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Abstract

Glycosylation of nuclear and cytoplasmic proteins is an essential post-translational modification in 

mammals. O-GlcNAc transferase (OGT), the sole enzyme responsible for this modification, 

glycosylates over a thousand unique nuclear and cytoplasmic substrates. How OGT selects its 

substrates is a fundamental question that must be answered to understand OGT’s unusual biology. 

OGT contains a long tetratricopeptide repeat (TPR) domain that has been implicated in substrate 

selection, but there is almost no information about how changes to this domain affect 

glycosylation of individual substrates. By profiling O-GlcNAc in cell extracts and probing 

glycosylation of purified substrates, we show here that ladders of asparagines and aspartates that 

extend the full length of OGT’s TPR lumen control substrate glycosylation. Different substrates 

are sensitive to changes in different regions of OGT’s TPR lumen. We also found that substrates 

with glycosylation sites close to the C-terminus bypass lumenal binding. Our findings demonstrate 

that substrates can engage OGT in a variety of different ways for glycosylation.
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O-linked β-N-acetylglucosamine (O-GlcNAc) transferase (OGT) is an essential nutrient- and 

stress-responsive enzyme that transfers GlcNAc to serine or threonine side chains of 

thousands of nuclear and cytoplasmic proteins.1–6 OGT’s substrates are structurally and 

functionally diverse and are involved in most cellular processes.7–15 A longstanding 

question in the field is how OGT chooses its substrates. OGT contains a C-terminal 

glycosyltransferase domain that performs chemistry and an N-terminal tetratricopeptide 

repeat (TPR) domain that has been implicated in substrate selection (Figure 1).3, 16–22 

OGT’s TPR domain, which contains 13.5 repeats, forms a superhelix with conserved 

asparagine and aspartate ladders that extend the length of the lumenal surface (Figure 1 & 

Tables S1–2).18, 23 A structure of OGT complexed with a peptide that binds in the active 

site-proximal TPR lumen revealed a network of bidentate contacts from five sequential 

asparagine amides to the peptide backbone; side chains from three aspartates contacted polar 

side chains of the peptide (Figure 1C).24 Proteome-wide studies showed that the active site-

proximal asparagines and aspartates are important in substrate glycosylation, with the 

former contributing to sequence-independent binding and the latter controlling selectivity.
23, 25 Although these studies identified functions of residues in the proximal TPR lumen in 

substrate glycosylation, the TPR lumen is more than 100 Å long. The functions of conserved 

asparagine and aspartate residues in the medial and distal lumen are not well understood. 

Elucidating the mechanisms of substrate selection is critical because elevated O-GlcNAc 

levels have been implicated in cancers and metabolic diseases.26–31 To evaluate 

opportunities for therapeutic intervention, we need information on how different regions of 

the OGT’s TPR domain are involved in glycosylation of different substrates.

To determine whether the entire asparagine ladder plays a role in glycosylation, we tested 

the protein glycosylation activity of three OGT constructs in which groups of five 

asparagines were mutated to alanine (Figure 2A, referred to as N5A mutants). We used 

HeLa extracts for these studies because they are metabolically active and mimic a cellular 

environment but enable precise control of the concentrations of OGT added.23, 25, 32 

Glycosylation was detected by immunoblotting with a pan O-GlcNAc antibody. While the 

antibody does not recognize all O-GlcNAcylated proteins equally, it is useful for reporting 

on relative changes in band intensities. As reported previously, N5Aprox showed reduced 

global glycosylation compared to wildtype OGT.25 The N5Amed and N5Adist mutants also 

showed lower glycosylation activity than wildtype, but glycosylation gradually increased as 

the asparagine mutations moved further from the active site (Figure 2B). Although the 

asparagines closest to the active site were more important, these results showed that the 

entire asparagine ladder contributes to global protein glycosylation.
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We took a similar approach to assessing the roles of the aspartate ladder residues in global 

substrate selection. For these studies, we mutated conserved aspartates to alanines in groups 

of two (Figure 3A, referred to as D2A mutants). As previously reported, global 

glycosylation increased when aspartates in the proximal region of the TPR domain were 

mutated to alanines (D2A-2prox, Figures 3A & S1).23 Global glycosylation also increased 

for other D2A mutants along the TPR lumen (Figure S1), with the greatest increase observed 

for mutations in the medial lumen (D2A-3med; Figure 3B). We observed both new bands and 

intensity changes in bands that were also seen with wildtype OGT. Notably, there were 

pronounced differences in the banding pattern for different D2A constructs (compare 

D2A-2prox to D2A-3med), suggesting that aspartates in different regions of the TPR lumen 

differentially regulate substrate glycosylation. When pairs of D2A mutants in the proximal 

and medial lumen were combined (D4A), bands observed for the individual pairs remained 

in the quadruple mutant (Figure 3B, see asterisks), suggesting that the contributions of 

different aspartate pairs in controlling substrate preferences are additive. Overall, the results 

for the aspartate ladder mutants implicate the entire TPR lumen in global glycosylation of 

cell extracts, but show that the effects are largest for aspartates in the five TPRs closest to the 

active site (i.e., TPRs 9 to 13).

The extract experiments provided a convenient way to assess global glycosylation, but 

mechanistic interpretation is challenging. Adaptors, or proteins that recruit substrates to 

OGT’s active site, are proposed to play a substantial role in substrate selection.33–38 Thus, 

changes in global glycosylation with the TPR mutants could reflect changes in adaptor 

recognition rather than intrinsic differences in substrate recognition. To assess how 

individual substrates are affected by mutations in different regions of the TPR domain, we 

tested three previously studied OGT substrates, TAB1, CAMKIV, and CARM1.33, 39–42 

These proteins are among the few substrates that have been characterized kinetically,43 and 

each is approximately 55 kDa with an enzymatic domain and a long, C-terminal region that 

is predicted to be disordered. Each also has one major glycosite that is located in a different 

region of the protein, either in a long loop in the folded domain (CAMKIV), in the 

unstructured region but immediately adjacent to the folded domain (TAB1), or in the 

unstructured region close to the C-terminus of the protein (CARM1) (Figure 4A).39–42 To 

identify large differences in how changing OGT’s TPR domain affects these substrates, we 

ran glycosylation assays under forcing conditions that would obscure small effects.

We first assessed how truncating the TPR domain affected glycosylation of these three 

substrates (Figure 4B). Previous studies of two purified proteins showed that glycosylation 

was largely abolished when three N-terminal TPRs were removed, while glycosylation of a 

short peptide was unaffected.44, 45 These studies were limited to two substrates, but it has 

largely been assumed that all protein substrates must interact with a large part of the TPR 

domain to be glycosylated. We found that TAB1 behaved like the proteins in earlier studies 

in that removal of four or more TPRs greatly attenuated glycosylation (Figure 4C). In 

contrast, removing four to six N-terminal TPRs increased glycosylation of CAMKIV 

(Figures 4B,C: compare Δ6, which has 9 TPRs, to Δ4 which has 7 TPRs), although further 

TPR trimming led to reduced glycosylation levels compared to wildtype OGT. For CARM1, 

removal of as many as nine TPRs had no impact on glycosylation. Similar to CARM1, a 

TAB1 proteolysis product that co-purified with full-length TAB119, 43 (TAB11-402; Figure 
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4A) was glycosylated to the same extent by all TPR truncation mutants. The results for 

CARM1 and TAB11-402 suggest that proteins with glycosites very close to the C-terminus 

behave like peptide substrates in that they do not require contacts to the TPR domain to 

access the OGT active site for glycosylation.17, 44–46 Overall, the data for the three full-

length protein substrates showed that each relies on contacts to different regions of OGT.

Although the truncation studies revealed differences in how proteins interact with the TPR 

domain, they did not provide information on whether contacts to the TPR lumen were 

important. We used the asparagine ladder mutants to assess whether substrates bind in the 

TPR lumen (Figure 2A, 4D). As expected from the truncation studies, CARM1 and 

TAB11-402 glycosylation was unaffected by the lumenal mutations. However, glycosylation 

of full-length TAB1 was largely abolished for all three of the N5A mutants. CAMKIV 

glycosylation was reduced for the N5Aprox and N5Amed mutants, but not for N5Adist. 

Therefore, both TAB1 and CAMKIV engage the TPR lumen, but TAB1 requires asparagine 

ladder residues in the distal region of the TPR lumen for glycosylation, whereas CAMKIV 

glycosylation depends only on contacts to the proximal and medial regions of the TPR 

lumen.

TAB1 and CAMKIV, the two substrates that interacted with the TPR lumen, also showed 

notable differences in glycosylation with the aspartate mutants (Figure 3A,4E). Whereas 

glycosylation of full-length TAB1 decreased when aspartates in the distal TPR lumen were 

mutated to alanine (D2A-4dist – D2A-5dist), it increased for D2A mutants elsewhere 

(D2A-1prox – D2A-3med). CAMKIV showed a large increase in glycosylation when two 

aspartates in the medial lumen were changed to alanines, but the other aspartate mutants 

showed only modest increases compared to wildtype OGT. Taken together, these findings 

are generally consistent with the cell extract studies in showing that replacing aspartates in 

the proximal and medial TPR lumen with alanine increases glycosylation. Increased 

glycosylation could be due to either new glycosites or to increased glycosylation at existing 

glycosites. Using glycosite mapping, we have previously reported that D2A-2prox can 

modify new sites compared with wildtype OGT.23 The new product bands that appeared in 

the extract studies imply that the D2A mutants are able to glycosylate some new protein 

substrates. To test whether D2A mutants can increase glycosylation at existing sites, we 

quantified turnover for full-length TAB1 using wildtype OGT and the D2A-2prox, and we 

observed that the O-GlcNAc signal for TAB1 appeared earlier with D2A-2prox and increased 

more over time than with wildtype OGT (Figure 4F–G). To confirm that increased 

glycosylation was due to modification at S395, we performed similar experiments for a 

TAB1 S395A mutant (Figure 4H). The O-GlcNAc signal for the 1–402 cleavage product 

disappeared completely. Upon treatment with either wildtype OGT or D2A-2prox, we 

observed a weak signal growing in over time for full-length TAB1. We conclude that S395 is 

the primary site of glycosylation for both wildtype OGT and the D2A mutant, although there 

is a weak secondary site that appears to be in the disordered region C-terminal to S395. We 

quantified the rate of glycosylation for full-length TAB1 and found a >10-fold increase in 

rate for D2A-2prox compared with wildtype OGT (Figure 4G). Similar time-dependent 

experiments were run for CAMKIV WT and a variant with the major glycosite, S189, 

changed to alanine. As with TAB1, the S189A mutant was poorly glycosylated by wildtype 

OGT, although we observed a weak signal at longer time points (Figure S6A). We also 
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tested the D2A mutant that was found to have the largest effect on CAMKIV WT 

glycosylation (D2A-3med) against CAMKIV S189A. We observed substantial glycosylation 

of CAMKIV S189A with this mutant, although CAMKIV WT was still the better substrate 

(Figure S6B). These studies confirm S189 as the major glycosite in CAMKIV for wildtype 

OGT, but show that there is at least one other glycosite. Furthermore, D2A-3med 

glycosylates both the major and secondary sites more effectively than wildtype OGT. These 

findings support the conclusion that the conserved aspartates in the TPR lumen act as 

“gatekeeper” residues, but we now know that they can not only control what sites are 

glycosylated,23 but how rapidly they are modified.

Our findings show that the conserved asparagine and aspartate ladders that span the TPR 

lumen regulate glycosylation of a large fraction of OGT’s glycoproteome and reveal major 

differences in how different substrates engage the lumen. The three purified substrates tested 

here provide different working models for substrate engagement during glycosylation. In 

one model (CARM1-like), substrates behave like short peptide substrates in the sense that 

they access the active site without engaging the TPR lumen. In a second model (TAB1-like), 

substrates simultaneously engage the active site and the full TPR lumen to achieve 

glycosylation. The results for TAB1 are remarkable because they indicate an interaction with 

OGT that spans as much as 120 Å. Because removal of most of the C-terminal disordered 

domain removed TAB1’s dependence on lumenal contacts for glycosylation, we infer that 

the presence of this disordered domain somehow interferes with glycosylation. Therefore, 

one function of the TPR domain may be to chaperone unfolding of the disordered domain so 

that the glycosylation site is accessible. In other contexts, TPR domain-containing proteins 

are known to serve as co-chaperones to regulate protein fate.47–50 Given our finding that 

substrate proteolysis can alter requirements for glycosylation, it is also possible that 

proteolysis serves to regulate some O-GlcNAc modifications.

The CAMKIV results support a third model for TPR binding in which substrates rely on 

contacts to only part of the TPR lumen. Unlike the other model substrates tested, the 

glycosite of CAMKIV is located in a long, disordered loop within the kinase domain. The 

location of the glycosite in a long loop may place topological constraints on how the 

substrate engages the TPR lumen,42 and these constraints could explain the observation that 

removing distal TPRs increases glycosylation. The CAMKIV loop also contains a regulatory 

phosphorylation site, T200, that blocks its glycosylation.42, 43 This phosphorylation site is 

11 residues C-terminal to the glycosite. Our earlier studies showed a strong bias against 

negatively-charged side chains several residues C-terminal to the site of glycosylation in 

OGT substrates. We interpreted this bias as reflecting unfavorable interactions between 

substrate side chains and lumenal aspartates.23 We speculate that phosphorylation may 

prevent engagement of CAMKIV with OGT’s TPR lumen by introducing a repulsive 

interaction, providing one possible mechanism to explain “crosstalk” between 

phosphorylation and glycosylation.51

Our work, along with a recent study on how glycosylation of O-GlcNAcase (OGA) is 

affected when lumenal residues in OGT’s TPR domain are altered,21, 52, 53 is beginning to 

clarify how different substrates use OGT’s TPR domain to access its active site, pointing the 

way for future work to develop a molecular understanding of substrate recognition. The 
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work on OGA showed that it behaves like TAB1 in using lumenal interactions that involve 

most of the TPR domain for substrate recognition.21, 52, 53 Further progress in understanding 

OGT substrate recognition will require integration of glycosylation assays with quantitative 

assays to measure substrate binding affinities, which so far do not exist, and ideally with 

structural information. In the meantime, we note that modulating glycosylation of broad 

subsets of substrates by changing features of the TPR domain in cells or in animal models 

may help clarify the function of O-GlcNAcylation in health and disease.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Conserved asparagine and aspartate ladders line the entire TPR lumen of OGT. (A) 

Composite structure (PDB 1W3B and 4N3B) of full-length OGT complexed with a peptide 

(HCF-1pro; light blue) that extends from the active site into the proximal TPR lumen (boxed 

region).18,24 The TPR lumen is lined by conserved asparagine (magenta) and aspartate 

(green) ladder motifs. (B) View through OGT’s TPR domain from the N-terminus. The 

peptide binds towards the C-terminal TPRs. (C) TPR asparagine side chains anchor the 
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HCF-1pro peptide backbone; TPR aspartates contact polar groups on side chains of the 

bound peptide (the orientation shown is 90° from that in the dashed boxed in A).
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Figure 2. 
OGT requires the entire asparagine ladder for global glycosylation of HeLa extracts. (A) 

Cartoon schematic of asparagine ladder mutations. (B) HeLa extracts show loss of global 

glycosylation by OGT N5A mutants. Representative blot for two independent experiments. 

See methods for activity calculations.
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Figure 3. 
Aspartate ladder regulation of substrate selection is additive. (A) Cartoon schematic of 

aspartate ladder mutations. (B) Glycosylation of HeLa extracts by D2A-2prox and D2A-3med 

mutants shows large global increase in glycosylation and preferential increases in different 

O-GlcNAc bands (see asterisks). These preferences are additive in the D4A mutant. 

Representative blot for two independent experiments. See methods for activity calculations.
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Figure 4. 
OGT protein substrates have different dependencies on the TPR domain for glycosylation. 

(A) Cartoon schematics of TAB1, CAMKIV, and CARM1 protein architecture. Glycosites 

are denoted by blue squares. TAB1 is proteolytically cleaved at residue K402 (red arrow).
19, 43 (B) Cartoon schematic of OGT N-terminal TPR truncation mutants. (C) In vitro 
glycosylation of substrates by TPR truncation mutants. (D) In vitro glycosylation of 

substrates by asparagine ladder mutants. (E) In vitro glycosylation of substrates by aspartate 

ladder mutants. (F) Time-dependent in vitro glycosylation of TAB1 by wildtype OGT and 

D2A-2prox. Subpanels are from the same blot and image. (G) Densitometry vs. time plot of 

in vitro TAB1 glycosylation. Best-fit lines are shown in the linear range for each activity 

curve. (H) Time-dependent in vitro glycosylation of TAB1 S395A by wildtype OGT and 

D2A-2prox. Subpanels are from the same blot and image. Images in panels F and H were 

acquired under identical conditions. Representative blots are shown for two independent 

experiments for each data set.
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