphatase activity and 

mineral deposition (Park et al. 2015). Similarly, dual RNAi-depletion of YAP and TAZ in 

BM-MSCs inhibited alkaline phosphatase activity under conditions favorable for 

osteogenesis (Dupont et al. 2011). Finally, heterozygous deletion of both YAP and TAZ in 

BM-MSCs inhibited osteogenic differentiation with reduced mineral deposition and 

downstream osteogenic gene expression (Tang et al. 2016).

Synthesizing these studies, we postulate that TAZ primarily promotes osteogenic 

differentiation in vitro, while YAP can either promote or inhibit osteogenesis, depending on 

the cellular and experimental context. Despite the emerging important roles of YAP and TAZ 

during osteogenic differentiation in vitro, continued careful and thorough interpretation of 

experiments modulating either YAP and/or TAZ is warranted. For example, the limitations 

of overexpression approaches that non-physiologically express otherwise tightly-regulated 
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transcriptional co-effectors should be taken into consideration. Further, dissecting the 

individual roles of YAP versus TAZ during osteogenic differentiation is necessary as current 

evidence suggests the potential for both divergent and convergent functions of YAP versus 

TAZ. Lastly, we caution against the use of YAP and/or TAZ expression or subcellular 

localization as markers or indicators of osteogenic differentiation, as these are insufficient to 

determine lineage commitment.

We further recommend that, while powerful and important for dissecting molecular 

mechanisms, in vitro studies must be supported and validated by in vivo approaches that 

enable the study of YAP/TAZ function in a physiologic context.

Insights from in vivo studies—A definitive understanding of YAP/TAZ function in 

bone will necessarily come from in vivo approaches. Because YAP and TAZ cannot bind 

DNA directly, and are capable of co-regulating multiple transcription factors, the 

transcriptional consequences of YAP and/or TAZ manipulation will depend on the 

transcription factor milieu present in a given cell. Thus, YAP and TAZ may have 

fundamentally distinct roles in one cell type compared to another. Here, we review the 

current literature on the in vivo roles of YAP and TAZ in mesenchymal progenitors, 

chondrocytes, osteoblasts, osteocytes, and osteoclasts. Other extra-skeletal cell types also 

contribute to the developmental niche and may likewise depend on YAP/TAZ signaling, but 

these are beyond the scope of this review.

Limb mesenchyme progenitors.: YAP/TAZ have important, but potentially divergent roles 

in the mesenchymal progenitors of the embryonic limb bud. Prx1-Cre targets these 

mesenchymal progenitors, and homozygous conditional ablation of both YAP and TAZ in 

Prx1-Cre mice produced embryonic lethality. However, mice with haploinsufficiency of YAP 

and homozygous TAZ deletion survived with increased postnatal bone mass (Xiong, 

Almeida, and O’Brien 2018). In contrast, Prx1-Cre deletion of YAP resulted reduced bone 

mass (Deng et al. 2016). Dermo1-Cre also targets limb mesenchymal progenitors, and 

Dermo1-conditional deletion of the Hippo kinases, MST1 and MST2, resulted in a mild 

developmental phenotype, but caused a significant defect in callus formation during fracture 

repair (Deng et al. 2016). Continued research will be necessary to dissect the mechanistic 

and combinatorial roles of YAP and TAZ in early skeletal development.

Chondroprogenitors: YAP and TAZ negatively regulate chondrogenesis in vivo. YAP-

overexpression in Col2-expressing cells produced mice with a smaller skeleton and 

decreased bone volume due to delayed chondrocyte hypertrophy and reduced chondrocyte 

maturation (Deng et al. 2016). Conversely, Col2-conditional YAP deletion caused elongated 

growth plates and increased bone volume (Deng et al. 2016). Through complementary in 
vitro assays, Deng et. al. found that YAP positively regulated early chondrocyte proliferation 

by TEAD-dependent Sox6 expression and negatively regulated chondrocyte maturation via 

Runx2-dependent Col10a1 expression. Notably, YAP overexpression in Col2-expressing 

cells had more severe effects on fracture repair than development (Deng et al. 2016). 

Complementarily, conditional deletion of Mob1a/b in Col2-expressing cells resulted in 

chondrodysplasia from impaired chondrocyte maturation (Goto et al. 2018). Mob1a/b is a 

core component of the Hippo pathway whose deletion results in hyper-activation of YAP/
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TAZ. However, Mob1a/b deletion-induced YAP/TAZ hyper-activity reduced early 

chondrocyte proliferation through transcriptional repression of Sox9 (Goto et al. 2018). 

Notably, this phenotype was largely rescued by the additional deletion of either YAP or 

TAZ. These data suggest that YAP and TAZ may be mutually compensatory in 

chondrogenesis, but explicit in vivo combinatorial gain- and loss-of-function experiments in 

chondrocytes will be required.

Osteoprogenitors: Though initially contradictory, the emerging evidence converges on 

positive roles for both YAP and TAZ in promoting osteoblast-lineage progression. YAP and 

TAZ most prominently immunolocalize in hypertrophic chondrocytes, osteoprogenitors, and 

osteoblasts during developmental bone formation (Kegelman et al. 2018). These expression 

patterns coincide with the localization of the transcription factor, Osterix/Sp7, which is 

critical to osteoblastogenesis (Rodda and McMahon 2006), motivating the use of Osterix-

Cre for conditional YAP/TAZ deletion (Kegelman et al. 2018). We found that constitutive 

homozygous deletion of both YAP and TAZ from Osterix-expressing cells caused perinatal 

lethality due to asphyxiation, secondary to rib cage malformation (Kegelman et al. 2018). 

Importantly, mice with a single allele of YAP or a single allele of TAZ in Osterix-expressing 

cells survived, indicating mutual, but partial, compensation. Mice expressing only a single 

allele of either gene exhibited severe skeletal defects including spontaneous neonatal 

fractures, defects in collagen content and organization, and altered osteoblast/osteoclast-

mediated bone remodeling (Kegelman et al. 2018). These data implicate both YAP and TAZ 

in functional bone development. Interestingly, post-natal deletion of both YAP and TAZ 

(doxycycline induced deletion at 3 weeks of age, and assayed at 12 weeks of age) exhibited 

only a modest bone phenotype, with increased osteoblast numbers and mineralizing surface 

percentage (Xiong, Almeida, and O’Brien 2018). Recent data provide insight into these 

discrepant phenotypes. Using post-natal fracture healing as a model to study YAP/TAZ roles 

in endochondral ossification, we found that constitutive deletion of YAP and/or TAZ from 

Osterix-expressing cells caused defects in both cartilage callus formation and callus 

mineralization due to a developmental defect in periosteal progenitor cell supply (Kegelman 

et al. 2020). However, inducible deletion after skeletal maturity impaired periosteal 

osteoprogenitor amplification and subsequent osteogenesis (Kegelman et al. 2020). 

Mechanical loading also promotes YAP/TAZ activation and endochondral bone regeneration 

through development-mimetic mechanisms (McDermott et al. 2019). Together, these data 

suggest that YAP/TAZ signaling in osterix-expressing cells has particularly important roles 

in bone development and in processes that partially reactivate developmental programs, such 

as fracture repair. Orthogonally, Li and colleagues observed that Osterix-conditional genetic 

deletion of MST1/2, the upstream Hippo kinases, inhibited bone accrual, formation and 

remodeling while stabilizing the key glucose transporter, Glut1, independent of YAP/TAZ 

regulation (W. Li et al. 2018).

Osteoblasts: Evidence for the roles of YAP and TAZ in mature osteoblasts is largely 

convergent. During osteoblastogenesis, immature, yet committed osteoblasts begin to 

express collagen I. Two established Collagen 1-dependent Cre drivers, Col1(3.6kb) 

(immature osteoblasts) and Col1(2.3kb) (committed osteoblasts) exist (Kalajzic et al. 2002; 

F. Liu et al. 2004), but neither has yet been used to assess osteoblast lineage-conditional 
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loss-of-function of YAP and/or TAZ. However, Col-1(2.3kb)-conditional over-expression of 

TAZ promoted bone formation, suggesting a similar role for TAZ in promoting osteoblasts 

as in osteoprogenitors (J.-Y. Yang et al. 2013). Although not specific to skeletal lineage 

cells, in vivo lentiviral delivery of TAZ alleviated osteoporotic symptoms in ovariectomized 

rats, further supporting a role for TAZ in promoting bone formation in vivo (Y. Zhang et al. 

2016). As committed osteoblasts mature, osteocalcin expression increases, enabling Cre-

mediated targeting in mature osteoblasts (M. Zhang et al. 2002). YAP deletion from 

Osteocalcin-expressing cells significantly reduced bone formation, impairing osteoblast 

proliferation induced by YAP co-activation of β-catenin (J.-X. Pan et al. 2018), supporting a 

role for YAP in promoting osteogenesis in vivo. In contrast, dual deletion of the upstream 

regulator MST1/2 from Osteocalcin-expressing cells inhibited bone accrual and formation 

consistent with a negative role for YAP in bone formation (W. Li et al. 2018). Nonetheless, 

deletion of both downstream YAP/TAZ target genes, CTGF and CYR61, from Osteocalcin 

expressing-cells resulted in reduced bone mass phenotypes (G. Zhao et al. 2018; Canalis et 

al. 2010), consistent with the evidence of osteoblast-specific genetic manipulations of YAP 

and TAZ.

Osteoclasts: Although the roles of YAP and TAZ in osteoclasts using cell-specific loss-of-

function approaches has not been investigated directly, the Hippo pathway intersects with 

multiple signaling pathways that regulate osteoclastogenesis and osteoclast function (W. 

Yang et al. 2018). YAP/TAZ signaling in osteoblasts and osteocytes regulates the crosstalk to 

osteoclasts. For example, both deletion of YAP and/or TAZ in skeletal lineage cells and 

deletion of CYR61 from Osteocalcin-expressing cells increased osteoclast activity 

(Kegelman et al. 2018; G. Zhao et al. 2018). Similarly, DMP-1-conditional YAP/TAZ 

ablation promotes osteoclast activation (Xiong, Almeida, and O’Brien 2018; Kegelman et al. 

2019), likely via paracrine signaling (Kegelman et al. 2019). Consistently, dual deletion of 

MST1/2 from Osteocalcin expressing-cells inhibited osteoclast formation (W. Li et al. 

2018). However, deletion of YAP from Osteocalcin expressing-cells did not significantly 

impact osteoclast remodeling, potentially due to the compensatory effects of TAZ and/or the 

Cre model used (J.-X. Pan et al. 2018). As the roles for YAP and TAZ in regulating both 

osteoblastogenesis and osteoclastogenesis are beginning to emerge, a complete mechanistic 

understanding of their role in osteoblast/osteoclast-mediated bone remodeling during 

skeletal development remains incomplete.

Osteocytes: Similar to their role in osteoblasts, the evidence for the roles of YAP and TAZ 

in late stage osteoblasts and osteocytes is consistent. Late stage osteoblasts and early stage 

osteocytes express dentin matrix protein (DMP1). Both 10kb and 8kb DMP1-Cre models 

have been used to target gene deletion from osteocytes, but the osteocyte specificity depends 

on the sensitivity of the floxed alleles (O’Brien et al. 2008; Xiong et al. 2015; Rhee et al. 

2011; Bivi et al. 2012). Regardless, dual YAP/TAZ deletion using either the 10kb-DMP1-

Cre or the 8kb-DMP1-Cre reduced bone formation in vivo, with decreased osteoblast 

numbers and increased osteoclast activity (Kegelman et al. 2019; Xiong, Almeida, and 

O’Brien 2018). We further showed that dual deletion of YAP and TAZ using 8kb-DMP1-Cre 

impaired perilacunar/canalicular remodeling by regulating the expression of perilacunar/

canalicular matrix remodeling enzymes including Ctsk, MMP13, and MMP14 as well as 
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Collagen 1a1, resulting in skeletal fragility due to impaired collagen organization in the bone 

matrix (Kegelman et al. 2019). Therefore, YAP/TAZ in late stage osteoblasts and osteocytes 

promote bone function in vivo. Since osteocytes are known as the primary mechanosensory 

cell in bone and YAP/TAZ are critical for mechanotransduction, the role of YAP and/or TAZ 

in osteocyte-mediated bone adaptation in the context of skeletal loading is an exciting 

emerging area, but has not yet been studied in vivo.

Directions for future research

YAP/TAZ signaling in bone mechanotransduction—Mechanical loading is 

extremely important in bone development and maintenance. Mechanical loading mediates 

many different pathways implicated as mechanistic mediators in bone cells. The focus of 

this review is YAP/TAZ but other mechanisms have been reviewed in (Tian, Wang, and 

Bikle 2017; Thompson, Rubin, and Rubin 2012; Regard et al. 2012; J Klein-Nulend, 

Bacabac, and Bakker 2012). YAP/TAZ can be activated by multiple cues in skeletal cells 

(Papachroni et al. 2009), including ECM stiffness (Dupont et al. 2011), strain or stretch 

(Codelia, Sun, and Irvine 2014; Cui et al. 2015), and fluid shear stress (Kim et al. 2014). 

Most evidence indicates that YAP/TAZ activation by mechanical cues promotes osteogenic 

differentiation (Khetan et al. 2013; Panciera et al. 2017; Low et al. 2014). Further, fluid 

shear stress in osteocytes activates Piezo1 calcium channels which were shown to act 

upstream of YAP/TAZ signaling in vitro (X. Li et al. 2019) and that in osteoblast stimulation 

by fluid shear caused YAP/TAZ activation in an integrin-dependent manner (Kaneko et al. 

2014). Similarly, Piezo1 knockout mice exhibit decreased bone mass and mechanical load 

adaptation, while in vitro data show that Piezo1 signaling in osteocyte-like cells exposed to 

fluid shear stress requires YAP/TAZ (X. Li et al. 2019). However, the roles of YAP and TAZ 

in the mechanical load adaptation of bone has not yet been studied.

Implications for metabolic and developmental bone diseases—YAP and TAZ are 

known to drive aberrant cellular function in many diseases including atherosclerosis (K.-C. 

Wang et al. 2016), cancer (Zanconato, Cordenonsi, and Piccolo 2016), fibrosis (F. Liu et al. 

2015; Mannaerts et al. 2015), cardiac hypertrophy (Xin et al. 2013), and muscular dystrophy 

(Iyer et al. 2019; Bertrand et al. 2014), but beyond their neoplastic activity in osteosarcoma 

(Fullenkamp et al. 2016), the role of YAP and TAZ in bone disease is unknown. Due to the 

altered mechanical environment in disease pathogenesis, the mechanotransductive effects of 

YAP and TAZ are implicated in driving abnormal cellular function (Panciera et al. 2017). 

Further synthesis of the upstream signals and the downstream targets of YAP/TAZ signaling 

in bone is therapeutically important to understand the disease pathology and potential 

therapeutic interventions. Accordingly, the emerging roles of YAP and TAZ in skeletal 

lineage cells implicate YAP and TAZ in both developmental and metabolic skeletal diseases.

Dysfunctional YAP and/or TAZ signaling in mice mimicked characteristics of human cases 

of developmental bone diseases such as skeletal dysplasia (Lemyre et al. 1999) and 

osteogenesis imperfecta (OI) (Forlino and Marini 2016; van Dijk et al. 2011; Rauch and 

Glorieux 2004; Kegelman et al. 2018). As a heterogeneous group of inheritable diseases, the 

severity of OI ranges from mildly increased fracture risk to perinatal lethality (Forlino and 

Marini 2016). OI is characterized by increased bone fragility and deformity as well as 
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collagen matrix disorganization (van Dijk et al. 2011). Osterix-conditional YAP/TAZ 

knockout mice also mimicked several established mouse models of OI (Khillan et al. 1991; 

Pereira et al. 1993; Chipman et al. 1993) with spontaneous fractures, disorganized collagen, 

and altered osteoblast/osteoclast-mediated remodeling. More recently, a novel transgenic 

mouse model of OI type I with mutations in the COL1A1 gene demonstrated 

downregulation of YAP expression in bone, potentially implicating a feedback loop between 

upstream matrix activation and downstream transcriptional regulation (Y. Liu et al. 2019). 

Although the emerging evidence of YAP/TAZ in skeletal lineage cells resembles OI 

pathogenesis, loss of function mutations directly in either YAP or TAZ are unlikely to play a 

casual role in human OI. Nonetheless, YAP/TAZ coordinate multiple signaling axes, 

including TGFβ (Varelas et al. 2008, 2010) and WNT-β-catenin (Heallen et al. 2011; 

Azzolin et al. 2014), with known roles in bone disease.

In addition to developmental disease, the emerging roles of skeletal cell YAP and/or TAZ in 

regulating bone remodeling implicate a potential link to metabolic skeletal diseases, 

specifically related to the coordination of osteoblast/osteoclast and osteocyte-intrinsic 

remodeling. Metabolic skeletal disorders and diseases primarily related to abnormal bone 

remodeling include Paget’s disease and osteoporosis (X. Feng and McDonald 2011). In the 

context of both diseases, aberrant cellular function in osteoblasts, osteoclasts, and osteocytes 

causes altered bone remodeling, resulting in low bone mass, structural deterioration and/or 

deformities (X. Feng and McDonald 2011). YAP/TAZ deletion in mature osteoblasts and/or 

osteocytes resulted in low bone mass with increased osteoclastic remodeling, similar to these 

diseases (Kegelman et al. 2019; Xiong, Almeida, and O’Brien 2018). While targeting 

osteoblast/osteoclast-mediated bone remodeling is under clinical investigation, therapies 

targeting bone quality to treat metabolic bone remodeling disease are currently emerging. 

Treating bone quality to improve bone strength relates improving the integrity of the 

osteocyte lacunar/canalicular network. Both increased age (Vashishth et al. 2000) and 

reduced TGFβ signaling (Dole et al. 2017) cause defects in osteocyte lacunar/canalicular 

network associated with skeletal fragility. Correspondingly, YAP/TAZ deletion from 

osteocytes affected both bone quantity and quality via defects in perilacunar/canalicular 

remodeling, resulting in bone fragility (Kegelman et al. 2019). Evidence for YAP/TAZ 

signaling in both regulating osteoprogenitor cell function in skeletal development and 

coordinating osteoblast-osteoclast as well as osteocyte-mediated bone remodeling suggests a 

more mechanistic understanding of how YAP/TAZ signaling affects bone function could 

contribute new insights into the heterogeneity and/or etiology of both metabolic and 

developmental skeletal diseases.
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Figure 1. 
Coupé of “Bridge Cave”, on the island of Mallorca, drawn by Édouard-Alfred Martel in 

1901. Uncovering the mechanisms that control the development of the skeleton is like 

exploring a cave.
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Figure 2. The YAP/TAZ hourglass: a schematic of YAP/TAZ regulation and function.
YAP and TAZ are controlled by three primary inputs: mechanical cues, the Hippo pathway, 

and biochemical cues. Upon activation, YAP/TAZ bind to a variety of transcription factors in 

the nucleus to regulate diverse downstream outcomes.
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Figure 3. Illustration of YAP/TAZ activation in response to mechanical cues.
YAP and TAZ translocate to the nucleus in response to cytoskeletal tension induced by 

various mechanical stimuli, including matrix stiffness (E), stretch (ɛ), and fluid shear stress 

(τ), among others.
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