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Abstract

Posttranslational modifications (PTMs) refer to amino acid side chain modification in
some proteins after their biosynthesis. There are more than 400 different types of PTMs
affectingmany aspects of protein functions. Suchmodifications happen as crucial molec-
ular regulatory mechanisms to regulate diverse cellular processes. These processes
have a significant impact on the structure and function of proteins. Disruption in PTMs
can lead to the dysfunction of vital biological processes and hence to various diseases.
High-throughput experimental methods for discovery of PTMs are very laborious and
time-consuming. Therefore, there is an urgent need for computational methods and
powerful tools to predict PTMs. There are vast amounts of PTMs data, which are publicly
accessible throughmany online databases. In this survey, we comprehensively reviewed
the major online databases and related tools. The current challenges of computational
methods were reviewed in detail as well.

Introduction

Posttranslational modifications (PTMs) are covalent pro-
cessing events that change the properties of a protein by
proteolytic cleavage and adding a modifying group, such
as acetyl, phosphoryl, glycosyl and methyl, to one or
more amino acids (1). PTMs play a key role innumerous
biological processes by significantly affecting the struc-
ture and dynamics of proteins (2, 3). Generally, a PTM
can be reversible or irreversible (4). The reversible reac-
tions contain covalent modifications, and the irreversible
ones, which proceed in one direction, include proteolytic

modifications (5). PTMs occur in a single type of amino
acid or multiple amino acids and lead to changes in the
chemical properties of modified sites (6). PTMs usually
are seen in the proteins with important structures/functions
such as secretory proteins, membrane proteins and his-
tones. These modifications affect a wide range of protein
behaviors and characteristics, including enzyme function
and assembly (7), protein lifespan, protein–protein inter-
actions (8), cell–cell and cell–matrix interactions, molec-
ular trafficking, receptor activation, protein solubility
(9–14), protein folding (15) and protein localization (16).
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Therefore, these modifications are involved in various bio-
logical processes such as signal transduction, gene expres-
sion regulation, gene activation, DNA repair and cell cycle
control (17–19). PTMs occur in various cellular organelles
including the nucleus, cytoplasm, endoplasmic reticulum
and Golgi apparatus (5).

Proximity ligation assay (PLA) is a novel immunoassay
technology that can be used to study PTMs (20). In addi-
tion to PLA, immunoprecipitation (IP) is utilized in several
different PTM detection assays (21). However, the com-
bination of mass spectrometry with IP strategy is a more
effective method (22). Nevertheless, large-scale detection of
PTMs is very costly and challenging. In recent years, com-
putational methods for predicting PTMs have attracted a
considerable attention (5, 16, 17, 23–26).

The rest of this paper is structured as follows. In the
section ‘The 10 most studied PTMs’, the 10 most stud-
ied PTMs will be described. Major PTM databases will
be reviewed in the section ‘The 10 most studied PTMs’
as well. In the section ‘Involvement of PTMs in diseases
and biological processes’, involvement of PTMs in diseases
and biological processes will be discussed. Then, compu-
tational methods for predicting PTMs will be described in
the section ‘Computational methods for predicting PTMs’.
Finally, tools for PTM prediction will be reviewed in the
section ‘Tools for PTM prediction’.

The 10 most studied PTMs

There are more than 400 different types of PTMs (27)
affecting many aspects of protein functions. According
to the dbPTM (6), one of the most comprehensive PTM
databases, there are 24 major PTMs, with more than 80
experimentally verified reported modified sites. Figure 1
provides a visualized summary of the current major PTM
data according to the dbPTM. According to Figure 1, we
can see that some of these major PTMs occur more fre-
quently and have much more been studied. Three main
PTMs, based on the dbPTM database, are phosphoryla-
tion, acetylation and ubiquitination, which comprise more
than 90% (∼827000 sites out of ∼908000) of all the
reported PTMs Accordingly, each amino acid undergoes at
least three different PTMs, and Lys undergoes the largest
number of PTMs (15 PTM types). Moreover, based on
the whole dbPTM data, Cys and Ser are also modified
with at least 10 PTM types. Finally, one can see that
phosphorylation on Ser is the most reported PTM type.

Figure 1A shows a clustergram, indicating the division
of the PTMs into four clusters as one can see each phospho-
rylation, and acetylation has been considered as a separate
cluster due to their different patterns of modification on the

amino acids. On the other hand, ubiquitination, methyla-
tion and amidation are the PTMswithmany different target
residues and have been clustered as a group. According to
the clustergram, amino acids have been divided into five
clusters. Amino acid Lys is the most different amino acid
based on the PTM pattern.

Panels B and C in Figure 1 show the frequency of PTM
types and amino acids in the dbPTM database in log scale,
respectively. According to Figure 1, it is observed that phos-
phorylation, acetylation and ubiquitination are the most
frequent PTMs.

Roughly speaking, according to the type of the modi-
fications, these PTMs can be categorized into three main
groups. First and second groups are those PTMs that
include the addition of chemical and complex groups to
the target residue, respectively. The first group and the
second group include glycosylation, prenylation, myris-
toylation and palmitoylation. Those PTMs that contain
addition of polypeptides to the target residue comprise the
last group, and these PTMs are ubiquitylation and SUMOy-
lation. Figure 2 shows a graphical timeline for the discovery
of these major PTMs. In this timeline, the organisms in
which each PTM was discovered for the first time also have
been depicted. In the following subsections, the 10 most
studied PTMs, out of these major ones, are described in
more detail.

Phosphorylation

Protein phosphorylation was first reported in 1906 by
Phoebus Levene with the discovery of phosphate in the
protein vitellin (phosvitin) (28). However, it took another
20 years before Eugene Kennedy described the first enzy-
matic phosphorylation of proteins (43). This process is an
important reversible regulatory mechanism that plays a key
role in the activities of many enzymes, membrane chan-
nels and many other proteins in prokaryotic and eukaryotic
organisms (44, 45). Phosphorylation target sites are Ser,
Thr, Tyr, His, Pro, Arg, Asp and Cys residues (6), but
this modification mainly happens on Ser, Thr, Tyr and His
residues (46). This PTM includes transferring a phosphate
group from adenosine triphosphate to the receptor residues
by kinase enzymes (Figure 3A). Conversely, dephosphory-
lating or removal of a phosphate group is an enzymatic
reaction catalyzed by different phosphatases (47). Phospho-
rylation is the most studied PTM and one of the essential
types of PTM, which often happens in cytosol or nucleus
on the target proteins (48). This modification can change
the function of proteins in a short time via one of the two
principal ways: by allostery or by binding to interaction
domains (49).
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Figure 1. Summarized information of major PTMs (24 PTMs with more than 80 experimentally verified reported modified sites) according to the
dbPTM databank (October 2020). All frequencies are shown in log scale. (A) Clustergram indicating the frequency of each PTM on different amino
acids. (B) Frequency of major PTMs. (C) Frequency of each amino acid that was reported as a modified site.

Phosphorylation has a vital role in significant cellular
processes such as replication, transcription, environmental

stress response, cell movement, cell metabolism, apop-

tosis and immunological responsiveness (12, 50, 51). It
has been shown that disruption in the pathway of phos-

phorylation can lead to various diseases such as can-

cer, Alzheimer’s disease, Parkinson’s disease and heart
disease (24, 52, 53).

Acetylation

The first acetylation modification in proteins was discov-
ered by V.G. Allfrey in 1964 in isolated calf thymus nuclei
in vitro (31). Acetylation is catalyzed via lysine acetyl-
transferase (KAT) and histone acetyltransferase (HAT)
enzymes. Acetyltransferases use acetyl CoA as a cofac-
tor for adding an acetyl group (COCH3) to the ε-amino
group of lysine side chains, whereas deacetylases (HDACs)
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Figure 2. Schematic PTM discovery timeline for 10 major PTMs: phosphorylation (28), methylation (29), sulfation (30), acetylation (31), ubiqui-
tylation (32), prenylation (33), myristoylation (34), SUMOylation (35), palmitoylation (36), different types of glycosylation (N-glycosylation (37),
O-glycosylation (38), C-glycosylation (39) and S-glycosylation (40)), phosphoglycosylation (41) and glycosylphosphatidylinositol (GPI anchored)
(42). For each PTM, target residue(s) and the organism in which the related PTM was discovered for the first time are shown.

remove an acetyl group on lysine side chains (Figure 3B)
(54). There are three forms of acetylation: Nα-acetylation,
Nε-acetylation and O-acetylation. Nα-acetylation is an
irreversible modification, and the other two types of acety-
lation are reversible (55). These three forms of acetylation
occur on Lys, Ala, Arg, Asp, Cys, Gly, Glu, Met, Pro,
Ser, Thr and Val residues with different frequencies (6),
although the acetylation is more reported on Lysine residue.
Nε-acetylation is more biologically significant compared to
the other types of acetylation (55).

Acetylation has an essential role in biological processes
such as chromatin stability, protein–protein interaction,
cell cycle control, cell metabolism, nuclear transport and
actin nucleation (56–58). According to the available evi-
dence, acetylated lysine is vital for cell development, and
its dysregulation would lead to serious diseases such as
cancer, aging, immune disorders, neurological diseases
(Huntington’s disease and Parkinson’s disease) and cardio-
vascular diseases (56, 59, 60, 61).

Ubiquitylation

Ubiquitylation is one of the most important reversible
PTMs. This modification was firstly studied in 1975 by
GideonGoldstein (32). This modification is a versatile PTM
and can occur on all 20 amino acids (Figure 2). However,
it occurs on lysine more frequently. This PTM has a major
role in the degradation of intracellular proteins via the ubiq-
uitin (Ub)–proteasome pathway in all tissues (62). In ubiq-
uitylation, a covalent bond befalls between the C-terminal
of an active ubiquitin protein (a polypeptide of 76 amino
acids) and Nε of a lysine residue of the protein (63). Ubiq-
uitin can occur in mono- or poly-ubiquitination forms on
substrate proteins through specific isopeptide bonds by
receptors containing ubiquitin-binding domains. Ubiqui-
tylation is catalyzed by an enzyme complex that contains

ubiquitin-activating (E1), ubiquitin-conjugating (E2) and
ubiquitin ligase (E3) enzymes (Figure 3C). Ubiquitinated
proteins may be acetylated on Lys, or phosphorylated on
Ser, Thr or Tyr residues, and lead to dramatically alter-
ing the signaling outcome (64). Ubiquitylationmodification
in substrate proteins can be removed by several specialized
families of proteases called deubiquitinases (64).

Ubiquitination plays important roles in stem cell preser-
vation and differentiation by regulation of the pluripotency
(65). Ubiquitylation has also played a vital role in many
various cell activities such as proliferation, regulation of
transcription, DNA repair, replication, intracellular traf-
ficking and virus budding, the control of signal transduc-
tion, degradation of the protein, innate immune signaling,
autophagy and apoptosis (12, 66, 67). Dysfunction in
the ubiquitin pathway can lead to diverse diseases such
as different cancers, metabolic syndromes, inflammatory
disorders, type 2 diabetes and neurodegenerative diseases
(68–70).

Methylation

Research onmethylation dates back to 1939 (29). Nonethe-
less, just recently, with the identification of new methyl-
transferases (such as protein arginine methyltransferases
(PRMTs), and histone lysine methyltransferases (HKMTs)),
has attracted more and more attention (71). Methylation is
a reversible PTM, which often occurs in the cell nucleus and
on the nuclear proteins such as histone proteins (1, 72).
Methylation occurs on the Lys, Arg, Ala, Asn, Asp, Cys,
Gly, Glu, Gln, His, Leu, Met, Phe and Pro residues in tar-
get proteins (6). However, lysine and arginine are the two
main target residues in methylation, at least in eukaryotic
cells (73, 74). One of the most biologically important roles
of methylation is in histone modification. Histone proteins,
after synthesis of their polypeptide chains, are methylated



Database, Vol. 00, Article ID baab012 Page 5 of 20

Figure 3. Schematic illustration of the 10 most studied PTMs including Phosphorylation (A), Acetylation (B), Ubiquitylation (C), Methylation (D),
N-glycosylation (E), O-glycosylation (F), SUMOylation (G), S-palmitoylation (H), N-myristoylation (I), Prenylation (J), and Sulfation (k).
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Figure 3. (continued)

at Lys, Arg, His, Ala or Asn residues (75). Nε-lysine methy-
lation is one of the most abundant histone modifications
in eukaryotic chromatin, which includes transferring the
methyl groups from S-adenosylmethionine to histone pro-
teins via methyltransferase enzyme (Figure 3D). In eukary-
otes, methylated arginine has been observed in histone and
non-histone proteins (76).

Recent studies have shown that methylation is associ-
ated with fine tuning of various biological processes ranging

from transcriptional regulation to epigenetic silencing via
heterochromatin assembly (77). Defect in this modifica-
tion can lead to various diseases such as cancer, men-
tal retardation (Angelman syndrome), diabetes mellitus,
lipofuscinosis and occlusive disease (12, 78, 79).

Glycosylation

One of the most complex PTMs in the cell is glyco-
sylation, which is a reversible enzyme-directed reaction
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(12). Glycosylation occurs in multiple subcellular loca-
tions, such as endoplasmic reticulum, the Golgi apparatus,
cytosol and the sarcolemma membrane (80). Glycosyla-
tion occurs in eukaryotic and prokaryotic membranes and
secreted proteins, also nearly 50% of the plasma pro-
teins are glycosylated (14). In this modification, oligosac-
charide chains are linked to specific residues by covalent
bond (see Figures 3E and F). This enzymatic process,
which is catalyzed by a glycosyltransferase enzyme, usu-
ally occurs in the side chain of residues such as Trp,
Ala, Arg, Asn, Asp, Ile, Lys, Ser, Thr, Val, Glu, Pro,
Tyr, Cys and Gly (6); however, it occurs more fre-
quently on Ser, Thr, Asn and Trp residues in proteins and
lipoproteins (13). According to the target residues, glyco-
sylation can be classified into six groups: N-glycosylation,
O-glycosylation, C-glycosylation, S-glycosylation, phos-
phoglycosylation and glypiation (GPI-anchored) (5, 12).
N-glycosylation and O-glycosylation are two major types
of glycosylation and have important roles in the mainte-
nance of protein conformation and activity (81).

Glycosylation has a great role in many important bio-
logical processes such as cell adhesion, cell–cell and cell–
matrix interactions, molecular trafficking, receptor activa-
tion, protein solubility effects, protein folding and signal
transduction, protein degradation, and protein intracel-
lular trafficking and secretion (9–14). It has been shown
that the defect in this process has a significant effect on
the development of various diseases like cancer, liver cir-
rhosis, diabetes, HIV infection, Alzheimer’s disease and
atherosclerosis (12, 14, 82).

SUMOylation

Small Ubiquitin-RelatedModifier (SUMO) protein was pri-
marily discovered in 1996 by Rohit Mahajan in the Ran
GTPase-activating protein (RanGAP) (35). SUMOylation
takes place via SUMO (83) that has a three-dimensional
structure similar to ubiquitin protein and has been dis-
covered in a wide range of eukaryotic organisms (84).
SUMOylation can occur in both cytoplasm and nucleus on
lysine residues (85). SUMO family has three isoforms in
mammals, four isoforms in humans, two isoforms in yeasts
and eight isoforms in plants (1). SUMOylation occurs as
a modifier in ε-amino group of lysine residues in target
protein through a multi-enzymatic cascade (86). In this
reaction, SUMO is connected to a lysine residue in substrate
protein by covalent linkage via three enzymes, namely acti-
vating (E1), conjugating (E2) and ligase (E3). Also, it is
separated from the target protein by a specific enzyme
protease—SUMO (Figure 3G) (87). Often, SUMOylation
modifications occur at a consensus motif WKxE (where W
represents Lys, Ile, Val or Phe and X any amino acid) (88).

SUMOylation plays a major role in many basic cellular
processes like transcription control, chromatin organiza-
tion, accumulation of macromolecules in cells, regulation
of gene expression and signal transduction (89, 90). It is
also necessary for the conservation of genome integrity
(91). Also, there are many reports on major role of
SUMOylation in development of a variety of human
diseases including cancer, Alzheimer’s disease, Parkin-
son’s disease, viral infections, heart diseases and diabetes
(83, 91–93).

Palmitoylation

An important class of PTMs, called lipidation, includes
covalent attachment of lipids to proteins. The first report of
the covalent modification of proteins with lipids dates back
to 1951 (94). These PTMs are taken place via a great vari-
ety of lipids like octanoic acid, myristic acid, palmitic acid,
palmitoleic acid, stearic acid, cholesterol, etc. Myristoyla-
tion, palmitoylation and prenylation can be considered as
the three main types of these lipid modifications (95, 96).
Palmitoylation is described in this subsection, and the
other two important ones are described in the subsequent
subsections.

Palmitoyltransferases (PATs) were first identified in yeast
in 1999 by Doug J. Bartels (36). Palmitoylation is the
covalent attachment of fatty acids, like palmitic acid on
the Cys, Gly, Ser, Thr and Lys (6). S-palmitoylation con-
tains a reversible covalent addition of a 16-carbon fatty
acid chains, palmitate, to a cysteine via a thioester linkage
(Figure 3H) (97). Palmitoyl-CoA (as the lipid substrate) is
attached to the target protein by a PAT and removed via
acyl protein thioesterases (98).

Mostly, S-palmitoylation occurs in eukaryotic cells and
plays critical roles in many different biological processes
including protein function regulation, protein–protein
interaction, membrane–protein associations, neuronal
development, signal transduction, apoptosis and mitosis
(98–100). Dysfunction of palmitoylation has been linked
to many diseases including neurological diseases (Hunting-
ton’s disease, schizophrenia and Alzheimer’s disease) and
different cancers (101–105).

Myristoylation

Myristoylation (N-myristoylation) was discovered by Alas-
tair Aitken in 1982, in bovine brain (34). Although
often refers to myristoylation as a PTM, it usually occurs
co-translationally (106). This modification is an irreversible
PTM that occurs mainly on cytoplasmic eukaryotic pro-
teins. Myristoylation has been reported in some integral
membrane proteins as well (107). Myristoylation happens
approximately in 0.5–1.5% of eukaryotic proteins (108).
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In myristoylation after removal of the initiating Met, a
14-carbon saturated fatty acid, called myristic acid, is
attached to the N-terminal glycine residue via a covalent
bond (Figure 3I) (109). This attachment is often observed
in Met-Gly-X-X-X- Ser/Thr motif and is catalyzed by an
N-myristoyl transferase (NMT) (there are at least two
types of NMT enzymes, NMT1 and NMT2, in humans)
(109, 110). Myristoylation occurs more frequently on Gly
and less frequently on Lys residues (6).

Proteins that undergo this PTM play critical roles in reg-
ulating the cellular structure and many biological processes
such as stabilizing the protein structure maturation, signal-
ing, extracellular communication, metabolism and regula-
tion of the catalytic activity of the enzymes (109, 110). The
role of myristoylation has been proved in the development
and progression of various diseases such as cancer, epilepsy,
Alzheimer’s disease, Noonan-like syndrome, and viral and
bacterial infections (111).

Prenylation

The first study on prenylation was done in 1978 by Yuji
KamiIya et al. in yeast (33). It is another important lipid-
based PTM, which occurs after translation as an irre-
versible covalent linkage mainly in the cytosol (112). This
reaction occurs on cysteine and near the carboxyl-terminal
end of the substrate protein (113). Prenylation has two
main forms: farnesylation and geranylation (114). These
two forms contain the addition of two different types of iso-
prenoids to cysteine residues: farnesyl pyrophosphate (15-
carbon) and geranylgeranyl pyrophosphates (20-carbon),
respectively. In prenylated proteins, one can find a consen-
sus motif at the C-terminal; the motif is CAAX where C is
cysteine, A is an aliphatic amino acid and X is any amino
acid (115). This process is catalyzed by three prenyltrans-
ferase enzymes: farnesyltransferase (FT) and two geranyl
transferases (Figure 3J) (GT1 and GT2) (48).

The prenylation is known as a crucial physiological
process for facilitating many cellular processes such as
protein–protein interactions, endocytosis regulation, cell
growth, differentiation, proliferation and protein traffick-
ing (115–117). Observations showed that disruption in
this modification plays crucial roles in the pathogenesis
of cancer (114), cardiovascular and cerebrovascular dis-
orders, bone diseases, progeria, metabolic diseases and
neurodegenerative diseases (118, 119).

Sulfation

Sulfation was first discovered by Bruno Bettelheim in
bovine fibrinopeptide bin in 1954 (120). Residues Tyr, Cys,
and Ser have been identified as target residues for preny-
lated proteins (6). Often, the target residue of this PTM

is tyrosine, which happens in the trans-Golgi network.
N-sulfation or O-sulfation includes the addition of a neg-
atively charged sulfate group by nitrogen or oxygen to an
exposed tyrosine residue on the target protein (121, 122).
Currently, PTS is observed mainly in secreted and trans-
membrane proteins in multicellular eukaryotes and have
not yet been observed in nucleic and cytoplasmic proteins
(121). This reaction is catalyzed by two transmembrane
enzymes, tyrosyl protein sulfotransferases 1 and 2 (TPST1
and TPST2) (30). TPSTs govern the transfer of an acti-
vated sulfate from 3-phospho adenosine 5-phosphosulfate
to tyrosine residues within acidic motifs of polypeptides
(Figure 3K) (121).

Recently, it has been observed that PTS has vital roles
in many biological processes like protein–protein interac-
tions, leukocyte rolling on endothelial cells, visual functions
and viral entry into cells (123). This PTM involves in many
diseases like autoimmune diseases, HIV, lung diseases and
multiple sclerosis (12).

Involvement of PTMs in diseases and
biological processes

PTMs have a vital role in almost all biological processes
and fine-tune numerous molecular functions. Therefore,
the footprints of disruption in PTMs can be seen in many
diseases. Figure 4A shows a tripartite network of PTM
involvement in diseases and biological processes for the 10
abovementioned PTMs. This network contains 97 diseases
and 153 biological processes. Panels B and C in Figure 4
show the biological processes with degree≥3 (those bio-
logical processes that interact with at least three different
PTMs) and diseases with degree≥2, respectively.

As it is shown in Figure 4C, neurodegenerative disease is
the major group of diseases, which is affected by the disrup-
tion in the PTMs (Alzheimer’s disease, Parkinson’s disease
and Huntington’s disease). Besides, one can see that cancer
is also one of the most affected diseases. Consistently with
this observation, the biological processes related to cancer
are among the high-degree nodes (signaling, DNA repair,
control of replication and apoptosis). Processes related to
apoptosis, protein–protein interaction, signaling, cell cycle
control, chromatin assembly, organization and stability,
DNA repair, protein degradation, protein trafficking and
targeting, regulation of gene expression and transcrip-
tion control are the other high-degree biological processes.
Moreover, we can say that ubiquitylation, prenylation, gly-
cosylation, S-palmitoylation and SUMOylation have the
most involvement in diseases. On the other hand, the PTMs
with the highest number of interactions with biological pro-
cesses are phosphorylation, ubiquitylation, methylation,
acetylation and SUMOylation. Putting all together, we can
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Figure 4. Involvement of PTMs in diseases and biological processes. (A). Tripartite network of PTM involvement in diseases and biological processes
for the 10 major PTMs. (B) The degree of the biological processes with degree≥3 in the tripartite network. (C) The degree of the diseases with
degree≥2 in the tripartite network. (D) Involvement of PTMs in disease and biological processes.

conclude that the disruption in the pathways of these five
PTMs has a great impact on the normal functioning of the
cell and, as the result, on the organisms

Main PTM databases

Due to the considerable cost and difficulties of experimental
methods for identifying PTMs, recently many computa-
tional methods have been developed for predicting PTMs
(124). Almost all of these methods need a set of experimen-
tally validated PTMs to build a prediction model. There-
fore, the availability of valid public databases of PTMs
is the first step toward this end. There are a variety of

such public databases that could be utilized easily by the
scientific community for developing computational meth-
ods (17, 124).

According to the scope and diversity of the covered
PTMs, these databanks can be classified into two main
groups: general databases and specific databases. The gen-
eral databases contain different types of PTMs, regardless
of target residue and organisms. These databases provide
a broad scope of information for various PTMs. On the
other hand, specific databases have been created based
on some certain types of PTMs, certain characteristics of
PTMs and/or specific target residues.
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Figure 5. Bubble chart for PTMdatabases. The chart was drawn based on three parameters for the databases: the number of storedmodified proteins,
the number of modified sites and the number of covered PTM types.

The current public PTM databases are greatly differ-
ent in the number of stored modified proteins, the number
of modified sites and the number of covered PTM types.
Figure 5 shows a bubble chart of main PTM databases
according to these three parameters. As it is evident from
the figure, due to the extensive number of studies on phos-
phorylation, the specific databases are mainly focused on
phosphorylation. From this point of view, glycosylation
is the second most interested PTM. In the following, the
five largest databases are described briefly. Also, Table 1
summarizes the current main public PTM databases.

The EPSD (Eukaryotic Phosphorylation Site Database)
contains the largest number of PTM sites. EPSD contains
more than 1 600 000 experimental phosphorylation sites in
more than 209000 phosphoproteins across 68 eukaryotes,
including 18 animals, 7 protists, 24 plants and 19 fungi
(125).

dbPTM (Database Post-translational modification) is a
comprehensive database that has collected experimental

PTMs’ data from 30 public databases and 92 648 research

articles. dbPTM contains∼908000 experimentally verified
sites for more than 130 types of PTMs from different organ-
isms (6). This database is the largest database in terms of
the number of recorded proteins and also in terms of the
number of stored PTM types (Figure 5).

BioGRID (The Biological General Repository for Inter-
action Datasets) is another major open access PTM
database. In addition to protein and genetic interactions,
it also holds data on ∼726000 phosphorylation sites in
∼72000 proteins, which were extracted from 4742 pub-
lications for 71 major model organisms (126).

PSP (PhosphoSitePlus) is an online resource for study-
ing experimentally observed PTMs such as phosphoryla-
tion, ubiquitinylation and acetylation. PSP is comprised
of ∼484000 PTM sites for more than 7 PTM types from
26 species. However, the major amount of its data are
extracted from human, mouse and rat (127).

The qPTM database contains 10 types of PTMs for
∼296900 sites in more than 19 600 proteins under 661
conditions that are collected and integrated into a database
(128).

Computational methods for predicting PTMs

Generally speaking, any computational method for pre-
dicting a specific type of PTM has four main steps: data
gathering, feature extraction, learning the predictor and
performance assessment. These steps have been schemat-
ically shown in Figure 6. In the following, these steps
are described in detail. Also, the related challenges and
problems in each step are discussed as well.
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Figure 6. A schematic flowchart to show how a predictor works for PTM prediction. (A) Data collection and dataset creation. (B) Feature selection.
(C) Creating training and testing models. (D) Evaluation of the performance of the models.

Data gathering

The first step of a PTM prediction method is gathering the
data of proteins that undergo the PTM of interest, in order
to assemble a valid dataset (Figure 6A). The final dataset
must include both positive (polypeptide sequences having
a target residue that has undergone PTM) and negative
(polypeptide sequences having a target residue that has not
been affected by PTM) samples in order to enable us to train
a machine learning algorithm for predicting PTMs.

Positive data selection: almost all studies use the afore-
mentioned databases (such as dbPTM or Uniprot) to gather
the positive samples.

Negative data selection: selecting the negative dataset
is the most challenging part of the data gathering step.
There are three main strategies for selecting the negative
dataset.

1. A random set of proteins with an equal number of
the positive set is selected. Then, those occurrences of
the target residue that did not undergo the PTM are
considered as the negative samples.

2. The second strategy works like the first, but only
those proteins are considered, to construct the neg-
ative dataset, that none of their target residues have
undergone that specific PTM (based on experimental
evidences).

3. The third strategy examines only the proteins that
are included in the positive dataset. In this case,
those occurrences of the target residue that have
not undergone PTM are considered as the negative
samples.

Filtering
After constructing the primary positive and negative
datasets, one important task is removing inconsistent/
redundant samples to gain a more reliable dataset. This
step varies from study to study. One can distinguish
three main policies in the literature for removing inconsis-
tent/redundant proteins:

1. Removing identical proteins
2. Removing similar proteins within the positive and

negative datasets
3. Removing similar proteins between the positive and

negative datasets.

CDhit (129) is used as the major tool to detect
similar samples (sequences). However, the threshold of
identity for considering a pair of sequences to be simi-
lar/redundant varies across different studies. This threshold
varies between 40% and 100% in different PTM prediction
studies (130).

Dataset balancing
Regardless of the strategy that is used for the negative data
selection, in almost all cases, filtered datasets are imbal-
anced, and size of the negative dataset is greater than that
of positive dataset in various extent (sometimes the negative
dataset is greater by some order of magnitude). Due to the
biases that can be introduced by the imbalanced datasets
in the learning phase (when a very specialized learning
method is not used, which usually is the case), prior to
the feature extraction and learning a classification model,
a dataset balancing step is required. To have a balanced
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positive/negative dataset, often, a random subset of the
negative dataset with an equal number of samples to the
positive samples is selected.

Feature extraction

In this step, the positive or negative samples (protein
sequences), according to the various biological properties,
are coded into numerical feature vectors to be used to learn
the final predictor (classifier). For this encoding, firstly,
using a sliding window, all proteins are partitioned into
polypeptides with length W, in such a way that the tar-
get residue (according to the PTM of interest) is placed at
the center of the polypeptides (Figure 6B). W is an odd
number, and therefore, (W − 1)/2 residues are placed
on the left and right sides of the target residue in each
polypeptide (a window of W residues). There is no agree-
ment on the size of W, and various sizes have been used
in different studies. Roughly speaking, W varies from
11 to 27. Some studies select an optimized size for W
through a try-and-error approach (130). Finally, accord-
ing to the appropriate biological descriptors such as amino
acid composition, di-peptide composition, similarity score
to the known motifs and physicochemical properties, each
polypeptide of length W is encoded as a numerical feature
vector.

Learning the predictor

After feature extraction, data are ready to train a classifier
(model) for predicting the PTM, given a protein of interest
(Figure 6C). There are a variety of classifiers that can be
trained. At this step, based on the performance of different
classifiers and knowledge of the experts that are involved
in the study, a suitable classifier is selected. After parame-
ter optimization, the classifier is trained on a subset of the
assembled dataset (that is called the training dataset), and
then, the predictor is ready to be assessed and compared
with the current state-of-the-art methods. In some stud-
ies, an additional process, named feature selection, is done
prior to building the final predictor. In feature selection, a
subset of the most informative/discriminative features are
selected and used to learn the classifier.

Performance assessment

k-fold cross validation
A standard and widely used procedure for assessing the
performance of a given classifier is k-fold cross validation
(Figure 6D). In this process, the available dataset is ran-
domly partitioned into k equal-sized disjoint subsets. Then,
k − 1 of the subsets is used as the training dataset, and the
remaining one is used as the test set for evaluating the pre-
dictor. This process is repeated k times in such a way that
every subset is used exactly once as the test set. Finally,
the average performance over all k test sets is reported.
The most common values for k are 5 and 10 in the PTM
prediction studies. Despite the fact that some studies have
used a large value for k, the large values lead to less accu-
rate estimates of the generalization power of the classifier
and test error rate (131). The most important performance
assessment measures that are used in the PTM prediction
methods include sensitivity (Recall), specificity, accuracy,
precision and Matthews’s correlation coefficient. All of
these measures can be calculated based on the four basic
elements of the confusion matrix (Table 2). For definition
of these performance, refer to Refs. (132, 133).

In addition to the aforementioned measures, ROC and
area under the ROC curve are also two major performance
evaluation measures (132).

Common flaws in performance assessment via k-fold cross
validation procedure
There are some important flaws in performance compari-
son based on k-fold cross validation, which can lead to a
biased conclusion. As mentioned above, the data are ran-
domly portioned into k distinct folds (subsets) in a k-fold
CV procedure. Therefore, if only the train and test data
of all the k folds are identical for two methods, the results
of those methods are comparable. However, many stud-
ies compare their k-fold CV results without satisfying this
condition. Another common flaw is using the same data
for parameter tuning (and feature selection) and for perfor-
mance evaluation. In such situation, the performance of the
predictor is overestimated, and the classifier will perform
poorly on the unseen samples.

Table 2. Confusion matrix for PTM prediction tools

Experimentally validated PTMs

PTM No PTM

Prediction PTM TP (true positive: number of real PTM sites that
have been truly predicted as PTMs)

FP (false positive: number of real non-PTM sites
that have been wrongly predicted as PTMs)

No PTM FN (false negative: number of real PTM sites that
have been wrongly predicted as non-PTMs by the
predictor as PTMs)

TN (true negative: number of real Non-PTM sites
that have been truly predicted as Non-PTMs)
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Figure 7. Online PTM prediction tools. The values of five important performance assessment measures have been extracted from the related
publications: specificity (SP), sensitivity (SN), accuracy (ACC), Matthews’s correlation coefficient (MCC) and area under the ROC curve (AUC).

Independent test
In the presence of enough data for the PTMs, which usu-
ally are available except for newly discovered PTMs, some

studies carry out an independent test experiment. In this
experiment, a dataset of positive and negative samples is
assembled (or a benchmark dataset may be used) as an
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independent test data, which have not been used in any
of the previous steps, and the performance of the clas-
sifier is evaluated again using this dataset. Usually, the
performance on an independent test set is lower than that
of k-fold CV and is a better estimation of the real-world
performance of a method. To show the strength of the
proposed methods in real-world biological problems, some
studies use their trained models on a set of biologically
important proteins, which have recently been studied, to
indicate that their method can effectively detect the newly
reported and experimentally validated PTMs.

Tools for PTM prediction

Considering the high cost of experimental identification
of PTMs, in recent years, many computational methods
have been proposed for the prediction of PTMs. Many of
these methods have been introduced as publicly accessi-
ble tools. Figure 7 provides a comprehensive list of these
tools. In addition to the PTM prediction tools, Nickchi
et al. proposed the ‘Post-translational modification Enrich-
ment Integration and Matching Analysis’ (PEIMAN) soft-
ware for carrying out PTM enrichment analysis on proteins
(26). PEIMAN is a publicly accessible standalone software
(http://bs.ipm.ir/softwares/PEIMAN/) that uses the UniPro-
tKB database to extract PTM terms. In addition to the
enrichment analysis, PEIMAN also performs a compara-
tive analysis. In this case, PEIMAN gives two distinct lists
of proteins and then integrates the enrichment results and
provides a list of highly enriched terms of both protein sets.

Conclusion

PTMs are the chemical modification of a protein after trans-
lation and have a wide range of effects on the function
and structure of the target proteins. These processes occur
on almost all proteins, and many domains within proteins
are modified on multiple amino acids by diverse modifica-
tions. The function of a modified protein is often strongly
affected by these modifications that play important roles
in a myriad of cellular processes. There is strong evidence
that shows that disruptions in PTMs can lead to various
diseases. Hence, increased knowledge about the potential
PTMs of a target protein may increase our understanding
of the molecular processes in which it takes part. High-
throughput experimental methods for the discovery of
PTMs are very labor-intensive and time-consuming. Thus,
there is an urgent need for predictionmethods and powerful
tools to predict PTMs. There is a considerable amount of
PTM data available from various publicly accessible data-
banks, which are valuable resources for mining patterns
to train new models for PTM prediction. In recent years,
many computational methods have been developed for this

purpose. However, there are some common weaknesses in
assessing these methods, and so it seems that such methods
should be evaluated more critically. Considering the diver-
sity of PTMs and new PTMs that are reported every couple
of years on one hand, and the advancement of machine
learning algorithms on the other hand, we can conclude
that this field will attract more attention in the future.
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