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SUMMARY

Combining RNA sequencing, ribosome profiling, and mass spectrometry, we elucidate the 

contribution of non-canonical translation to the proteome and major histocompatibility complex 

(MHC) class I immunopeptidome. Remarkably, of 14,498 proteins identified in three human B cell 

lymphomas, 2,503 are non-canonical proteins. Of these, 28% are novel isoforms and 72% are 

cryptic proteins encoded by ostensibly non-coding regions (60%) or frameshifted canonical genes 

(12%). Cryptic proteins are translated as efficiently as canonical proteins, have more predicted 

disordered residues and lower stability, and critically generate MHC-I peptides 5-fold more 
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efficiently per translation event. Translating 5′ “untranslated” regions hinders downstream 

translation of genes involved in transcription, translation, and antiviral responses. Novel protein 

isoforms show strong enrichment for signaling pathways deregulated in cancer. Only a small 

fraction of cryptic proteins detected in the proteome contribute to the MHC-I immunopeptidome, 

demonstrating the high preferential access of cryptic defective ribosomal products to the class I 

pathway.

Graphical Abstract

In brief

Ruiz Cuevas et al. describe a proteogenomic strategy for the detection of non-canonical proteins 

based on ribosome profiling. Relative to canonical proteins, cryptic proteins are translated as 

efficiently, are more disordered and unstable, and are particularly efficient at generating MHC-I 

peptides.

INTRODUCTION

Ribosome profiling (Ribo-seq) and mass spectrometry (MS) analyses reveal that many 

proteins are encoded by non-canonical open reading frames (ORFs) (Brunet et al., 2018, 

2019; Ingolia, 2016; Lu et al., 2019). Non-canonical proteins are encoded by both ostensibly 

non-coding ORFs and canonical ORFs in +1 or +2 reading frames. Accumulating evidence 

suggests that, far from representing translational noise, non-canonical proteins often exhibit 

critical and diverse cellular functions (Chen et al., 2020; van Heesch et al., 2019). Notably, 

when compared to classic ORFs, non-canonical ORFs present several distinctive features: 

they are shorter; have lower transcription and translation rates; commonly initiate translation 

on near-cognate codons (i.e., differ from AUG by a single nucleotide); and are predicted to 

be less stable in vivo (Chen et al., 2020; Erhard et al., 2018; Fields et al., 2015; Ivanov et al., 

2011; Lu et al., 2019; Samandi et al., 2017; Starck et al., 2012).
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Due to their short length and low abundance, non-canonical proteins are challenging to 

detect in whole-cell extracts by shotgun MS analyses. However, in the cells of jawed 

vertebrates, major histocompatibility complex class I molecules (MHC-I) have the 

remarkable ability to non-covalently bind and protect peptides, many of which derive from 

defective ribosomal products (DRiPs) and short-lived proteins (SLiPs) (Yewdell, 2003). 

DRiPs are translation products that do not achieve functional integration to the proteome and 

are degraded with an average half-life on the order of 8 min (Bourdetsky et al., 2014; Milner 

et al., 2006; Qian et al., 2006; Reits et al., 2000; Schubert et al., 2000). MHC-I-peptide 

complexes are transported to the cell surface to enable T cell immunosurveillance of infected 

and neoplastic cells. Cell surface MHC-I-associated peptides (MAPs) exhibit half-lives on 

the order of 12 h (Blaha et al., 2019; Prevosto et al., 2016), far longer than their source 

polypeptides in the case of SLiPs and DRiPs (Dersh et al., 2021). Thus, MHC-I serves as a 

sink for peptides whose source protein translation would otherwise be invisible to MS due to 

their rapid degradation.

Indeed, accumulating evidence indicates that a sizeable fraction of MAPs is encoded by non-

canonical ORFs (Chong et al., 2020; Laumont et al., 2016, 2018; Ouspenskaia et al., 2020), 

which provide most tumor-specific antigens (Laumont et al., 2018; Zhao et al., 2020). Due 

to its tight linkage to translation, the class I immunopeptidome is highly dynamic and 

sensitive to metabolic perturbation, infection, and neoplastic transformation (Caron et al., 

2011; Laumont et al., 2018; Wei et al., 2019). By contrast, the MHC class II 

immunopeptidome largely derives from large and stable proteins, with a trace contribution 

of non-canonical ORFs (Chong et al., 2020), due to the predominant loading of class II 

molecules in the lysosomal/endosomal compartment.

MS analysis provides concrete evidence for the translation of a given polypeptide. Large-

scale MS analyses of proteins and MAPs have been considerably refined over the last few 

years, with notable increases in sensitivity and accuracy (Chong et al., 2020; Courcelles et 

al., 2020; Ghosh et al., 2020; Ouspenskaia et al., 2020; Purcell et al., 2019; Vizcaino et al., 

2020). However, shotgun MS still requires creating a reference database to identify peptides 

present in a given sample. This becomes limiting when searching for non-canonical peptides 

that potentially originate from any genomic sequence. All-frame in silico translation of 

entire transcriptomes creates enormous databases, and searching MS data against such 

inflated reference databases generates false positives at an unacceptable rate (Finotello et al., 

2019; Nesvizhskii, 2010, 2014). Various approaches have been employed to optimize the 

reference database size based on the in silico translation of transcriptomic data.

One reductionist approach to identify unique tumor-specific MAPs rests on purging the 

reference database of sequences present in non-tumor cells (Laumont et al., 2018; Zhao et 

al., 2020). More recently, two proof-of-principle studies established that cancer MAPs can 

be identified using reference databases built from Ribo-seq (Chong et al., 2020; Ouspenskaia 

et al., 2020). Here, we describe a proteogenomic approach to identify non-canonical 

translation products present in whole-cell extracts and the immunopeptidome. Our findings 

demonstrate distinct features of the non-canonical translatome and their critical contribution 

to tumor immunosurveillance.
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RESULTS

A proteogenomic strategy for identification of non-canonical translation products

To identify non-canonical proteins, we developed an approach that combines Ribo-seq and 

RNA sequencing (RNA-seq) data to create non-redundant sample-specific protein databases 

(Ribo-db) containing only actively translated sequences. Indeed, after retrieving and 

sequencing ribosome-protected RNA fragments, Ribo-seq produces a detailed map of active 

cell translation events (Ingolia et al., 2009). Here, we collected Ribo-seq translation 

initiation sites (TISs), elongation, and RNA-seq data from three human diffuse large B cell 

lymphomas (DLBCLs), HBL-1, DoHH2, and SU-DHL-4. We intersected genomic positions 

of the start codons to the genomic positions of the assembled transcripts (Ribo-seq 

elongation and RNA-seq) to generate the set of ORFs (coupled start codon with an 

assembled transcript) for in silico translation (see STAR methods and Figure 1A). From this 

set of ORFs, we define canonical proteins as those translated from an annotated start codon 

coupled to the corresponding transcript according to genome version GRCh38.p10 

(GENCODE version 26). We define non-canonical translation products as those originating 

from a non-annotated initiation site, a new transcript, or both. We combined translation 

products into a sample-specific database for MS analysis (Figure 1A).

We first analyzed the general features of Ribo-db-predicted canonical and non-canonical 

translation products. As reported (Samandi et al., 2017), non-canonical proteins were more 

numerous but shorter than canonical proteins (Figure 1B). Indeed, ~70% of non-canonical 

proteins in the three cell lines were ≤100 amino acids (Figures 1B and S1A–S1B). Next, we 

assessed the sensitivity and specificity of Ribo-db by comparison to PRICE as a benchmark 

(Erhard et al., 2018). PRICE was developed to identify non-canonical translation events that 

generate MAPs. Because the calculation of the false discovery rate (FDR) is directly related 

to the size of the database under target-decoy approaches (Blakeley et al., 2012; Nesvizhskii, 

2010, 2014), it is difficult to make a valid comparison between databases in which their size 

differs significantly (Table S1). To mitigate this, for each DLBCL, we generated a composite 

database combining Ribo-db and PRICE sequences to identify MAPs detected by tandem 

MS. We based MAP identification on three criteria: a peptide length between 8 and 11 

amino acids; a predicted MHC binding affinity in the top 2% for the corresponding human 

leukocyte antigen (HLA) class I molecules expressed by each tumor; and a sample-specific 

FDR (see STAR methods and Figure S1E). We recognize that peptides with lower predicted 

MHC binding affinity can represent genuine MAPs (Capietto et al., 2020). However, given 

the very high number of predicted non-canonical proteins (Figure 1B), we deemed it 

preferable, at this stage, to employ stringent selection criteria that may underestimate the 

number of non-canonical MAPs. Our Ribo-db approach identified 99.7% of MAPs 

identified with PRICE and 5% to 6% of MAPs missed by PRICE (Figure 1C). The number 

of MAPs identified per cell line positively correlated with the total class I cell surface 

expression determined by the binding of the W6/32 pan HLA class I monoclonal antibody 

(mAb) (Figures S1C and S1D). We conclude that Ribo-db is well suited to discovering non-

canonical translation products, outperforming PRICE, the previous best-in-class method for 

probing peptides arising from non-canonical translation.
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The global landscape of non-canonical MAPs

To optimize MAP identification and evaluate the contribution of non-canonical translation 

products, we performed MS searches using the Ribo-db customized databases. Because this 

database is smaller than the composite (Ribo-db+PRICE) database (Table S1), we discarded 

fewer identified MAPs because of the FDR. Despite the smaller size of the Ribo-db 

database, we identified 166 more MAPs than if we had used the composite database (7,045 

versus 6,879 total MAPs, respectively) (Figure S1C). To identify MAP source proteins, we 

considered that any MAP sequence might be redundant in the database. Therefore, we used a 

strategy to assign the most likely origin for individuals MAPs, based on (1) the start codon 

score issued from the TIS-calling method, (2) the presence of an optimal or strong Kozak 

motif embedding the start codon (Kozak, 1987), and (3) the expression level of the source 

transcript as determined by read numbers (Figure S1E).

Out of the 7,045 identified MAPs, 6,520 source ORFs were canonical and 525 were non-

canonical (Figure 2A). Key features of canonical and non-canonical MAPs were highly 

similar: length distribution (mostly nonamers); PEAKS peptide confidence score (20.92 

canonical versus 20.15 non-canonical median scores); and NetMHC-pan predicted MHC 

binding affinity in the top 2% for the corresponding HLA allotype (median binding rank % 

of 0.16 for canonical and 0.15 for non-canonical MAPs).

We then assessed the accuracy of non-canonical identifications using three validation 

methods. First, we compared the observed retention times of liquid chromatography-tandem 

mass spectrometry (LC-MS/MS)-sequenced peptides (Wen et al., 2020) to the DeepLC 

algorithm predicted-retention times (Bouwmeester et al., 2020). Both canonical and non-

canonical peptides showed an excellent correlation between experimental and predicted 

retention times (Figure 2B). Second, we evaluated the relative mass error between the 

measured experimental values and the expected mass for all peptides. No significant 

difference was found in the distribution of mass errors of canonical versus non-canonical 

peptides (Figure 2C). Lastly, we repeated all peptide searches using Comet (Eng et al., 

2015). The average percentage of PEAKs to Comet peptides re-identification was similar for 

canonical and non-canonical peptides (85% for canonical and 83% for non-canonical 

peptides) (Figure 2D). Together, these validations further reinforce the authenticity of our 

non-canonical identifications.

The 6,520 canonical MAPs derive from 4,493 canonical proteins (91%) and the 525 non-

canonical MAPs from 451 non-canonical proteins (9%) (Figure S2A). Consistent with the 

differential length of canonical and non-canonical proteins (Figures 1B, S1A, and S1B), 

non-canonical MAPs derived from shorter proteins than canonical MAPs (Figure 2E). Non-

canonical MAP source proteins were classified according to their gene biotype (transcript 

classification) using GENCODE annotation (Harrow et al., 2012). The majority (79%) 

derives from sequences within protein-coding transcripts (including novel isoforms, UTRs, 

and frameshifts); 12% from transcripts assumed to be non-coding, such as pseudogenes, 

non-coding RNAs, or processed transcripts; 7% from intergenic regions; and 2% from 

introns (Figure 2F). This is consistent with evidence for peptides generated from these 

ostensibly non-coding regions of the genome (Apcher et al., 2013; Coulie et al., 1995; 
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Laumont et al., 2016; Lu et al., 2019; van Heesch et al., 2019), though it does not support a 

major role for introns in generating the immunopeptidome in these cells.

As previously shown (Chen et al., 2020), among the non-canonical proteins derived from 

protein-coding transcripts, MAP source ORFs attributed to 5′ UTR were 4-fold more 

frequent than 3′ UTR (13% versus 3% of total non-canonical proteins) (Figures 2F and 

S2B). MAPs resulting from canonical gene frameshifting (13%) confirmed the proteome’s 

malleability because a canonical protein may not be the transcript’s sole translation product. 

Such translation can occur from ribosomes bypassing a start codon or shifting frames during 

translation due to mRNA structure (Bullock and Eisenlohr, 1996).

Half (50%; n = 225) of the non-canonical proteins originated from novel isoforms (Figures 

2F and S2B). This group corresponds to proteins in frame with a canonical protein for which 

we eitherfound few initiation events at the annotated start codon or the absence of an 

annotated start codon. Because their sequence overlaps with canonical proteins and their 

large size, these proteins were considered hereafter as novel isoforms. Consequently, for 

subsequent analyses, we analyzed novel isoforms separately from the rest of the non-

canonical proteins. The remaining non-canonical proteins were further qualified as cryptic 

proteins.

Divergent properties of cryptic and canonical MAP source proteins

Next, we elucidated the features of cryptic proteins, novel isoforms, and canonical MAP 

source proteins. By definition, canonical (annotated) proteins initiated almost exclusively 

(99.9%) on an AUG codon. Importantly, Ribo-seq TIS revealed that, first, 40% of newly 

identified proteins initiated on unannotated AUG initiation sites and, second, more than half 

of the cryptic and novel isoform MAP source proteins (53% and 67%, respectively) initiated 

from a non-AUG near-cognate codon (Figures 3A and S2C). As previously reported (Ingolia 

et al., 2011; Ivanov et al., 2010; Lee et al., 2012; Starck et al., 2012), CUG was the most 

efficient codon at initiating unannotated proteins, though AAG was also frequently used and 

other near-cognate codons were well represented.

In line with previous reports (Bassani-Sternberg et al., 2015; Pearson et al., 2016), canonical 

MAPs derive from transcripts with higher expression than transcripts that do not generate 

MAPs (non-source transcripts; Figure 3B). Similarly, for cryptic MAPs and MAPs from 

novel isoforms, transcripts that generate MAPs are more abundant than non-source 

transcripts. Hence, for any genomic region, transcript levels positively correlated with MAP 

generation. Among MAP source transcripts, we found small but significant differences in 

abundance according to the following hierarchy: canonical proteins > novel isoforms > 

cryptic protein (median = 4.51 transcripts per million [TPM], 3.24 TPM, and 2.15 TPM, 

respectively; note that each cell has 500,000 mRNAs) (Figure 3B). Cryptic transcripts 

contained significantly fewer exons, with a median of 2 exons compared to a median of 11 

exons for transcripts coding for canonical proteins and novel isoforms (Figure 3C). Indeed, 

73% of cryptic MAP source proteins contained only one or two exons.

Next, using Ribo-seq and RNA-seq data, we compared the translation efficiency of each 

MAP source transcript (translation events per mRNA) (Figure 3D). We observed that the 
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translation efficiency of novel isoforms was only marginally inferior to that of canonical 

proteins, which in turn was similar to cryptic MAP source proteins. Among MAP source 

cryptic proteins, those deriving from an intergenic region showed the highest translation 

efficiency (Figure S2D). We further examined how the subcellular localization of MAP 

source proteins influences translation efficiency (see STAR methods). We compared the 

translation efficiency of MAP source proteins from 6 subcellular localizations: cytosol, 

membrane, nucleus, extracellular, mitochondrion and secretory pathway. As a negative 

control, we computed the translation efficiency of the canonical proteins non-source of 

MAPs (background), independently of their localization. Two points can be made from these 

analyses. First, the translation efficiency of canonical proteins generating no MAPs was 

lower than that of MAP source proteins from any localization, except for proteins located in 

the nucleus (Figures S2E and S2F). Second, proteins targeted to membranes or mitochondria 

were the most efficiently translated, followed by the secretory pathway and extracellular 

proteins.

Cryptic MAP source proteins had a mean length of only 49 amino acids compared to 504 

and 582 residues for canonical proteins and novel isoforms, respectively (Figure 3E). For 

canonical proteins, the number of MAPs presented is related to protein length (Pearson et 

al., 2016). If this applies to all translation products, the short size of cryptic proteins should 

significantly decrease their chance of generating MAPs. In accordance with this, we 

validated that the number of identified MAPs increased linearly with source protein length 

(Figure S3A). Then, for each protein, we calculated the number of amino acids detected in 

the immunopeptidome versus the number of amino acids in the source protein. This ratio 

was much higher for cryptic proteins versus canonical proteins (~5-fold) and novel isoforms 

(~7-fold) (Figure 3F). We conclude that, relative to canonical transcripts, cryptic transcripts 

are shorter, less abundant, and translated at similar efficiency but are ~5-fold more efficient 

at generating MAPs.

The global landscape of cryptic proteins in the wholecell proteome

MS protein detection is proportional to protein abundance and length (Lubec and Afjehi-

Sadat, 2007). To enhance cryptic protein detection in whole-cell extracts of the three 

DLBCL lines, we performed tandem analyses on fractions separated by molecular weight 

before trypsin digestion. Low-molecular-weight fractions (≤10 kDa) contained proteins 

bearing less than ~100 amino acids, whereas high molecular weight (≤10 kDa) contained 

longer proteins. We used PEAKs software to identify tryptic peptides of 7 and 25 amino 

acids and used the same strategy to assign the most likely source protein as for MAPs (FDR 

≤ 1%) (Figure 4A).

We identified 1,505 low- and 10,463 high-molecular-weight proteins. The vast majority of 

low-molecular-weight proteins were cryptic (81%), with canonical proteins (91%) 

dominating the high-molecular-weight fraction (Figure 4B). Interestingly, intergenic regions 

are the principal source of high-molecular-weight cryptic proteins (33%), although most 

(55%) low-weight cryptic proteins derive from protein-coding transcripts, with significant 

enrichment for 5′ UTR-encoded proteins(34%; Figure 4C). Similar to MAP source proteins 

(Figure 3E), cryptic proteins identified in whole-proteome analyses were significantly 
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shorter than canonical proteins and novel isoforms (median size of 387 amino acids for 

canonical proteins; 372 for novel isoforms versus 67 for cryptic proteins) (Figure 4D).

Cryptic proteins from whole-proteome extracts initiated less frequently at an AUG codon 

(23%; Figure 4E) than cryptic proteins detected in the immunopeptidome (40%; Figure 3A). 

Indeed, CUG (21%) was nearly as likely as AUG (23%) to initiate translation of cryptic 

proteome proteins. As with the immunopeptidome, transcripts coding MS-identified proteins 

were more abundant than transcripts coding for undetected proteins (Figure 4F). And, as 

with MAP source proteins, the translation efficiency of cryptic proteins detected in the 

whole proteome was similar to that of canonical proteins and slightly superior to that of 

novel isoforms (Figure 4G).

Disorder and instability of cryptic MAP source proteins

Even for conventional proteins, the whole-cell proteome only partially overlaps with the 

immunopeptidome (Granados et al., 2015; Pearson et al., 2016; Shraibman et al., 2019; 

Yewdell et al., 2019). Thus, we detected only 52% (2,351 out of 4,493) of conventional 

MAP source proteins in whole proteomes (Figure 5A). Notably, this ratio decreased to 6% 

(14/226) in the case of cryptic MAP source proteins: why such a dramatic discrepancy?

First, consistent with the idea that MS favors detecting abundant proteins, the low expression 

of cryptic MAP source transcripts (relative to canonical MAP source transcripts) hampers 

their detection in the whole proteome (Figure 3B). Accordingly, transcript expression 

correlates with detecting MAP source proteins in the whole-cell proteome (Figures 5B and 

5C, left panels). Leveraging our Ribo-seq data, we determined that translation level 

(ribosome occupancy) was higher in proteome-detected versus non-detected MAP source 

proteins, confirming that protein abundance impacts MS detection (Figures 5B and 5C, right 

panels). Second, detecting cryptic proteins in whole proteomes is hampered by their brevity, 

which alone results in zero to few (median = 3) predicted tryptic peptides per protein 

compared to 23 for conventional proteins (Figure 5D). Third, we considered the contribution 

of rapid degradation. Proteasomal digestion is the main route for protein degradation and 

MAP generation (Myers et al., 2018). Proteasomes initiate degradation at disordered 

substrate regions; most, but not all, substrates need to be ubiquitylated, particularly for MAP 

generation (Wei et al., 2017). We found a lower density of degradation signals 

(ubiquitination sites, D box, and KEN box motifs) (Liu et al., 2012; Mészáros et al., 2018; 

Radivojac et al., 2010) in cryptic relative to canonical proteins (Figure 5E). However, protein 

disorder analysis revealed that disordered regions occurred at twice the frequency in cryptic 

(31% of amino acids) versus conventional MAP source proteins (15% of amino acids) 

(Figure 5F). Also, the instability index (Guruprasad et al., 1990) predicts the decreased 

stability of cryptic proteins (Figure 5G).

Finally, we analyzed the correlation between ribosome stalling in up-, mid-, and downstream 

coding regions of MAP source transcripts and their detection in the proteome (Figure S3B). 

We found a small but significant decrease in ribosome coverage in the upstream coding 

region of proteome-detected proteins, consistent with diminished stalling relative to non-

detected proteins. These data collectively indicate that MAP source cryptic proteins contain 

zero to very few tryptic peptides, are low-abundance proteins generated with fewer stalling 
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events, and are highly disordered and unstable. These factors likely account for their 

overrepresentation in the immunopeptidome and underrepresentation in the proteome.

Features of non-canonical proteins

We next evaluated several features of non-canonical proteins identified in the 

immunopeptidome and/or the whole proteome of the DLBCL lines (Figure S4A). Non-

canonical proteins demonstrate little bias in chromosomal origin (Figure 6A). However, 

chromosome-16-derived proteins exhibited an increased proportion of novel isoforms. This 

may result from cytogenetic abnormalities involving chromosome 16 in DLBCL (Vick et al., 

2018). Notably, an unexpectedly high proportion of MAP source proteins derived from 

chromosome 12 (Figure S4B), consistent with the shared DLBCL abnormalities (e.g., 

polysomy) involving chromosome 12 (Chan et al., 1998; Younes et al., 1994). Overall, these 

findings indicate that, although all chromosomes generate numerous non-canonical proteins, 

their expression can be enhanced by cancer-associated genetic alterations.

Novel isoforms constitute a major fraction of unconventional proteins (28%) (Figures 6B 

and S4C). Alternative start codon initiation resulting in alternative protein isoforms 

translation is a common event in cancer (Xu and Ruggero, 2020). It affects the balance 

between multiple forms of a protein, which can have distinct and even opposite functions. 

We interrogated our dataset to identify signaling pathways enriched among the canonical 

genes generating these novel isoforms (n = 403) (Figure 6C). Interestingly, these genes were 

mostly involved in signaling pathways often deregulated in cancer, including AXIN, 

mitogen-activated protein kinase 4 (MAPK4), MAPK6, NOTCH1, NOTCH4, PTEN, 

RUNX3, and transforming growth factor β (TGF-β). NOTCH signaling, which is commonly 

perturbed in DLBCL and other cancers (Aster et al., 2017; Karube et al., 2018), was the 

most overrepresented in our analysis.

5′ UTRs represented the second most important cryptic protein source (21%;) (Figures 6B 

and S4C). Because upstream ORFs can modulate translation of main-ORFs (Young and 

Wek, 2016), we examined how canonical protein translation is altered by upstream 5′ UTR 

translation of a cryptic protein. We found that the canonical ORF of transcripts encoding 5′ 
UTR cryptic proteins had significantly lower ribosome occupancy than those encoding 3′ 
UTR and frameshift proteins (Figure 6D). This observation suggests that translating cryptic 

5′ UTR proteins hijacks ribosomes to hamper translation of the corresponding main ORF.

Finally, to evaluate the potential impactof 5′ UTR cryptic proteins on cell function, we 

analyzed the reactome of the genes encoding these proteins (n = 501). We found a 

conspicuous enrichment in genes involved in transcription, translation, and antiviral 

responses (Figure 6E), consistent with a functional role for 5′ UTR cryptic proteins in 

regulating various cellular processes.

DISCUSSION

We have developed a proteogenomic method to identify unannotated proteins whose 

peptides are detected in the whole-cell proteome and immunopeptidome. Our approach, 

which integrates RNA-seq, Ribo-seq, and MS data, identified 2,503 new non-canonical 
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human proteins expressed from all chromosomes: 1,842 cryptic proteins (72%) and 661 

novel isoforms (28%) (Figure 6B). As expected, a majority (85%) of translation events 

detected by Ribo-seq was not identified by MS (Tables S2 and S3). This was remarkably 

conspicuous for non-canonical proteins, as only 0.44% could be found by MS. Two facts can 

explain this. First, Ribo-seq-built databases must, to some extent, overestimate real 

translation products, especially non-canonical ones, due to imperfect sequence matching 

with genomic information. Second, and more importantly, MS captures only a small fraction 

of what is translated. Despite these caveats, our findings clearly demonstrate that ribosome 

profiling is a powerful tool to detect the translation of non-canonical transcripts, which are 

generally absent from MS databases because of their unannotated status.

Cryptic proteins are particularly interesting: 83% derived from ostensibly non-coding ORFs 

and 17% from alternative frame translation of canonical ORFs. Cryptic transcripts were 

slightly less abundant than canonical transcripts. Integrating Ribo-seq and RNA-seq data 

reveals that cryptic and canonical proteins are, surprisingly, translated with similar 

efficiency. Extending previous findings (Chong et al., 2020; Laumont et al., 2016, 2018; 

Ouspenskaia et al., 2020), cryptic proteins are coded by relatively short ORFs and frequently 

initiate with non-AUG near-cognate codons (which, except for CUG, are typically decoded 

as Met; Starck et al., 2012; Na et al., 2018). Cryptic proteins were far more likely than 

canonical proteins to be only detected in the immunopeptidome.

Critically, cryptic transcripts generated MAPs ~5-fold more efficiently than canonical 

transcripts (Figure 3F). The most plausible explanation is that cryptic proteins are rapidly 

degraded because they are disordered and unstable (Figures 5F and 5G), rendering them 

prototypical DRiPs. As a corollary, the global proteome, mainly consisting of stable 

proteins, has limited overlap with the immunopeptidome. Remarkably, only 6% of cryptic 

MAP source proteins were detected in tryptic digests of wholecell extracts (Figure 5A). 

Such selective antigenicity is a critical feature of class I antigen presentation, which cannot 

function as a mirror of the proteome, which is dominated by a relatively small number of 

gene products (just 250 housekeeping proteins comprising ~50% of the proteome). This 

could also be explained by the few predicted tryptic sites in cryptic proteins (Figure 5D), 

consistent with a negative bias in detecting short proteins due to the standard enzyme used in 

proteomic analysis.

Stable isotope labeling with amino acids in cell culture (SILAC) mass spectrometry kinetic 

studies in tumor cell lines also point to a limited correlation between the proteome and 

immunopeptidome and suggest a substantial contribution of DRiPs/SLiPs as a source of 

MAPs (Bourdetsky et al., 2014; Milner et al., 2006). Most short-lived MAP source proteins 

identified by SILAC MS kinetic analyses are subunits of multiprotein complexes. These 

likely become SLiPs due to stoichiometric subunits imbalances or other difficulties in 

becoming incorporated into their intended complex. A large fraction of MAPs identified in 

the present study would be missed entirely in such SILAC MS kinetic analyses due to the 

method-inherent shortcomings (e.g., search database limited by annotated proteins; failure to 

detect [tryptic] peptide in multiple time points and samples in SILAC MS analysis to 

determine MAP source; Bourdetsky et al., 2014; Milner et al., 2006). This would bias the 

identification of DRiP-derived MAPs to longer and more-abundant source proteins.
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Cryptic proteins detected in the cell proteome were longer (median of 67 amino acids) than 

those found in the immunopeptidome (median of 49 amino acids) (Figures 3E and 4D), 

likely a reflection of the likelihood that longer peptides can achieve a more-stable structure. 

Cryptic proteins detected in the immunopeptidome were initiated more frequently at an 

AUG codon than those found in the whole proteome (Figures 3A and 4E). This suggests that 

a subset of proteins initiated in AUG codons may have preferred access to the MHC-I 

presentation pathway, extending findings that CUG and other near-cognate-based initiation 

favor peptide generation under stress conditions (Starck and Shastri, 2016).

Whereas intergenic regions are the primary source of longer cryptic proteins found in the 

whole proteome, translation of 5′ UTRs was particularly common for shorter cryptic 

proteins found both in the immunopeptidome and the whole-cell proteome. Notably, 

translation of 5′ UTR cryptic proteins correlated with decreased ribosome occupancy of the 

main ORF, which was not seen with cryptic proteins derived from other regions in protein-

coding transcripts (3′ UTR and frameshift) (Figure 6D). The main ORFs whose translation 

was hindered by 5′ UTR cryptic proteins mainly regulate transcription, translation, and 

antiviral responses (Figure 6E). Translation of 5′ UTRs is known to negatively regulate 

translation of downstream ORF in cell stress (Jiang et al., 2017; Reverendo et al., 2019; 

Young and Wek, 2016). Our findings suggest that this extends to cryptic proteins. Additional 

studies are needed to generalize these findings from DLBCLs to other cancer cells and 

normal cells.

The 661 novel isoforms reported herein further illustrate the polycistronic nature of human 

genes (Brunet et al., 2018). Arguably, their most intriguing feature was that they showed a 

strong enrichment for signaling pathways deregulated in cancer, NOTCH being the most 

striking example (Figure 6C). Chromosome 16 was a particularly rich source of novel 

isoforms (Figure 6A). Accordingly, in DLBCLs, this chromosome commonly presents 

aberrations (e.g., duplications and trisomies), whose frequency increases with patient age 

(Vick et al., 2018). We also observed that chromosome 12, which is also commonly 

rearranged in DLBCLs, was a particularly rich source of cryptic MAPs. Together, these data 

suggest that underlying genomic aberrations may impact the non-canonical translation 

landscape by increasing the production of novel isoforms or cryptic proteins. How this 

affects the presentation of tumor-specific antigens that can be targeted for immunotherapy 

will be explored in further studies.

We detected only a small number of peptides from introns (135/7,045) (Figure S4A). Based 

on studies that peptides are efficiently derived from introns via translation of pre-spliced 

mRNA in the nucleus (Apcher et al., 2013; Martins et al., 2019), this is surprising, 

particularly given the fact that introns encode up to 10-fold more amino acids than exons 

(Francis and Wörheide, 2017). However, we note that, by performing Ribo-seq on 

cytoplasmic RNA, we may have missed a large pool of intron-encoded peptides translated in 

the nucleus.

Finally, it is worth considering the biological relevance of non-canonical translation of 

unstable proteins. This might result from the high entropy of cancer cells, which evolve to 

maximally proliferate at the organism’s cost, with little or no selection for the economical 
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use of available resources. It is likely, however, that at least some of the gene products have 

functions, particularly if their degradation is conditionally regulated, for example, by the cell 

cycle or stress. A more-general function of this class of proteins would be to enhance tumor 

immunosurveillance. The cancer-specific nature of such translation is an obvious starting 

point for future studies.

STAR★METHODS

RESOURCE AVAILABILITY

Lead contact—Further information and requests for resources and reagents should be 

directed to and will be fulfilled by the Lead Contact, Claude Perreault 

(claude.perreault@umontreal.ca).

Materials availability—This study did not generate new unique reagents.

Data and code availability—The Python, bash scripts, and Jupyter notebooks generated 

during this study are available at GitHub, https://github.com/lemieux-lab/Ribo-db.

The accession number for MS raw data and associated databases reported in this paperis 

PRIDE: PXD020620.

The accession number for RNA-seq and ribosomal profiling raw sequencing data reported in 

this paper is NCBI SRA: PRJNA647736.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cell lines

DLBCL lines HBL-1, DoHH2, and SU-DHL-4 bearing HLA A02:06, B51:01, C14:02; 

A01:01, B08:01, B44:02, C07:01, C07:04 and A02:01, A31:01, B15:01, C03:04, 

respectively, were cultured in complete medium consisting of Advanced RPMI medium 

(GIBCO) supplemented with 5% heat-inactivated fetal bovine serum (Seradigm), 1% 

Penicillin/Streptomycin (GIBCO), and Glutamax (GIBCO). Cells were grown in a 

humidified atmosphere at 37°C with 5% CO2 and routinely tested for mycoplasma 

contamination using Universal Mycoplasma Detection Kit (ATCC). The HLA genotype and 

sex of cell lines (Male: HBL-1, DoHH2, SU-DHL-4) were validated by RNA sequencing.

METHOD DETAILS

Ribosomal profiling, RNA-seq sample preparation, and sequencing

Ribosomal profiling was performed as previously described (McGlincy and Ingolia, 2017) 

with modifications as follows: DLBCL cell cultures were seeded at 2x105 cells/ml in 50 mL 

of complete medium in duplicates for each cell line and condition. Enrichment for initiating 

ribosomes was done by treating the cell cultures with harringtonine (LKT Laboratories) at 5 

μg/ml for 30 minutes at 37°C before harvesting. Thirty-six hours after seeding, the cells 

were pelleted by centrifugation (300 g, 5 min., RT), cell pellets were immediately put on ice 

and washed with ice-cold DPBS (GIBCO), centrifuged (300 g, 5 min., 4°C) and cell pellets 
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flash-frozen in liquid nitrogen. Samples processing proceeded without delay until sucrose 

cushion purified ribosomes were resuspended in TRI. Reagent Solution (Ambion) and stored 

at −80°C. Cycloheximide was included only in lysis buffer at 100 mg/ml. RNA 

concentration in cell lysates was quantitated by Qubit RNA BR Assay Kit (Invitrogen) using 

Qubit 4 fluorometer. The lysates containing 30 μg of RNA were diluted to the final volume 

of 200 μl with polysome buffer and treated with 15 U of RNase I (10 U/μl, Lucigen) at room 

temperature (24°C) for 45 min on a tube rotator. The ribosomal RNA depletion was done in 

two steps: First, size-selected ribosome protected fragments were depleted by Ribo-Zero 

Gold rRNA Removal Kit (Human, Mouse, Rat) (Illumina). Second, circularized cDNA was 

depleted using biotinylated complementary oligonucleotides as previously described (Ingolia 

et al., 2012). Ribosomal profiling libraries were sequenced on Illumina HiSeq 4000 to 

achieve 350-400 million raw reads per sample (~100 million for harringtonine treated 

samples). Ribosome profiling footprint library quality was assessed using riboWaltz (Lauria 

et al., 2018) via trinucleotide codon periodicity plotting against annotated protein-coding 

ORFs. Ribosome profiling samples exhibiting clear trinucleotide periodicity were retained 

for subsequence ORF detection. RNaseq libraries were prepared from the same cell lysates 

as the ribosome profiling sequencing libraries. Five micrograms of RNA per sample lysate 

were diluted with nuclease-free water to the final volume of 40 μl, treated with DNase I 

(Zymo Research) at RT for 15 min, and diluted with sodium dodecyl sulfate solution to the 

final concentration of 1%. Total RNA was purified using RNA Clean & Concentrator-5 

(Zymo Research). RNaseq libraries were prepared using TruSeq Stranded mRNA Library 

Prep kit (Illumina) and sequenced as PE 75 cycles on Illumina NextSeq 550 to high depth.

Quantification MHC-I molecules per cell

MHC-I’s absolute membrane density was evaluated on 3 DLBCL cell lines by indirect 

labeling with a purified anti-human HLA-ABC (clone W6/32) or a mouse IgG2a isotype 

control, using commercially available QIFIKIT (Dako) according to the manufacturer’s 

instructions.

Ribosome Profiling data pre-processing

Illumina adapters from the 3′ end of the Ribosome Profiling TIS and Elongation Sequencing 

Fragments (RPSF) were removed using fastx_clipper (http://hannonlab.cshl.edu/

fastx_toolkit/). UMI detection and extraction were performed using UMI_tools (Smith et al., 

2017). Next, only relevant RPSFs (i.e., reads with a length between 26 and 34 nucleotides) 

were retained for further human genomic coordinate mapping (reference genome version 

GRCh38.p10/hg38) using STAR v.2.6.1.d (Dobin et al., 2013). We ran STAR with default 

settings except for the following modified parameters:–outSAMtype BAM 

SortedByCoordinate,–alignEndsType End-ToEnd,–seedSearchStartLmax 15,–

outFilterMismatchNoverLmax0.05,–outFilterMatchNmin 25. Finally, the BAM files were 

deduplicated using UMI_Tools.

RNA-sequencing data pre-processing

Illumina adapters from the 3′ end of the RNA-sequencing reads were removed using 

Trimmomatic version 0.35 and then mapped to the reference genome version GRCh38.p10/

hg38 using STAR v.2.6.1.d (Dobin et al., 2013). We ran STAR with default settings except 
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for the following modified parameters:–outSAMtype BAM SortedByCoordinate,–

outFilterMismatchNoverLmax 0.05,–outFilter-MatchNmin 40.

Ribo-db approach: detection of active translation sequences

To generate a complete and noiseless sample-specific database suitable for MS searches, we 

translated in-silico the actively translated sequences (canonical and non-canonical ORF) 

assessed by combining Ribo and RNA-seq data as follows:

A) TIS calling: to detect sample-specific Translation Initiation Sites (TIS) from the 

aligned Ribo-seq TIS reads, we developed a probabilistic approach to estimate a 

confidence score to identify genomic positions of putative start codons.

To achieve this, we assumed that all annotated start codons aligning with Ribo-TIS reads 

were true start codons. From this, we estimate the probability of each position (pos) into 

each read length l = (26,…,34), to act as the first nucleotide of the ribosomal p-site, 

therefore, being the first nucleotide of a start codon (sc), as follows:

Let r = {reads being at first nt of a start codon | len = l, then pos = p}

Let R = {total reads being at first nt of a start codon|len = l};

P sc len = l, pos = p = r
R

whereP(sc | len = l, pos = p )is the probability of a sc at the read position pos in the read of 

length l = (26, …,34).

Then, we computed two heuristics to evaluate the certainty of the ribosomal P-site location 

into each read length l, and the relevance of the read-alignment regarding its multimapping.

The first heuristic H1(l) assigned a normalized weight to each read length (26-34 

nucleotides), computed through the standard deviation of the read positions acting as start 

codons, as follows:

Let σ = {σl| stdev of read positions acting as start codons for l = (26,…,34)};

H1 l = 1 −
σl − min σ

max σ − min σ ∗ 0.99

The second heuristic H2(Rr) assigned a weight to each Ribo-Tis read according to its rank 

(Rr) in which STAR has reported such alignments, as follows:

H2 Rr = 1 −
Rr − 1

maxR − 1 ∗ 0.99

where maxR is the max number of hits reported by STAR (default = 10). Thus, a fragment 

that has been mapped several times will have a decreasing weight per alignment. For 
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instance, a Ribo-Tis read that has three alignments in the genomes would have for R1 a 

weight equal to 1, R2 a weight equal to 0.89 and for R3 a weight equal to 0.78.

The combination of these three criteria allowed us to weight reads mapped to the genome for 

the identification of the start codons, using the following probability model:

P c Ribo − Tis reads mapped to x =
Σr read

Ribo − Tis P sc len = l, pos = p ⋅ H1 l ⋅ H2 Rr
Σr read

Ribo − Tis H1 l ⋅ H2 Rr

where x is the genomic position of the first nucleotide of a candidate start codon and c is the 

event that indicates that the position x is a start codon sc.

Finally, to establish a threshold on P(pos|c) to retain only the start codons candidates with 

high confidence, we ranked the computed confidence results to plot a receiver operating 

characteristic curve (ROC curve). This curve was plotted using the known start codons as 

positives and any other start codon candidates as negatives. We computed the Euclidean 

distance to a perfect classifier (0,1) for each point on the curve and then reported the 

threshold corresponding to that point’s shortest distance. Thus, any start codon candidate 

whose computed confidence was above the threshold was considered a positive start codon 

position and was retained for further analysis.

B) Assembly of reads into transcripts: to capture the complete transcriptome, 

including both annotated and unannotated transcripts, we generated sample-specific 

transcriptomes assemblies from Ribo-seq elongation data collected from actively 

translating cells and RNA-Seq data. To this end, we used String Tie v1.3.6 (Pertea et 

al., 2015) guided by a reference annotation (Ensembl release 88) in RNA-seq and 

Ribosome Profiling Elongation BAM files.

C) Intersect: to detect the set of actively translated ORFs, we use the intersection 

function of the BEDTools (Quinlan and Hall, 2010) suite in the BED file with the 

genomic positions of the positives start codons as well as each of the gtf files reported 

by StringTie for transcriptome assemblies based on Ribosome profiling Elongation 

and RNA-seq. Therefore, start codons intersecting assembled transcripts (i.e., pairs 

(start codon, transcript)) were collected as they represent the active ORFs that will be 

translated in-silico. From this set of ORFs, we define canonical proteins as those 

translated from an annotated start codon coupled to the corresponding transcript 

(known couplings) according to genome version GRCh38.p10 (GENCODE version 

26). We define non-canonical translation products as those originating from unknown 

couplings.

D) SNPs integration: to generate sample-specific transcription information, we 

integrated high-quality single-nucleotide polymorphisms (SNPs) identified from 

RNA-seq data to the assembled transcripts. Single-nucleotide variants were identified 

using freeBayes version 1.0.2-16-gd466dde (arXiv:1207.3907) and exported in a 

VCF, which was converted to an agnostic singlenucleotide polymorphism file format. 

The high-quality sample-specific SNPs identified (freeBayes quality > 20) were then 

inserted at their correct position into the intersected transcripts. When a given 
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position was ambiguous, the integration was done through the corresponded IUPAC 

symbol.

E) In-silico translation: to generate a sample-specific database, each transcript (from 

RNA-seq or Ribosome Profile Elongation) was translated from the frame dictated by 

the coupled start codon until the first in-frame stop codon. Any protein sequence 

longer or equal to 8 AA was retained. Any protein sequence nested in a longer 

sequence was not added to the database. However, we keep track of all information 

about proteins (i.e., which proteins were added to the database and which were not), 

as we use it to assign the most likely origin of each peptide. To avoid combinatorial 

explosion, we translated the transcripts containing the IUPAC symbols, the complete 

protein sequence once, and translated short sequences around the locations of the 

IUPAC symbols (20 nucleotides in the flanking regions of the SNPs).

We used Ribo-seq data from translation initiation site (TIS), elongation and RNA-seq data 

from three human diffuse large B cell lymphomas (DLBCL), HBL-1, DoHH2, and SU-

DHL-4 to generate sample-specific databases using the Ribo-db approach. These databases 

were used to perform mass spectrometry analysis of the immunopeptidome and the whole 

proteome. The number of proteins identified in these analyses is shown in Table S2. The 

percentage of proteins detected by MS among the proteins identified by Ribo-seq is shown 

in Table S3.

Immunopeptidome sample preparation

Cells for immunopeptidome analysis were grown and harvested the same way and in parallel 

with ribosome profiling cell cultures. The cells were counted during the washing step with 

ice-cold DPBS, and aliquots of 200 million cells were centrifuged and pellets flash-frozen in 

liquid nitrogen, stored at −80°C.

Mass spectrometry analysis: immunoprecipitation and sequencing by LC-MS/MS

For MHC-I peptides isolation, we performed immunoprecipitation on two replicates per cell 

line using W6/32 antibody (BioXCell, 1mg per 10E8 cells) as previously described 

(Lanoixet al., 2018). Replicates were composed of 2x108 cells for HBL-1 and 4x108 cells 

for SU-DHL-4 and DoHH2. Dried peptide extracts were resuspended in 4% formic acid and 

loaded on a homemade C18 analytical column (15 cm x 150 μm i.d. packed with C18 Jupiter 

Phenomenex of particle size 5 μmn and pore size 300 Å) with a 56-min gradient (DoHH2 

and SU-DHL-4) or 106-minute gradient (HBL-1) from 0% to 30% ACN (0.2% formic acid) 

and a 600 nL/min flow rate on a nEasyLC II system. Samples were analyzed with a Q-

Exactive HF mass spectrometer (Thermo Fisher Scientific) in positive ion mode with 

Nanospray 2 source at 1.6 kV. Each full MS spectrum, acquired with a 60,000 resolution 

was followed by 20 MS/MS spectra, where the most abundant multiply charged ions were 

selected for MS/MS sequencing with a resolution of 30,000, an automatic gain control target 

of 2x104, an injection time of 800 ms and collisional energy of 25%.

MAP identification

MAPs were eluted from three DLBCL cell lines and analyzed by liquid chromatography-

MS/M.S. (LC-MS/MS). MS/MS spectra were searched against sample-specific customized 
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databases using Peaks X (Bioinformatics Solution Inc.). For peptide identification, tolerance 

was set at 10 ppm and 0.01 Da for precursor and fragment ions, respectively. The occurrence 

of oxidation (M) and deamidation (NQ) was considered as variable post-translational 

modifications.

Following peptide identification, a list of unique peptides was obtained for each sample. 

Binding affinities to the sample’s HLA alleles were predicted with NetMHCpan 4.0 (Jurtz et 

al., 2017). Only peptides with a length between 8 and 11 amino-acid and a NetMHC 

percentile rank ≤ 2% were retained for further annotation. Finally, a false discovery rate 

(FDR) of 1% was applied on the remaining peptide scores, corresponding to sample-specific 

FDRs in the range of 1.4 to 2,9% if applied on total PSMs (DoHH2 = 1.6%, SU-DHL-4 = 

2.9%, HBL-1 = 1.4%). These filtering steps were made with the use of MAPDP (Courcelles 

et al., 2020). For each identified peptide, we interrogated all protein sequences to identify 

those that could be at the source of the peptide. We sequentially applied the following rules 

to assign to the peptide the most likely source protein based on (i) the highest starting codon 

confidence score, (ii) the presence of an optimal (GCC[R]CCstartG[V]) or strong 

([R]NNstartG[V]) Kozak motif (Kozak, 1987) around the start codon, (iii) the level of 

expression of the source transcript through the StringTie computed TPM measurements.

Comet v2019.01.5, a different MS search engine, was used to perform PEAKs re-

identification. The raw files were converted to mzXML format with the MsConvert tool of 

ProteoWizard and searched against the relevant sample-specific customized databases. 

Comet was used with the same parameters as for PEAKS. Following peptide identification, a 

list of unique peptides was obtained for each sample, and a false discovery rate (FDR) of 1% 

was applied to the peptide scores. All canonical and non-canonical MAPs identified by 

PEAKS for each sample were queried in the peptide list, and only perfect matches were 

considered successful reidentifications.

To ensure that our cryptic peptides did not correspond to improperly assigned post-

translationally modified canonical peptides, PEAKS searches were performed using the 

standard reference protein database (Ensembl GRCh38.88 annotations), including the six 

most frequent post-translational modifications reported for HLA class-I associated peptides 

(Kote et al., 2020; Mommen et al., 2014). In addition to oxidation (M) and deamidation 

(NQ), we searched for peptides bearing either phosphorylation, cysteinylation, N-cyclisation 

(pyroQ), or N-terminal acetylation. Out of the 243 spectrum IDs assigned to cryptic peptides 

in our study, only four were re-assigned to a canonical sequence harboring a post-

translational modification. Hence post-translational modifications might be a confounding 

factor for at most 1.6% of cryptic peptides.

Retention time prediction and relative mass error

As validation criteria of the MAPs identification robustness, we assessed the Pearson’s 

correlation between the retention time observed and the predicted retention time for each 

MAPs category (canonical and non-canonical). Peptide retention times were predicted using 

DeepLC 0.1.14 (Bouwmeester et al., 2020), with default parameters. The model was 

calibrated using retention time of 250 peptides (top 10 PEAKS scoring peptides from 25 

equal-sized retention time bins). Also, we evaluated the relative mass error for each MAP 
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and compared the distributions for the two MAPs category (canonical and non-canonical). 

Peptide relative mass error is presented in parts per million mass errors (ppm) unit and was 

assessed through the MAPDP platform (Courcelles et al., 2020).

Composite DB: Ribo-db + PRICE

To validate the relevance of the Ribo-db approach, we ran the PRICE v.1.0.3 method (Erhard 

et al., 2018) on the BAM files containing mapped reads of ribosome Profiling TIS and 

Elongation of each cell line with default parameters besides the -novelTranscripts parameter. 

The predicted ORFs were translated following the same rules as for Ribo-db (i.e., SNP 

integration and in-silico translation) and were added to the sample-specific Ribo-db 

database. Next, for each cell line, MS/MS spectra were searched against each sample 

composite database. The lists of unique identifications obtained from PEAKS were filtered 

based on 1) length between 8 and 11 amino acids, 2) percentile rank ≤ 2% for at least one on 

the relevant MHC-I molecules as predicted by NetMHCpan 4.0,3) FDR ≤ 1% estimation. 

Each sample-specific database (i.e., Ribo-db and PRICE-db) was independently queried for 

each peptide identified to count the number of unique and shared peptides found in the 

databases.

Biotype screening

Non-canonical proteins were designated as a function of their transcript genomic location: 

5′ or 3′ UTR proteins are in 5′/3′ UTR or overlapping CDS and 5′/3′UTR; frameshift 

proteins are in coding transcripts but out-of-frame of canonical translations; intronic proteins 

are in intronic regions or in exon-intron junction; annotated non-coding transcripts proteins 

are in transcripts annotated as pseudogenes, non-coding RNA and processed transcripts; 

intergenic proteins are in novel transcripts. We set out to determine the category associated 

with each non-canonical protein through two validation steps. First, as we used StringTie in 

a reference-guided manner, we used the reference_transcript (field returned by StringTie) of 

the transcript from which the protein originated. Therefore, if the non-canonical protein 

derived from a protein-coding transcript, depending on the location of the protein within the 

transcript relative to the canonical protein, the non-canonical protein was assigned to the 

categories: ‘5′UTR’ and ‘3′UTR’, ‘Novel Isoform’ (proteins that share the same reading 

frame of the canonical protein but originate from an alternative starting codon), ‘Frameshift’ 

(proteins in a different reading frame than the canonical one), or’Intronic’ (proteins derived 

from transcripts containing intronic regions of a canonical protein). If the non-canonical 

protein derived from an annotated non-coding transcript, then it was directly assigned to the 

category of ‘annotated non-coding transcript’. Finally, non-canonical proteins whose 

genomic location was not part of any annotated transcript were assigned to the Intergenic 

category. The second step was designed to find a consensus category for each protein. Since 

we knew that some assembled transcripts were not associated with a reference_transcript, 

we chose to interrogate the annotations (Ensembl gtf file) to find all possible categories 

associated with the protein’s location. Therefore, we had possibly associated categories for 

each protein, and we assigned to the protein the most represented category.
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Translation efficiency and ribosome occupancy

The translational efficiency of each MAPs source protein was calculated as the ratio between 

translation (derived from counts of ribosome profiling reads) over transcription (derived 

from RNA-Seq reads). These measurements were computed as described by Ingolia (Ingolia 

et al., 2011). First, the ribosome occupancy (translation level) was computed as the number 

of Ribosome Profiling Elongation fragments aligned to the coding protein sequence divided 

by the protein sequence length. Second, such measurements were normalized by dividing the 

total number of Ribosome Profiling Elongation fragments aligned to any coding transcript 

sequence. Finally, as the same measurements were computed for RNA-seq reads, a gene’s 

translation efficiency was calculated as the normalized Ribosome Profiling Elongation ratio 

to the normalized RNA-seq.

Translation efficiency analysis of canonical protein location

We extracted information on the canonical protein subcellular compartments from ComPPI 

db (Veres et al., 2015), which provides confidence scores (0-1) for subcellular protein 

localization. For each canonical MAP source protein, we considered all its major locations, 

i.e., those having confidence scores above 0.8. We used the subcellular compartment with 

the highest score for proteins without a localization score above this threshold. Moreover, for 

the few proteins underrepresented in the database, we assessed their more likely localization 

manually in Uniprot. Therefore, we compared the translation efficiency of MAP source 

proteins from 6 subcellular localizations: cytosol, membrane, nucleus, extracellular, 

mitochondrion, secretory pathway, and we used as a negative control, the translation 

efficiency of the canonical proteins non-source of MAPs (background).

Stalling ribosomes

We examined the ribosome profiling elongation coverage of each transcript source of MAPs 

proteins and compared it to the coverage of transcripts non-source of MAPs (we chose 

proteins uniquely detected in the whole proteome as non-source of MAPs). We defined the 

upstream and downstream of a transcript as the first and last 33% of the transcript’s length 

(33% up and the last 33% down). The 34% of the length of the transcript at the middle was 

defined as Midstream. We assessed for each nucleotide of the transcript the number of 

ribosome profiling elongation reads and then computed for each whole transcript its median 

coverage. Next, we calculated the median at the Upstream, Midstream, and Downstream 

sections of the transcript to compute the fold change relative to the whole transcript’s 

median coverage.

Whole proteome analysis

Protein pellets were resuspended in 50 mM ammonium bicarbonate and separated with an 

Amicon Ultra-15 10K centrifugal filter device. Proteins staying on the filter were 

resuspended in 50mM ammonium bicarbonate. Ten mM TCEP [Tris(2-carboxyethyl) 

phosphine hydrochloride Thermo Fisher Scientific] was added to the samples, and samples 

were vortexed for 1 h at 37°C. Chloroacetamide (Sigma-Aldrich) was added for alkylation to 

a final concentration of 55 mM. Samples were vortexed for another hour at 37°C. One 

microgram of trypsin was added, and digestion was performed for 8 h at 37°C. Samples 
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were dried and solubilized in 5% ACN-0.2% formic acid (FA). Peptides were separated on a 

homemade reversed-phase column (150-μm i.d. by 200 mm) with a 216-min gradient from 

10 to 30% ACN-0.2% FA and a 600-nl/min flow rate on an Easy nLC-1000 connected to an 

Orbitrap Fusion (Thermo Fisher Scientific, San Jose, CA). Each full MS spectrum acquired 

at a resolution of 120,000 was followed by tandem-MS (MS-MS) spectra acquisition on the 

most abundant multiply charged precursor ions for a maximum of 3 s. Tandem-MS 

experiments were performed using collision-induced dissociation (CID) at a collision energy 

of 30%. The data were processed using PEAKS X (Bioinformatics Solutions, Waterloo, ON) 

and the sample-specific databases. Afalse discovery rate (FDR) of 1% was applied to the 

peptide scores. Mass tolerances on precursor and fragment ions were 10 ppm and 0.3 Da, 

respectively. Fixed modification was carbamidomethyl (C). Selected variable 

posttranslational modifications were oxidation (M), deamidation (NQ), phosphorylation 

(STY), acetylation (N-ter). To assign protein origin of tryptic peptides, we used the same 

rules as for immunopeptidomics experiences. For each identified peptide, we interrogated all 

protein sequences to identify those that could be at the source of the tryptic peptide. We 

sequentially applied the following rules to assign to the peptide the most likely protein origin 

based on (i) the highest starting codon confidence score, (ii) the presence of an optimal 

(GCC[R]CCstartG[V]) or strong ([R]NNstartG[V]) Kozak motif (Kozak, 1987) around the 

start codon, (iii) the level of expression of the source transcript through the StringTie 

computed TPM measurements.

Theoretical trypsin digestion, UB sites, disordered regions, and instability index prediction

We counted the theoretical number of tryptic peptides generated after in-silico digestion and 

preserved those with a length ranging between 7 and 25 aa for each cryptic and canonical 

protein. Degradation signals were predicted based on i) GPS-ARM version 1.0 (Liu et al., 

2012) for D -box and KEN -box motifs, and ii) UbPred (Radivojac et al., 2010) for 

prediction of canonical ubiquitination sites with high confidence (≥0.84). To identify 

Intrinsically Disordered Protein Regions, we used the biophysics-based approach IUPred2 

(Mészáros et al., 2018), with a disorder value cut-off set at 0.5. The instability index of each 

protein, which predicts protein stability based on the order and frequency of certain 

dipeptides, was computed using the function ProteinAnalysis from the module Prot-Param 

of the Biopython module SeqUtils. This function implements the method described by 

Guruprasad et al. (Guruprasad et al., 1990). Proteins with instability indexes over 40 are 

predicted to be less stable.

Reactome pathway overrepresentation test

Genes corresponding to annotated canonical proteins encoded within novel isoforms 

sequences or downstream of 5′UTR-initiated cryptic proteins were submitted to Panther’s 

“Statistical overrepresentation test” (http://www.pantherdb.org/) using reactome pathways as 

the annotation set. The whole list of Homo sapiens genes was used as a reference. Statistical 

significance of the enrichment of each pathway was assessed using Fisher’s exact test, with 

the Benjamini-Hochberg false discovery rate (FDR) correction for multiple comparisons 

(adjusted p value < 0.05). To limit the number of pathways displayed in graphs, we applied, 

in addition to p< 0.05, a threshold on each pathway’s level of enrichment. Therefore, for 

novel isoforms, statistically overrepresented pathways with enrichment > 4 were displayed. 
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For 5′UTR cryptic proteins, statistically overrepresented pathways with enrichment > 3 

were shown.

QUANTIFICATION AND STATISTICAL ANALYSIS

Analyses and figures were performed using Python v2.7.6 or R v3.5.1. Correlation tests 

were done using the python function scipy.stats.linregress. All statistical tests used are 

mentioned in the respective figure legends. Significant level (*p < 0.05, **p < 0.01, ***p < 

0.001 and ****p < 0.0001) are reported in the figures. Kolmogorov-Smirnov, Fisher’s exact, 

Mann-Whitney U, T-Test, Wilcoxon rank-sum tests were performed using ks_2samp, 

fisher_exact, mannwhitneyu, ttest_ind, wilcoxon functions from scipy.stats python module, 

respectively. Unless mentioned otherwise, all boxes in boxplots show the third (75th) and 

first quartiles (25th), and the box bands show the median (second quartile) of the 

distribution; whiskers extend to 1.5 times the interquartile distance from the box.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• A proteogenomic method integrating ribosome profiling and mass 

spectrometry

• Of 14,498 proteins, 2,503 were non-canonical: 28% new isoforms and 72% 

cryptic proteins

• Cryptic proteins are more disordered and unstable than classical proteins

• Cryptic proteins are particularly efficient at generating MHC-I peptides
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Figure 1. Ribo-seq-based proteogenomic approach for MS identification of non-canonical 
translation products
(A) General overview of the workflow used to generate sample-specific databases containing 

active canonical and non-canonical translations based on Ribo-seq data.

(B) Length distribution of canonical versus non-canonical proteinsfrom HBL-1 cells. ****p 

< 0.0001; Kolmogorov-Smirnov test. Proteins with a length >800 amino acids are not 

displayed.

(C) Venn diagram and table showing MAPs identified with the Ribo-db approach and the 

PRICE method.
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Figure 2. Features of MAPs derived from canonical and non-canonical proteins
(A–C) Displayed data refer to all canonical (n = 6,520) and non-canonical (n = 525) MAPs 

(total from 3 cell lines, 2 replicates each).

(A) Length, spectrum score (*p < 0.05; t test); MHC binding (p > 0.05; Kolmogorov-

Smirnov test).

(B) Pearson correlations between observed and DeepLC-predicted retention times of MAPs 

derived from canonical and non-canonical proteins.
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(C) Relative mass error of MAPs derived from canonical and non-canonical proteins. p > 

0.05; two-sided Mann-Whitney U test.

(D) Percentage of successful MAPs re-identification with Comet. p > 0.05; two-sided Mann-

Whitney U test. Bar plot shows the median with error bars: 95% confidence interval (CI) (n 

= 3 cell lines).

(E) Length distribution of canonical (n = 4,493) and non-canonical (n = 451) MAPs source 

proteins. ****p < 0.0001; Kolmogorov-Smirnov test. Proteins with a length >800 amino 

acids are not displayed.

(F) Non-canonical MAPs source proteins derive from coding and non-coding transcripts. Pie 

chart showing the percentages of non-canonical proteins for each biotype and diagram 

illustrating how various types of transcripts were designated as a function of their genomic 

location.
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Figure 3. Properties of MAP source proteins
(A) More than half of the non-canonical MAP source proteins (60%) initiated at a near-

cognate codon. Stacked bar plot shows the percentage of proteins deriving from AUG and 

near-cognate codons for canonical proteins and various subgroups of non-canonical MAP 

source proteins.

(B) Transcript expression level distribution of canonical (n = 4,493), novel isoforms (n = 

225), and cryptic (n = 226) MAP source transcripts versus non-source proteins (n = 

647,686). ****p < 0.0001; Kolmogorov-Smirnov test.
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(C) Dot charts displaying the exons count for each category of MAP source proteins; each 

dot corresponds to the number of proteins bearing a given number of exons (median = 2 

exons for cryptic, 11 exons for novel isoform and canonical proteins).

(D) Translation efficiency of MAP source proteins. Boxplots show the translation efficiency 

distribution for each category of MAP source proteins. *p < 0.05; two sided Mann-Whitney 

U test.

(E) Boxplots indicate the length distribution of MAP source proteins for each category: 

cryptic; novel isoform; and canonical. Median length in cryptic (49 amino acids), canonical 

(504 amino acids), and novel isoform (582 amino acids) is shown. **p < 0.01; ****p < 

0.0001; two-sided Mann-Whitney U test.

(F) Cryptic proteins are proficient in generating MAPs. Boxplots show the ratio of the length 

covered by MAPs to the protein’s length in number of amino acids. ****p < 0.0001; two-

sided Mann-Whitney U tests.
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Figure 4. Features of canonical and cryptic proteins detected in tryptic digests of whole-cell 
extracts
(A) Schematic overview of the method used for whole-proteome analyses. Proteins were 

filtered according to their molecular weight to maximize the detection of short proteins, 

which are a rich source of cryptic proteins.

(B–D) Displayed data refer to 3 cell lines, 1 replicate each.

(B) Proportion of each protein category detected in low-versus high-molecular-weight 

fractions. Low-weight fraction is enriched in cryptic proteins, whereas high-weight fraction 

is enriched in canonical proteins.
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(C) Genomic origin of cryptic proteins identified in the whole-proteome extracts.

(D) Boxplots indicating the length distribution of proteins for each category: cryptic; novel 

isoform; and canonical. Median length of cryptic (67 amino acids), canonical (387 amino 

acids), and novel isoform (372 amino acids) proteins is shown. *p < 0.05; ****p < 0.0001; 

two-sided Mann–Whitney U test.

(E) Stacked bar plot showing the percentage of proteins deriving from AUG and near-

cognate codons for canonical proteins along with each subgroup of the non-canonical 

proteins from whole-proteome extracts.

(F) RNA expression level of transcripts coding for detected (n = 11,968) proteins compared 

to transcripts coding for undetected proteins (n = 640,662). ****p < 0.0001; Kolmogorov-

Smirnov test.

(G) Boxplots showing the translation efficiency of various categories of proteins identified 

from whole-proteome extracts. *p < 0.05; **p < 0.01; two-sided Mann-Whitney U test.
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Figure 5. Cryptic proteins are disordered and unstable
(A) MAP source proteins are underrepresented in the whole-proteome analysis. Bar plot 

depicting the total number of proteins identified in the immunopeptidome (pink bars) and 

the overlap with proteins detected in the whole proteome (blue bars) is shown. Cryptic 

proteins showed a low overlap (6%) compared to novel isoforms (21%) and canonical 

proteins (52%).

(B) Transcription- and translation-level abundance of canonical MAP source proteins. Left 

panel: box plots show the transcription expression level of transcripts at the origin of 
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canonical MAP source proteins detected and non-detected in the whole-proteome analysis. 

Right panel: box plots show the translation level of transcripts at the origin of canonical 

MAP source proteins detected and non-detected in the whole-cell proteome analysis. 

Statistical difference was assessed by Mann-Whitney U test.

(C) Transcription- and translation-level abundance of cryptic MAP source proteins. Left 

panel: box plots show the transcription expression level of transcripts at the origin of cryptic 

MAP source proteins detected and non-detected in the whole-proteome analysis. Right 

panel: box plots show the translation level of transcripts at the origin of cryptic MAP source 

proteins detected and non-detected in the whole-cell proteome analysis. Statistical difference 

was assessed by Mann-Whitney U test.

(D) Distribution of the number of predicted tryptic peptides per MAP source protein 

(median = 3 peptides for cryptic proteins and 23 peptides for canonical proteins). Statistical 

significance was assessed by Kolmogorov-Smirnov test.

(E) Cryptic proteins present fewer degradation signals compared to canonical proteins. 

Histogram plots in the top and bottom panels depict the number of predicted degradation 

signal (canonical ubiquitination sites, D box, and KEN box motifs) relative to the protein 

size for cryptic and canonical proteins, respectively. Statistical significance was assessed by 

Kolmogorov-Smirnov test.

(F) Cryptic proteins contain significantly more disordered residues than canonical proteins. 

Boxplots depicting the number of disordered residues predicted per protein relative to the 

protein’s length for cryptic and canonical proteins source of MAPs are shown. ****p < 

0.0001; two-sided Wilcoxon rank-sum test.

(G) Cryptic proteins are less stable in vivo. Histogram plot showing the distribution of the 

instability index predicted for cryptic and canonical proteins. Statistical significance was 

assessed by Student’s t test.
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Figure 6. Chromosomal origin and function of non-canonical proteins
(A) Non-canonical identified proteins derive from all chromosomes. Bar graph shows the 

chromosomal origin of each category of proteins. *p < 0.05; two-sided Fisher’s exact test.

(B) Genomic origins of the whole set of non-canonical identified proteins. Pie chart shows 

the percentages of non-canonical proteins derived from different genomic regions.

(C) Novel isoforms derive from genes that regulate pathways commonly perturbed in 

DLBCL and other cancers. Reactome pathways enriched in the list of genes corresponding 

to proteins for which a novel isoform was identified (n = 403 unique genes). Panther 
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overrepresentation test; numbers in the bargraph correspond to fold enrichment of each 

pathway. Fisher’s exact test with FDR correction; adj. p < 0.05; fold enrichment >4.

(D) 5′ UTR cryptic proteins hinder the translation of main ORFs. Ribosome occupancy of 

the canonical coding sequence (CDS) of genes producing a cryptic protein via frameshift, 5′ 
UTR, or 3′ UTR translation is shown. *p < 0.05; **p < 0.01; ***p < 0.001; two-sided 

Mann-Whitney U test.

(E) 5′ UTR cryptic proteins regulate the translation of canonical proteins involved in 

transcription, translation, and antiviral responses (n = 501 unique genes). Panther 

overrepresentation test; numbers on the bargraph correspond to fold enrichment of each 

pathway. Fisher’sexacttest with FDR correction; adj. p < 0.05; fold enrichment >3.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

InVivoMAb anti-human MHC Class I (W6/32) BioXcell Cat# BE0079; RRID: AB_1107730

Anti-human HLA-ABC (W6/32) Biolegend Cat# 311402; RRID: AB_314871

Mouse IgG2a, κ Isotype Ctrl Antibody Biolegend Cat# 400201

Chemicals, peptides, and recombinant proteins

Advanced RPMI 1640 Medium Thermo Fisher Cat# 12633012

Fetal Bovine Serum Seradigm Cat# 1500-500

AIM V medium Thermo Fisher Cat# 12055091

Penicillin-Streptomycin (10,000 U/mL) Thermo Fisher Cat# 15140122

GlutaMAX Supplement Thermo Fisher Cat# 35050061

Gentamycin Thermo Fisher Cat# 15750060

Harringtonine LKT Laboratories Cat# H0169

DPBS, calcium, magnesium GIBCO Cat# 14040141

UltraPure Sucrose Invitrogen Cat# 15503022

TRI Reagent Solution Invitrogen Cat# AM9738

Cycloheximide, High Purity - CAS 66-81-9 - 
Calbiochem

Sigma-Aldrich Cat# 239764

RNase I, E. coli Lucigen Cat# N6901K

DNase I Zymo Research Cat# E1009-A

Nuclease-Free Water (not DEPC-Treated) Invitrogen Cat# AM9932

SDS, 20% Solution, RNase-free Invitrogen Cat# AM9820

Formic acid Sigma-Aldrich Cat#FX0440-7

C18 Jupiter Phenomenex Phenomenex Cat# 04A-4263

Acetonitrile Thermo Fisher Cat# A996SK-4

Ammonium bicarbonate Sigma-Aldrich Cat# A6141

TCEP [Tris(2-carboxyethyl) phosphine 
hydrochloride

Thermo Fisher Cat# 20490

Chloroacetamide Sigma-Aldrich Cat# C0267

Trypsin Promega Cat# V511A

Critical commercial assays

Universal Mycoplasma Detection Kit ATCC Cat# 30-1012K

Qubit RNA BR Assay Kit Invitrogen Cat# Q10211

Ribo-Zero Gold rRNA Removal Kit (Human, 
Mouse, Rat)

Illumina Cat# MRZG12324

RNA Clean & Concentrator-5 Zymo Research Cat# R1013

TruSeq Stranded mRNA Library Prep kit Illumina Cat# 20020594

PureProteome protein A magnetic beads Millipore Cat# LSKMAGA10

QIFIKIT Agilent Cat# K0078

Deposited data
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REAGENT or RESOURCE SOURCE IDENTIFIER

DLBCL cell line samples: RNaseq data This study NCBI SRA: PRJNA647736

DLBCL cell line samples: Ribo-seq data This study NCBI SRA: PRJNA647736

DLBCL samples immunopeptidomic and whole 
proteome tryptic data

This study PRIDE: PXD020620

Experimental models: cell lines

HBL-1 cell line Lab of Martin Dyer RRID: CVCL_4213

SU-DHL-4 cell line Lab of Mark Raffeld RRID: CVCL_0539

DoHH2 cell line DSMZ Cat# ACC-47; RRID: CVCL_1179

Software and algorithms

Ribo-db Pipeline This study https://github.com/lemieux-lab/Ribo-db

STAR (Dobin et al., 2013) https://github.com/alexdobin/STAR

SAMtools (Li et al., 2009) http://www.htslib.org/doc/

StringTie (Pertea et al., 2015) https://ccb.jhu.edu/software/stringtie/

PEAKS X Bioinformatics Solutions https://www.bioinfor.com/

Comet (Eng et al., 2015) http://comet-ms.sourceforge.net/

NetMHCpan 4.0 (Jurtz et al., 2017) http://www.cbs.dtu.dk/services/NetMHCpan-4.0/

Freebayes (Garrison and Marth, 2012) https://github.com/freebayes/freebayes

Proteowizard Proteowizard Software http://proteowizard.sourceforge.net

BEDtools (Quinlan and Hall, 2010) https://bedtools.readthedocs.io/en/latest/

MAPDP (Courcelles et al., 2020) https://gitlab.com/iric-proteo/mapdp

DeepLC 0.1.14 (Bouwmeester et al., 2020) https://github.com/compomics/DeepLC

PRICE v.1.0.3 (Erhard et al., 2018) https://github.com/erhard-lab/gedi/wiki/Price

GPS-ARM version 1.0 (Liu etal., 2012) http://arm.biocuckoo.org/

UbPred (Radivojac et al., 2010) http://www.ubpred.org/

IUPred2 (Mészáros et al., 2018) https://iupred2a.elte.hu/

Biopython module SeqUtils Biopython module https://biopython.org/docs/1.75/api/Bio.SeqUtils.html

Panther classification system Panther algorithm http://www.pantherdb.org/

riboWaltz (Lauria et al., 2018) https://github.com/LabTranslationalArchitectomics/
riboWaltz
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