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Abstract Acute megakaryoblastic leukemia (AMKL) is a rare subtype of acute myeloid leu-
kemia but is approximately 500 times more likely to develop in children with Down syn-
drome (DS) through transformation of transient abnormal myelopoiesis (TAM). This study
investigates the clinical significance of genomic heterogeneity of AMKL in children with
and without DS and in children with TAM. Genomic evaluation of nine patients with DS-re-
lated TAM or AMKL, and six patients with non-DS AMKL, included conventional cytogenet-
ics and a comprehensive next-generation sequencing panel for single-nucleotide variants/
indels and copy-number variants in 118 genes and fusions involving 110 genes. Recurrent
gene fusions were found in all patients with non-DS, including two individuals with complex
genomes and either a NUP98-KDM5A or a KMT2A-MLLT6 fusion, and the remaining har-
bored a CBFA2T3-GLIS2 fusion, which arose from both typical and atypical cytogenetic
mechanisms. These fusions guided treatment protocols and resulted in a change in diagno-
sis in two patients. The nine patients with DS had constitutional trisomy 21 and somatic
GATAT mutations, and those with DS-AMKL had two to four additional clinically significant
somatic mutations. Comprehensive genomic characterization provides critical informa-
tion for diagnosis, risk stratification, and treatment decisions for patients with AMKL.
Continued genetic and clinical characterization of these rare cancers will aid in improving
patient management.

[Supplemental material is available for this article.]

INTRODUCTION

Acute megakaryoblastic leukemia (AMKL) is a rare subtype of acute myeloid leukemia (AML),
defined by the presence of at least 50% of blasts from the megakaryocytic lineage, and pa-
tients often present with thrombocytopenia or thrombocytosis. Other clinical features in-
clude dysplastic neutrophils, erythroid cells, and germ cell tumors in young men. AMKL is
typically observed in children, accounting for 4%—15% of AML cases, compared to <1% of
adult patients. A diagnosis of AMKL can be made if the pathognomonic t(1;22)(p13.3;
q13.3) translocation is observed, resulting in a RBM15-MKL1 gene fusion, or by pathological
assessment of bone marrow as described above. However, recent studies have shown that
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AMKL is genetically heterogeneous with distinct subgroups based on cytogenetic and mo-
lecular alterations (Hama et al. 2008; Bhatnagar et al. 2016).

Children with Down syndrome (DS) have an estimated 150- to 500-fold increased risk of
AMKL compared to children without DS (Creutzig et al. 1996; Hasle et al. 2000). Somatic
GATA1 mutations drive the development of transient abnormal myelopoiesis (TAM; also
known as transient myeloproliferative disorder [TMD]) in utero through impaired megakaryo-
cytic differentiation (Roy et al. 2009; Bhatnagar et al. 2016). Although most patients undergo
spontaneous resolution of TAM within weeks of diagnosis, a small subset of high-risk patients
presenting with life-threatening signs such as respiratory impairment, hepatic dysfunction,
and/or leukocytosis (white blood cell [WBC]> 100,000) may not survive (Gamis et al. 2011).
A further 20% of patients with TAM will go on to develop DS-AMKL due to accumulation of
additional genetic mutations and clonal expansion (Nikolaev et al. 2013; Yoshida et al. 2013).

Genetic analysis of non-DS AMKL has identified additional recurrent gene fusions in ad-
dition to the pathognomonic RBM15-MKL1 fusion. Next-generation sequencing (NGS) and
targeted analysis of genes commonly altered in myeloid malignancies revealed a number of
recurrent genetic rearrangements that evaded cytogenetic detection (Gruber et al. 2012; de
Rooij et al. 2017). Evaluation of 89 pediatric patients with non-DS AMKL using NGS revealed
an inversion on Chromosome 16 associated with a CBFA2T3-GLIS2 gene fusion in 18% of
patients, rearrangements involving KMT2A in 17% of patients, rearrangements of the
HOX gene cluster in 14% patients, and a t(11;12) translocation resulting in a NUP?8-
KDM5A gene fusion in 11.5% of patients (De Rooij et al. 2017). Interestingly, the pathogno-
monic t(1;22)(p13.1;913.3) translocation is observed in only 10% of patients, and acquired
GATAT mutations, which arise in all TAM patients, are observed in 9% of patients of non-
DS AMKL. In addition to the stark differences in genomic profiles between DS-AMKL and
non-DS AMKL, the latter is also associated with significantly worse prognosis and higher
mortality rates (Hama et al. 2008; de Rooij et al. 2016).

The recurrent genetic features carry different diagnostic, prognostic, and therapeutic im-
plications, making comprehensive genetic testing critical for optimal patient management.
We present 15 patients with AMKL-related malignancies that illustrate various clinical scenar-
ios and genomic strategies enabling accurate diagnosis and prognostication of AMKL.

RESULTS

AMKL Not Related to Down Syndrome (Non-DS AMKL)

Six patients were diagnosed with AMKL unrelated to DS, of which five presented between 1
to 2 yr of age, with physical symptoms including fevers, bruising, rashes, and cytopenia
(Table 1). The sixth patient presented at 11 yr of age with persistent thrombocytopenia dur-
ing routine follow-up 5 yr post low-risk B-cell acute lymphoblastic leukemia (B-ALL) treat-
ment. Given that this patient’s prior therapy for B-ALL did not include any cytotoxic
therapies known to be associated with therapy-related AML, it was hypothesized that his
AMKL may be a de novo AML, although the possibility of a therapy-related AML could
not be excluded. Clinical history for all patients is summarized in Table 1. Pathological eval-
uation was suggestive of AMKL in four of six cases, but genetic testing was required for diag-
nosis in patients 1 and 3 (see Discussion).

All six patients had comprehensive genomic evaluation (Table 2; Fig. 1), including cyto-
genetics and comprehensive NGS analyses. Cytogenetic studies revealed multiple changes
in all patients, including complex, multiclonal karyotypes in patients 1, 2, and 6 (Table 3).
Only patient 4 had a cytogenetic finding highly suggestive of a non-DS AMKL~related trans-
location, a pericentric inversion associated with CBFA2T3-GLIS2. In contrast, in all six pa-
tients a gene fusion of diagnostic significance was detected using the NGS panel,
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Figure 1. Genomic profile of 15 patients with acute megakaryocytic leukemia (AMKL)-related malignancies.
Patients with non-Down syndrome AMKL (non-DS AMKL) are defined by recurrent gene fusions, whereas pa-
tients with transient myeloproliferative disease (TAM) have GATAT mutations with high variant allele fraction
(VAF), and patients with DS-AMKL have additional somatic variants in signaling pathway genes. Total blast per-
centages are based on flow cytometry. Only variants classified as Tier 1-2 are listed. See Table 2 for complete
genomic profile of each individual.

including one patient with NUP98-KDM5A (Fig. 2), one patient with KMT2A-MLLTé, and
four patients with CBFA2T3-GLIS2 (Fig. 3). Interestingly, only two patients had clinically sig-
nificant somatic mutations, both of which were in SETD2, a methyltransferase commonly al-
tered in leukemias, typically associated with poor prognosis and which may confer
chemoresistance (Table 2; Skucha et al. 2019). Overall, the genomes of these leukemias
are characterized by large structural changes resulting in often cryptic, recurrent gene fu-
sions with a relatively low mutational burden (Fig. 1). All five patients with follow-up informa-
tion available underwent bone marrow transplant because of the high-risk of relapse.

Down Syndrome-Related Transient Abnormal Myelopoiesis (TAM)

Four patients in our cohort were diagnosed with TAM and presented between 2 d to 6 wk of
life (Table 1). As expected, a GATAT SNV was observed in each patient, and no fusion events
were observed (Table 2; Fig. 4). The GATAT mutations were present at high variant allele
fraction (VAF), ranging from 42% to 95%.

Despite similar genetic profiles, significantly different clinical outcomes were observed
(clinical details not available for patient 7). Patients 8 and 9 presented with high-risk features
including leukocytosis and respiratory distress and were thus treated with low-dose cytara-
bine according to standard protocols (Gamis et al. 2011). Patient 8 developed significant co-
morbidities including ascites, hepatic dysfunction, and disseminated intravascular
coagulation and ultimately passed away at 3 mo of age because of multiorgan failure sec-
ondary to his complete atrioventricular canal. Patients 9 and 10 remain leukemia-free at
20 mo and 1 yr of age, respectively.

Down Syndrome-Related AMKL (DS-AMKL)

In contrast to the patients with TAM, the five patients diagnosed with DS-AMKL presented as
toddlers (14-25 mo), and only patient 12 had a known prior history of TAM. Patients were
treated according to the Children’s Oncology Group (COG) AAML1531 protocol, and all pa-
tients remain disease-free (follow-up time 8.5-30 mo).
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Table 3. Cytogenetic findings

Patient Specimen Karyotype Interphase FISH results
1 Bone marrow 47 XY,r(3)(::p12—->q12::q24—>q26::),del(13)(q14.1q14.3), nuc ish(EVI1 x 3)[150/200]
aspirate der(19)(3pter—>3p12::121911.2—>21922::19p13.3—>19qter), nuc ishRUNX1T1 x 2,RUNX1 x 3)[146/200]
del(20)(q11.2913.1),der(21)(21pter—>21922::19p13.3—> nuc ish(TCF3 x 3,CEP3 x 2)[150/200]
19p13.1::3g21->3qter), +mar[11].ish r(3)(CEP3+,EVI1+), nuc ish(20ptelx2,020S108 x 1)[144/200]
der(19)(RUNX1+,TCF3+), del(20)(D20S108-), der(21)(RUNX1+,
TCF3+,EVI1+)/46,s1,1(14;18) (p11.1;911.2), —mar[5]/46,sl,
der(13)(?21pter—>2121::13q11.2->13q14.1::13q14.3 —>
13g34::13g14.3—>13qter), —del(13), —mar{5]
2 Bone marrow  46,XX,t(16;16)(p173;q2?4),der(22)t(1;22)(q10;q10)[6].ish nuc ish(RUNX1T1,RUNx1)x2[200]
aspirate t(16;16)(16ptel++,CBFB+,16qtel—;16ptel—,CBFB+, nuc ish(CBFB, 16ptel)x2[200]
16qtel++)/46,idem,i(17)(q10)[51/46,XX[8]
3 Frozen brain Not performed/ordered nuc ish(EVI1 x 2)[199/200]
mass nuc ish(PDGFRB)x3[9/200]
nuc ish(CEP7,D75486)x2[200]
nuc ish(KMT2Ax4)(5'KMT2A sep 3'KMT2Ax1)[5/
200]
nuc ish(PML,RARA)x2[200]
nuc ish(CBFBx2)[200]
4 Bone marrow  46,XY,der(14)t(1;14)(q2?1,932)[13].ish der(14)(LSI1q25+,IGH-),  nuc ish(LSI1p36 x 2,LSI1q25 x 3)[110/200]
aspirate inv(16)(G248P8680H10+,CBFB+)/46,XY[7] nuc ish(CEP8 x 2, MYCx2,IGHx1)[116/200]
nuc ish(KMT2Ax2)[200]
5 Bone marrow  47,XX,del(7)(q2?2),7t(16;19)(q2?4;913.?1),+21[7].ish del(7) nuc ish(CEP7 x 2,D75486 x 1)[54/200]
aspirate (CEP7+,D75486-),t(16;19) (CBFB+,G248P85334F2+; nuc ish(RUNX1T1 x 2,RUNX1 x 3)[50/200]
G248P89955D12+,G248P85334F2—)/46,XX[13] nuc ish (KMT2Ax2)[200]
nuc ish(CBFBx2)[200]
6 Bone marrow  46,XY,t(11;17)(q23;92?1)[1)/49,idem,+2,+5,+21[6)/47 XY, der(5)  nuc ish(5’KMT2Ax3,3'KMT2Ax2)(5'KMT2A con
aspirate t(5;11)(q12;p15),der (11)t(5;11)(q12;p15)t(11;17)(g23;927?1), 3'’KMT2Ax2)[50/200], (ETV6 x 2,RUNX1 x 3)[38/
der(17)t(11;17)(g23;92?1),+19[101/46,XY[4].ish t(11;17) 200]
(5KMT2A+,3’'KMT2A—;5KMT2A+,3’'KMT2A+)
7 Peripheral Not performed / ordered NA
blood
8 Peripheral 47 XY,+21c[19] nuc ish(CBFBx2)[200]
blood
9 Peripheral NA NA
blood
10 Peripheral 47 XY,+21 (constitutional study, PHA-stimulated) NA
blood
11 Bone marrow 49, XY,+8,+14,+21c[10]/46,XY,+21c[10] nuc ish(CEP8,MYC,IGH)x3[50/200]
aspirate
12 Bone marrow  47,XY,?del(3)(q21925),del(7)(p13),+21c[16].ish ?del(3)(EVI1+, nuc ish(EVI1 x 2)[200]
aspirate BCL6+)/47 XY, +21c[14] nuc ish(BCL6 x x 2)[200]
nuc ish(CEP7,D75486)x2[200]
13 Bone marrow  48,XY,+8,+21c[14]/47 XY, +21c[7] nuc ish(RUNX1T1 x 3,RUNX1 x 3)[125/200])/
aspirate (RUNX1T1 x 2,RUNX1 x 3)[75/200]
14 Bone marrow 47 ,XY,+21c[20] nuc ish(PDGFRB)x2[200]

aspirate

(
nuc ish(CEP7,D75486)x2[200]
nuc ish(RUNX1T1 x 2,RUNX1 x 3)[195/200]
nuc ish(MLLx2)[200]
nuc ish(PML,RARA)x2[200]
nuc ish(CBFBx2)[200]

(Continued on next page.)
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Table 3. (Continued)

Patient Specimen Karyotype Interphase FISH results
15 Peripheral 47 XX,+21c[20] nuc ish(PDGFRB)x2[200]
blood nuc ish(CEP7,D75486)x2[200]

nuc ish(MLLx2)[200]

(
(
nuc ish(RUNX1T1 x 2,RUNX1 x 3)[200]
(
nuc ish(CBFBx2)[200]

(FISH) Fluorescence in situ hybridization, (NA) not applicable.

The genetic profiles in these DS-AMKL patients were distinct from patients with TAM or
non-DS AMKL (Fig. 1). Although all patients had GATAT mutations, they also had additional
molecular and/or cytogenetic changes (range two to four additional changes; Table 2). Two
patients had trisomy 8, patient 12 had other cytogenetic changes, and all five patients had
sequence mutations in pathways known to be involved in DS-AMKL, including two with
frameshift mutations in CTCF. The other mutations involve genes in the RAS pathway
(JAK1, JAK2, NRAS, PTPN11), cohesin complex (RAD21), epigenetic regulators (SUZ12),
and spliceosome components (SRSF2).

DISCUSSION

In our cohort, the three groups of patients displayed distinct genomic profiles (Fig. 1). Non-
DS AMKL is characterized by large cytogenetic changes, often with complex genomes,

T O TR

>ie
8 9 10 1 12
19p13 (TCF3) 3926 (EVI1) BAP

X | @ - 4 8 LR

15 16 17 18

& 8 RuN . i
”~ 4
aw, Wi ~ ki
20 21 EVI 22 X Y

24022.12 (RUNX4)

Figure 2. Complex cytogenetics observed in patient 1. The stem line is shown on the right, which was ob-
served in 11 of 21 cells (see Table 3 for complete nomenclature). Fluorescence in situ hybridization (FISH) stud-
ies demonstrate the ring chromosome identified by karyotype originates from Chromosome 3 and contains at
least the 3926 locus (EVIT gene). The EVI1 probe also localized to a derivative Chromosome 21, which was
involved in a three-way translocation with Chromosomes 3 and 19. This was also observed with FISH for
RUNX1 (21g22.12), which localized both to the derivative Chromosome 21 and a derivative Chromosome
19. Finally, a terminal deletion of 20q was confirmed in 144/200 interphase cells.
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Figure 3. Diverse cytogenetic mechanisms resulting in CBFA2T3-GLIS2 gene fusions. (A) Representative cy-
togenetic and FISH images used to identify Chromosome 16 abnormalities in patients 2, 4, and 5. See Table 3
for complete nomenclature. Cytogenetic studies are not available for patient 3. (B) Representative screenshot
from the Archer software demonstrating a CBFA2T3-GLIS2 gene fusion between exons 11 and 3 of CBFA2T3
and GLIS2, respectively (i.e., C11G3). The same breakpoint was observed in all four patients.

recurrent gene fusions, and a paucity of sequencing mutations. TAM and DS-AMKL are char-
acterized by trisomy 21 and GATAT frameshift mutations with additional cytogenetic and se-
quence mutations observed in DS-AMKL exclusively.

Genomic-Guided Management in Non-DS AMKL

Although a diagnosis of non-DS AMKL has been historically associated with poor prognosis,
these patients are clinically heterogeneous, and recent studies identified recurrent genomic
changes that delineate patients into distinct prognostic groups. Inaba et al. (2015) defined
three risk groups based on karyotypes, with high-risk patients having normal karyotypes,
—7, 9p abnormalities, including t(9;11)(p22;923), —13/13g—, or —15. Low-risk patients
have 7p abnormalities whereas the remaining patients are considered intermediate risk.
More recently, recurrent gene fusions have been used to define prognosis with NUP?8-
KDM5A, CBFA2T3-GLIS2, and KMT2A rearrangements being associated with poor progno-
sis, HOX rearrangements and RBM15-MKL1 being associated with intermediate prognosis,
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Mutation identified in this study @ Truncating mutation @® Missense mutation Other mutation (e.g., splicing, synonymous)

Figure 4. GATAT variant spectrum in germline and somatic setting. The green boxes indicate the two GATA
zinc finger protein domains, the amino-terminal finger (Nf) and carboxy-terminal finger (Cf). (A) GATA1 variants
listed in ClinVar as Pathogenic or Likely Pathogenic or in HGMD as “disease-associated” for hereditary condi-
tions. (B) GATAT sequence variants listed in COSMIC identified in hematopoietic or lymphoid tissues. Intronic
variants that may affect splicing are not included. Numbering based on RefSeq transcript NM_002049.3.

and GATAT mutations being associated with good prognosis (de Rooijj et al. 2016, 2017).
Current risk stratification in COG is based on specific cytogenetic/molecular features, with
allogenic hematopoietic stem cell transplantation (HSCT) offered during the first remission
for patients with high-risk AML (Elgarten and Aplenc 2020).

The non-DS AMKL-associated gene fusions have been shown to be important drivers of
leukemogenesis associated with distinct transcriptional programs and clinical outcomes (de
Rooij et al. 2017). For instance, both CBFA2T3 and GLIS2 are transcriptional regulators, and
the CBFA2T3-GLIS2 fusion results in increased Hedgehog, JAK-STAT, and growth factor
signaling pathways leading to enhanced self-renewal of hematopoietic stem cells (Gruber
etal. 2012; Thiollier et al. 2012). Interestingly, we identified this fusion in four of six patients
with non-DS AMKL, indicating it may be more common than previously thought in pediatric
patients, although our study is limited in size (see Study Limitations below). Our panel may
have a higher detection rate for this fusion because of the open-ended polymerase chain re-
action (PCR) technology used and increased sensitivity of using a targeted fusion panel as
opposed to whole-transcriptome sequencing, which may be less efficient for fusions with
lower expression.

In some cases, a diagnosis of AMKL cannot be achieved based on morphological or
immunophenotypic information alone, and comprehensive genomic evaluation can reveal
recurrent AMKL-associated mutations allowing for an integrated diagnosis of non-DS
AMKL. Patients 1 and 3 did not receive a definitive diagnosis until genetic testing revealed
NUP98-KDM5A and CBFA2T3-GLI3 gene fusions, respectively. Patient 1 was initially diag-
nosed with undifferentiated AML, and upon identification of the fusion gene, his diagnosis
was changed to non-DS AMKL. Additionally, the complex cytogenetic aberrations observed
further confirmed a poor prognosis for this patient. For patient 3, although flow cytometry
revealed megakaryocytic differentiation, he presented with a temporal sarcoma, which com-
plicated diagnosis. Evaluation of bone marrow and correlation with genetic features
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confirmed a diagnosis of non-DS AMKL. Because children with AML and NUP98 or CBFA2T3
fusions treated with chemotherapy alone have poor relapse-free survival (de Rooij et al.
2016), both patients underwent a matched unrelated donor bone marrow transplant.

Significance of Genomic Evaluation in Patients with DS

Even within DS-related myeloid malignancy, the clinical heterogeneity is striking. Despite
the fact that all patients with TAM acquire GATAT mutations, it has been estimated that
up to two-thirds remain asymptomatic (i.e., silent TAM), whereas the remaining one-third
(~10% of newborns with DS) develop clinical TAM (Roberts et al. 2013; Swerdlow et al.
2017). In most patients, TAM resolves spontaneously; however, in 20%-30% of patients,
TAM transforms to myelodysplastic syndrome (MDS) or AML, most commonly DS-AMKL,
1-3 yr later. One theory postulates that the initiating GATAT clone occurs in tissues of fetal
hematopoiesis, which could explain the spontaneous remission observed in most patients
with TAM within the first year of life, when bone marrow hematopoiesis takes over
(Bhatnagar et al. 2016). If additional driver mutations arise in these clones prior to extinction
of fetal hematopoiesis stem cells, there is risk of DS-AMKL. In our cohort, only one of the five
patients with DS-AMKL was known to have TAM prior to their AMKL diagnosis, suggesting
the remaining four had silent TAM and accumulated additional driver mutations prior to ex-
tinction of fetal hematopoiesis stem cells. Given that GATA1 is located on the X chromo-
some, it is interesting to note that eight of the nine patients with TAM or DS-AMKL in this
cohort are male, consistent with previous studies that noted a trend toward sex bias in devel-
opment of TAM/DS-AMKL (Massey et al. 2006; Heald et al. 2007). Whether the variant allele
frequency of GATAT mutations is associated with development and/or progression to DS-
AMKL requires additional studies.

The acquired GATAT mutations in TAM/DS-AMKL are predominantly frameshift muta-
tions in exon 2 (NM_002049.3), resulting in expression of a shorter isoform due to an alter-
native translation initiation codon at residue 84, thereby skipping the frameshift mutations
and the boundary between exon 2 and intron 2. These mutations may be embryonic lethal
as they have rarely been reported as germline changes (Rainis et al. 2003). In contrast, path-
ogenic germline variants in GATA1 are mostly missense mutations in exon 4 (NM_002049.3)
encoding the amino-terminal zinc finger protein domain (also known as the Nf domain, res-
idues 204-237 based on UniProtKB reference P15976) and are associated with X-linked ane-
mia, neutropenia, thrombocytopenia, and platelet abnormalities, but not leukemias (Fig. 4)
(Ciovacco et al. 2008).

All DS-AMKL harbored additional somatic mutations, consistent with a prior exome se-
guencing study showing a higher mutation burden in individuals with DS-AMKL compared
to TAM (Yoshida et al. 2013). All patients with DS-AMKL had at least one additional driver
mutation with an enrichment in cohesion genes, epigenetic regulators, CTCF, and other crit-
ical signaling pathway genes (Nikolaev et al. 2013; Bhatnagar et al. 2016). Here, we identify
the second DS-AMKL patients with somatic mutations in SUZ12 and SRSF2, respectively
(Yoshida et al. 2013). Of note, two GATAT mutations were observed in patient 14 (DS-
AMKL), which likely arose independently in distinct clonal populations; indeed visualization
in the Integrated Genomics Viewer confirmed that these two variants were mutually exclu-
sive. This finding is consistent with the theory that cells with trisomy 21 have a “mutator phe-
notype” specific to certain loci such as GATAT (Roberts et al. 2013). In two published
individuals with more than one GATAT mutation and genetic profiling at the time of TAM
and DS-AMKL diagnoses, the minor TAM subclone expanded and acquired additional mu-
tations to become the major DS-AMKL clone (Nikolaev et al. 2013; Yoshida et al. 2013).

Identifying patients with TAM at greatest risk of DS-AMKL is not evident a priori as these
patients have indistinguishable pathology at the time of initial diagnosis. The natural history
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study by the COG evaluated multiple clinical risk factors and only time to TAM resolution
reached borderline significance with leukemia-free survival (Gamis et al. 2011). Of note, nei-
ther GATAT mutation type nor diagnostic blast count is associated with progression to AMKL
(Gamis et al. 2011; Bhatnagar et al. 2016). An outstanding question is whether serial, high-
depth sequencing of genes involved in TAM to AMKL progression may help in early detec-
tion of DS-AMKL transformation.

Importance of Comprehensive Evaluation

Accurate and timely diagnosis and prognostication require multiple molecular and cytoge-
netic techniques, combining fast turnaround times with thorough evaluation. At the mo-
ment, clinical laboratories utilize various techniques to offer such comprehensive testing;
however, RNA studies, which are required to detect most AMKL-related gene fusions, are
not considered standard of care.

Detection of GATAT mutations is important for diagnosis of TAM, especially “silent”
TAM in which infants have a small fraction of clones with GATAT mutations but no clinical
phenotype (Roberts et al. 2013). These infants are at increased risk of developing DS-
AMKL. Pending studies will determine whether periodic mutation screening can improve
outcomes for these infants with “silent” TAM and thus the clinical utility of screening for
GATA1 mutations in all patients with DS (Roberts et al. 2013; Bhatnagar et al. 2016).

Cytogenetic evaluation can rapidly identify canonical chromosomal rearrangements as-
sociated with non-DS AMKL as well as identify prognostic structural changes. For example, a
pericentric inversion of Chromosome 16 was detected with cytogenetics in the bone marrow
of patient 4, strongly suggesting a CBFA2T3-GLIS2 gene fusion, which was subsequently
confirmed with the NGS RNA panel. However, many of the recurrent rearrangements asso-
ciated with AMKL are cytogenetically cryptic and were detected using the RNA sequencing
only. Indeed, despite four patients harboring the recurrent CBFA2T3-GLIS2 with standard
breakpoints, only one displayed the typical cytogenetic mechanism, a pericentric inversion
16 (patient 4; Fig. 3). In the remaining two patients with this fusion with karyotype analysis,
one was caused by a balanced translocation between the two Chromosome 16 homologs
and the other likely involved a complex rearrangement in which only a balanced transloca-
tion between Chromosomes 16 and 19 could be observed (patient 5).

Study Limitations

One caveat to this study is the possibility of missing fusion genes involving genes of the HOX
gene cluster, which are not included in the current RNA panel. However, some partner genes
that have been observed in HOX fusions are included, such as EWSR1. Based on prior stud-
ies using unbiased transcriptomic profiling, it is expected that ~15% of patients with non-DS
AMKL carry HOX rearrangements, which are associated with intermediate prognosis.
Alternatively, our cohort may be biased toward patients with aggressive disease referred
to the Children’s Hospital of Philadelphia. This is supported by the lack of patients with ge-
netic features associated with good (GATA1 somatic mutations) or intermediate (HOX-rear-
rangements and RBM15-MKL1 fusion) prognosis. Indeed, an electronic medical record
search for pathological features of AMKL did not reveal any additional patients.

In summary, AMKL-related malignancies display both clinical and genomic heterogene-
ity. Recurrent molecular and cytogenetic changes can predict prognosis and guide manage-
ment decisions. High-throughput DNA and RNA profiling is required for optimal
management of AMKL-related malignancies, whereas cytogenetic studies can provide diag-
nostic results in a short time frame and may help to reveal underlying mechanism of genomic
alterations. Thus, integrated genomic diagnostic enables personalized patient care.
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METHODS

Patient Characteristics

Patients were identified by pathological diagnosis and/or molecular findings. Comprehen-
sive genomic evaluation using a large NGS panel for DNA and RNA has been offered at
the Children’s Hospital of Philadelphia since 2016. This clinical cohort was mined for patients
with a pathological or molecular diagnosis of AMKL, TAM, or DS-AMKL. Specifically, the pa-
thology reports of patients having undergone genomic profiling were mined for the words
“AMKL,"” “megakaryoblastic,” “CD41,” or “CDé1.” Additionally, an internal genomic data-
base was mined for clinical indications related to AMKL, TAM, or DS-AMKL and for genetic
findings associated with these malignancies, including GATAT mutations and the recurrent
gene fusions observed in AMKL. This study was approved by the Institutional Review Board
of the Children’s Hospital of Philadelphia.

Cytogenetics

Chromosome analysis and FISH studies were performed according to standard protocols.
Briefly, unstimulated bone marrow specimens were cultured and harvested after overnight
incubation. G-banding metaphases were prepared using trypsin digestion followed by
Giesma staining. A minimum of 20 cells were analyzed. FISH studies were performed using
a panel of probes for AML and additional probes may be added based on clinical indication,
where appropriate, to rule out recurrent abnormalities.

NGS Panel

The Comprehensive Hematological Cancer Panel offered by the Children’s Hospital of Phil-
adelphia Division of Genome Diagnostics (CAP-accredited) is a custom panel including se-
quence and copy-number analyses of 99 (version 1) to 118 (version 2) cancer genes and gene
fusion detection involving one of 106 (version 1) to 110 (version 2) possible partner genes
(exact number depends on date of service). The genes included in the current panel are list-
ed at https:/apps.chop.edu/service/laboratories/olsd.cfm/division-genomic-diagnostics.
DNA and RNA extraction, sequencing, and analysis were performed as previously reported
(Chang et al. 2019; Surrey et al. 2019). Briefly, DNA sequencing libraries are prepared from
50 ng genomic DNA using the Agilent SureSelect® T kit, whereas RNA libraries are prepared
from 150 ng input RNA or total nucleic acid using the Archer Universal RNA Reagent Kit v2.
All sequencing reactions are performed with the lllumina MiSeq or HiSeq platforms with
paired-end sequencing (2 x 150 bp). Average sequencing coverage for the region of interest
of the DNA panel is 1500x and minimum sequencing coverage is 100x. See Supplemental
Table 1 for sequencing and alignments metrics. In-house scripts are used to identify and an-
notate single nucleotide variants (SNVs) and small insertion-deletions (indels) detected with-
in exonic regions =10 bp flanking regions and intonic regions with known mutations, and
copy-number variants (CNVs) are analyzed using NextGENe v2 NGS Analysis Software (Soft-
genetics) (Surrey et al. 2019). Gene fusions are detected using Archer Analysis according to
standard protocols (Chang et al. 2019).

Somatic mutations are classified using criteria consistent with those recommended by
the Association for Molecular Pathology, American Society of Clinical Oncology, and
College of American Pathologists (Li et al. 2017). In brief, Tier 1 variants are actionable
somatic variants with well-established evidence for diagnostic, prognostic or therapeutic im-
plications. Tier 2 variants represent potentially actionable somatic variants. Tier 3 and 4 var-
iants represent variants of unknown significance and likely benign/benign variants,
respectively. Only Tier 1-2 variants are reported in this manuscript. Variants in GATAT are
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reported based on transcript NM_002049.3, and transcripts for remaining variants described
are listed in Table 4.
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