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Abstract

It has long been suggested that human behavior reflects the contributions of multiple systems that 

cooperate or compete for behavioral control. Here we propose that the brain acts as a “Mixture of 

Experts” in which different expert systems propose strategies for action. It will be argued that the 

brain determines which experts should control behavior at any one moment in time by keeping 

track of the reliability of the predictions within each system, and by allocating control over 

behavior in a manner that depends on the relative reliabilities across experts. fMRI and 

neurostimulation studies suggest a specific contribution of the anterior prefrontal cortex in this 

process. Further, such a mechanism also takes into consideration the complexity of the expert, 

favoring simpler over more cognitively complex experts. Results from the study of different expert 

systems in both experiential and social learning domains hint at the possibility that this reliability-

based control mechanism is domain general, exerting control over many different expert systems 

simultaneously in order to produce sophisticated behavior.
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Introduction

For decades if not centuries, researchers in psychology and neuroscience across many 

different domains from cognitive and social psychology, to animal-learning and behavioral 

and decision neuroscience have proposed the existence of multiple systems in the brain that 

co-operate or compete to control behavior (Damasio, 1994; Daw et al., 2005; Dickinson, 

1985; Figner and Weber, 2011; Kahneman, 2011; Laibson, 1997; Norman and Shallice, 

1986; Shiffrin and Schneider, 1977). Typically, a theoretical claim is made for the existence 

of a dichotomy (in some instances a trichotomy)– such that the interactions between the 

competing systems can produce nuanced effects on behavior that would not be predicted by 

the effects of only one system alone. For instance, in a number of theoretical frameworks for 

value-based decision-making, an impulsive system that wants immediate gratification 

competes for control over behavior with a more patient reflexive system that is focused on 

fulfilling longer term goals (Laibson, 1997; McClure et al., 2004). In a framework derived 

from animal-learning, a goal-directed system that accesses the current incentive value of 

outcomes as well as the causal relationship between actions and outcomes, competes for 

control against a habit system that selects actions based on previously reinforced stimulus-

response relationships (Dickinson, 1985). In the computational reinforcement-learning 

literature, a model-based (MB) system that actively plans actions based on a cognitive map 

competes against a model-free (MF) system that performs actions based on previously 

learned value predictions (Daw et al., 2005). Such multi-system theories are so ubiquitous, 

that there is hardly an area of study in the psychology of the mind that does not feature such 

a theory in some or other form.

We contend that the proliferation of such multiple systems theories is not merely a curiosity 

in the sociology of the science of the mind. Instead, we believe they reflect a recognition of 

the fundamental importance of a multiple systems architecture for understanding the brain, 

because from an evolutionary and individual stand-point, the existence of multiple systems 

or strategies for solving a cognitive problem is highly advantageous for an organism. One 

crucial reason boils down to the meaning behind the folk expression that “two heads are 

better than one”, or to the notion that the crowd can express wisdom not found in a single 

individual (Surowiecki, 2005). Simply put, just as when polling the ideas of two executives 

with different backgrounds and expertise might yield better decisions for a company than if 

only one of those actors had taken a decision, our brain can poll the opinions of different 

systems, each of which either has access to different forms of information and/or operates on 

the information differently. Therefore, each system has the potential to reach different 

conclusions about the state of the world, and/or which policy might be best.

Here, we argue that a useful framework with which to consider how the brain “polls” 

different systems, is the “mixture of experts” framework adapted loosely from machine-

learning (Jacobs et al., 1991). According to the mixture of experts idea, different 

computational strategies operate on a computational problem, and these experts can each 

come up with different evaluations/beliefs and/or proposals for action. In some instances, the 

experts might operate on completely distinct sub-problems, and even operate on different 

data partitions. For instance, two different experts might be focused on decoding sounds 
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from low and high frequency domains. In other circumstances the experts might work on 

overlapping sub-problems and even use the same input data, but the experts use different 

algorithms or strategies to solve the sub-problem. In general we suggest that different 

experts can be distinguished from each other based on any one of three criteria: (a) the 

experts operate on different partitions of the state-space, whether input (different sensory 

input) or output (different motor actions), (b) the experts use qualitatively different 

algorithms to make predictions, or (c) unique experts might also be identified from studies 

of neural implementation if distinct experts are mapped to dissociable neural circuits.

Machine learning researchers have considered several strategies for how to produce an 

overall decision based on integrating across different modules that have distinct expertise 

either by having access to different partitions of the input data and/or by performing 

different operations on the input data (Jacobs et al., 1991; Titsias and Likas, 2002; Yuksel et 

al., 2012). In essence, the goal of training a Mixture of Expert (MoE) system in machine-

learning is to train each of the individual experts on the most relevant parts of the problem to 

which they can contribute, and also to train the “manager” in how to allocate task 

responsibilities over these experts such that their collective expertise is efficiently utilized to 

solve the overall problem (Jacobs et al., 1991). That is, the system should assign weights to 

the individual experts depending on the specific relevance of their expertise for solving a 

particular problem. One doesn’t want to have an electrician work on one’s kitchen sink, or a 

plumber work on one’s lighting.

Because the “manager” adapts a behavioral policy that arises from an integration of the 

opinions of the individual experts, weighted by its relative confidence in their predictions, all 

possible opinions on the subject by individual experts will have been taken into account in 

an optimal manner, provided the evaluation of the degree of confidence that one should have 

in each expert is veridical.

Confidence in an expert can be inferred from the degree of reliability of the expert’s 
predictions

How can the meta-decision agent determine how confident it should be in an expert’s 

opinions? We propose that the simplest way to do so is to poll how well the expert is doing 

in making its own predictions (see Daw et al., (2005) for the original application of this idea 

to a dual system framework), which we call prediction reliability. Prediction reliability is the 

converse of prediction uncertainty which has been well studied in the theoretical 

neuroscience literature, in turn often fractionated into a number of distinct components such 

as expected uncertainty, unexpected uncertainty and estimation uncertainty (Payzan-

LeNestour and Bossaerts, 2011; Yu and Dayan, 2005). Here for the purpose of the MoE 

framework, there is no need to distinguish between different forms of prediction reliability 

(or uncertainty). Instead what the manger is interested in is the overall recent performance of 

the expert – how often it makes a good prediction and how often it makes a poor prediction. 

Those experts that make good predictions about the world (or which action to select in it) 

should be deemed more reliable and should be allocated more confidence by the manager. 

Thus, the simplest mechanism for attributing confidence to an expert’s predictions involves 

reading out a single reliability signal about that expert’s predictions in a manner that pools 
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over (or is indifferent to) the source of the variance that led to that reliability estimate (i.e. 

whether it comes from estimation, expected or unexpected uncertainty). This single 

reliability signal could be used to allocate a relative weight that (when compared to the 

current level of uncertainties present in the other experts) is used to determine that experts 

influence over behavior.

But how might such reliability signals be computed in the first place? A computationally 

cheap way to learn about reliabilities within individual experts is to keep track of the 

prediction errors produced by a given expert, i.e. comparing its predictions to actual 

outcomes. We have found evidence for this in the domain of model-based and model-free 

reinforcement-learning (Lee et al., 2014). The expert can thus build an approximate estimate 

of the degree of reliability in its predictions by taking the absolute amount of surprise it is 

experiencing (the absolute value of the prediction error signals), and using this as an update 

signal for the average reliability of its predictions (Box 1). Although very much an open 

empirical question, we suggest that given the ubiquity of prediction errors in the brain 

(Schultz and Dickinson, 2000), a similar mechanism for keeping track of the absolute value 

of the prediction errors to generate a proxy estimate of prediction reliability could be 

deployed very universally within the brain, for each of its constituent experts. The average of 

the absolute prediction error is simply quantifying the deviation of the expert from a perfect 

prediction (by tracking deviations in the expert’s prediction errors from zero, where zero 

prediction error implies the expert has made a perfect prediction). Intuitively, it is easiest to 

understand this averaged unsigned prediction error as simply a measure of the expert’s 

recent average performance in making predictions: if the expert has made a lot of recent 

errors in its predictions (whether over or underestimating the consequences of its actions), 

then it is less reliable than an expert that has made smaller or fewer errors in its predictions.

Prediction reliability is necessary and sufficient to allocate control weights over experts

An important feature of a number of theories of cognitive control is that the controller takes 

into account considerations about the cognitive costs and the expected increase in rewards 

incurred by engaging a particular sub-system. For instance, expected value of control 

theories propose that the expected gain from engaging a particular cognitive strategy is 

traded off against the expected cost in terms of the cognitive effort involved in doing so 

(Shenhav et al., 2013). Various arbitration schemes between model-based and model-free RL 

also consider the tradeoff between the additional cost of computation for model-based RL vs 

the decreased accuracy of model-free RL (Dromnelle et al., 2020; Kool et al., 2017; Pezzulo 

et al., 2013). It is clear that by manipulating task complexity (one way to modulate cognitive 

cost), it is possible to influence the balance of control between different constituent experts 

(e.g. see Kim et al., 2019). However, we suggest that it is possible to accomplish this cost 

benefit tradeoff implicitly without necessitating explicit computations of cognitive cost. The 

MoE system will indeed be sensitive to the overall expected value of pursuing a particular 

strategy as well as to the complexity of the model utilized by a particular expert, which 

should scale with the cognitive cost. However, this comes for free in the MoE framework 

because it is baked into the prediction uncertainty measure, as follows: Firstly, an expert that 

has lower prediction uncertainty than another will, all else being equal, perform better in 

terms of the cumulative gains that would pertain if the agent implements a behavioral policy 
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recommended by that expert. Thus, implicitly minimizing the agent’s overall prediction 

uncertainty by selecting experts that make better (more precise) predictions will also ensure 

that the agent will perform more successfully overall in terms of the cumulative rewards 

obtained. Secondly, selecting experts based on prediction reliability also implicitly favors 

experts with less complex models. The reason is because of the bias/variance trade-off 

(Geman et al., 1992; Luxburg and Schölkopf, 2011). Simply put, a more complex model 

may well explain a particular portion of the input data well, but such a model will often 

perform much worse when generalizing to new data samples because of the increased risk of 

overfitting. In the MoE scheme, this would mean that an agent with a more complex model 

would often fail to make good predictions when faced with new input data, resulting in 

increased errors and hence increased prediction uncertainty. Relatedly, a model that is too 

simple, would also end up being biased in its prediction and result in increased errors. Thus, 

the expert with a sufficient but moderate degree of complexity to solve the task at hand will 

end up with the lowest degree of prediction uncertainty, being favored for the control of 

behavior over experts utilizing models that are either too simple to be fit for purpose, or too 

complex.

Beyond the bias/variance trade-off that will operate in this situation, another important 

system constraint that will also naturally impose a tendency not to rely on an overly 

cognitively demanding model is simply that cognitive capacity constraints in the system, 

such as limitations in working memory, will naturally constrain the cognitive complexity of 

the experts that can make good predictions. If a highly demanding cognitive strategy is 

utilized, then this strategy will likely end up making poor predictions if working memory or 

other cognitive capacities are over-taxed, resulting in an increase in prediction uncertainty. 

Thus, prediction uncertainty is we argue, sufficient to enable the selection of experts that are 

complex enough to solve the task, while not being too cognitively complex so as to incur 

overfitting or to come up against cognitive constraints that limit its performance. In sum, 

utilizing prediction uncertainty learned through tracking prediction errors generated by each 

expert, may be both necessary and sufficient to accommodate a mixture of experts 

architecture that favors better performing and less cognitively demanding experts over 

experts that are either less well performing and/or more cognitively demanding. We do not 

doubt that the expected cost of taking particular actions enters into decision values, which 

could include the expected time taken to solve a particular problem.

It is an open empirical question whether cost is entered as a meta-decision variable 

determining allocation of behavioral control by the MoE manager. However, we would 

suggest that it is imperative to first rule out the parsimonious explanation that explicit 

considerations of cost do not need to be explicitly entered into the MoE scheme, because 

such considerations are already catered for implicitly via prediction reliability and cognitive 

constraints.

What experts contribute to the mixture?

Within this framework, the next obvious question arises as to what precisely are the experts 

that contribute to the mixture? At this point in our understanding of the building blocks of 

cognition, there are numerous different conceptualizations that can be drawn upon to 
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identify putative “experts”. As alluded to earlier, psychologists and behavioral economists 

have postulated the existence of various dual or tri-process theories to account for human 

behavior. A key difference of the proposed MoE framework over existing multiple systems 

theories in psychology and neuroscience, is that here we are not pre-committing to a specific 

number of individual experts, such as two or three. Instead, the framework can include many 

possible experts. Clearly though it does not make sense to presume that there are an infinite 

or even a very large number of experts, given the brain occupies finite neural real estate. 

Instead, it is reasonable to assume there is a finite and relatively small number of experts. 

We speculate that many existing multiple systems theories and the empirical assays that 

derive from them are simply using different semantic labels and distinct experimental 

paradigms to describe and characterize the same underlying systems of experts, although 

little empirical work has yet been conducted to establish the nature of the overlap between 

constructs in order to determine whether this is indeed the case. The literature on possible 

expert systems is so fractionated, we think a critical direction for future research on this 

question will be to gather the various dual and tri-system theories of cognition and the 

behavioral tasks that are proposed to reveal their operation, and systematically attempt to 

delineate what is common and what is distinct across all of these different theories, as they 

are measured through the behavioral tasks and also in terms of the neural circuits on which 

they depend. A fundamental question is whether there exists a core set of experts that can 

explain all of the variance in behavior proposed in all of these disparate frameworks. In other 

words, it should be possible to perform some form of dimensionality reduction or factor 

analysis to reveal the underlying cognitive ontology (Poldrack and Yarkoni, 2016).

In the following section, we will focus on candidate experts that have been widely 

considered in the decision neuroscience field. We do this not because we wish to argue that 

what follows is the only possible set of experts or that they necessarily represent the only 

meaningful way to carve up the cognitive architecture, but because on a prosaic level these 

experts happens to be the focus of our own research, and also because they have provided 

the initial empirical evidence to support our more general claims about the MoE framework. 

We also do not consider complications to the framework that have yet to be understood, such 

as how the brain deploys strategies to solve the exploration/exploitation dilemma in the 

context of multiple experts (Cohen et al., 2007).

We and others suggest the existence of multiple systems or experts for controlling behavior 

in humans and other animals (Balleine et al., 2009; Balleine and O’Doherty, 2010; Daw et 

al., 2005; Dickinson, 1985; Lee and Seymour, 2019). These include, a goal-directed system, 

which as alluded to earlier, involves selecting actions in a manner that is sensitive to the 

current incentive value of the goal, and a habitual system in which instrumental actions are 

selected by antecedent stimuli (mediated by stimulus-response associations) without 

reference to the current incentive value of a goal. At the algorithmic level, it has been 

suggested these two systems can be accounted for in terms of model-based and model-free 

reinforcement-learning respectively, although establishing the precise overlap between these 

sets of constructs and the neural circuits involved is still a focus of on-going research and 

debate (Dickinson, 1985). Another class of candidate expert systems are ones that mediate 

Pavlovian behavior in which innate reflexes that have been acquired over an evolutionary 

timescale, are elicited by stimuli that predict behaviorally significant outcomes (Dayan and 
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Berridge, 2014). Recent evidence suggests that a reliability-based arbitration scheme might 

also mediate the interactions between Pavlovian and instrumental experts (Dorfman and 

Gershman, 2019). Notably, there is strong evidence for the existence of multiple forms of 

Pavlovian prediction, therefore suggesting the existence of multiple forms of Pavlovian 

experts (Dayan and Long, 1998; Holland and Straub, 1979; Pool et al., 2019). This indicates 

there is likely to be a rich interplay between multiple Pavlovian experts and other experts, 

which could be perhaps become a focus of study within the broader canvas of the MoE 

framework.

In addition to those experts in the domain of experiential learning, we suggest the existence 

of additional expert systems to mediate learning from observing others. These include, the 

capacity to learn from the rewards experienced by others – so-called vicarious 

reinforcement-learning, the capacity to learn to imitate others’ actions – imitation-learning, 

and the capacity to learn from inferring the goals and/or intentions of others: emulation 

learning (Charpentier et al., 2020; Heyes and Saggerson, 2002). These three forms of 

observational learning rely either on distinct algorithms for their implementation compared 

to MB vs MF, and/or operate on different partitions of the state space thereby meeting the 

criteria of being classed as distinct experts. For instance, emulation learning is (unlike MB-

RL) concerned with inferring the hidden state of the world through observing another’s 

actions, for instance by trying to work out what goal the observed agent is currently working 

toward. Imitation learning is concerned with learning to predict which actions an agent will 

choose next based on the actions it chose in the past. Vicarious RL on the other hand is 

argued to use the same algorithm as model-free RL, but instead, the reward function that is 

input into the algorithm is the reward function of the other agent (the rewards received by 

that other agent) as opposed to the rewards experienced by the observer (Cooper et al., 

2011).

An implication of the MoE framework, is that each of these systems will be available to 

control behavior at each moment in time, and that their contribution to behavior will be 

weighted by the “confidence” that the manager has in the likely success of a given expert for 

solving a given problem. In practice, if the manager has little confidence in a given expert’s 

contribution to a given situation, then the weight assigned to this expert will be effectively 

zero, so that it will not actively contribute to behavior.

To understand better the implications of the MoE framework for characterizing the nature of 

the interactions between the systems, let’s consider the interaction between just two experts: 

the goal-directed and habitual system. Empirically, evidence has accumulated to support the 

existence of training duration effects on the trade-off between these two systems, such that 

the goal-directed system dominates behavior early on in the development of instrumental 

action learning, while the habitual system gradually begins to increase its influence over 

behavior as action-learning continues, eventually becoming dominant over the goal-directed 

system in its control of behavior (Adams, 1982). It is also often presumed that the habit or 

model-free system, necessarily produces noisier and more approximate estimates of the true 

distribution of rewards associated with particular actions than the goal-directed system (Daw 

et al., 2005). Thus, the trade-off between the two systems is suggested to be one between a 

necessarily more accurate model-based system and a less accurate but cognitively cheaper 
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model-free system. However, we would argue that the model-free system may not 

necessarily always have the less accurate predictions, but in fact that the predictions of the 

model-free system can be more robust and generalizable and hence more accurate than the 

model-based system under some conditions. This would happen under situations where the 

model-based system ends up relying on an overfit and hence brittle cognitive model of the 

decision problem. In other words, we suggest that it is better not to think about the 

competition between multiple systems solely as being akin to the trade-off between the cost 

of taking on a smart and competent professional contractor to work on your house that 

nevertheless is very expensive, compared to a crude and blundering amateur that often gets 

the job done but never perfectly, yet is cheap to hire. Instead, we think it may be more useful 

to think about the trade-offs between systems as being about different systems having 

different advice and expertise, and that which expert actually has the more accurate 

predictions at any one moment will depend to a considerable degree on the local properties 

of the learning environment and the nature of the problem at hand.

There are two important implications of this last point: firstly, which system might end up 

being dominant in the control of behavior in particular experimental contexts can be 

expected to be highly situationally specific, albeit not inscrutable. This is because the MoE 

framework can make specific predictions about when one system might be expected to be 

favored over the other depending on the nature of the environmental variability. Secondly, 

the MoE framework also suggests that it is useful and indeed beneficial for both systems to 

jointly continue to actively make predictions across a wide variety of environmental 

situations because of their different forms of expertise, so long they continue to be useful to 

rely on. In other words, it does not necessarily make sense for the model-based system to 

switch off and yield control over behavior entirely to the model-free or habit system even 

after a long training duration, even though the habit system is less cognitively expensive. 

Instead, to maximize accuracy in predictions, under many regimes both systems might 

continue to provide useful input that the MoE system continues to poll (in proportion to the 

relative uncertainty in those predictions), even if the relative balance between the experts 

does shift as a function of environmental experience. We do suspect, however, that if an 

expert has little in the way of reliable advice to contribute to a particular situation such that 

its reliability falls below a certain threshold, it would make sense for that expert to no longer 

be polled at all, and indeed it would be efficient for that expert to no longer make active 

predictions in that situation, thereby no longer drawing on cognitive resources.

Prefrontal cortex plays a role as a “manager” over the experts.

It could be questioned whether or not the mixture of experts framework we have outlined 

necessarily requires a “manager” at all. For instance, an alternative implementation could be 

that the experts would mutually inhibit each other, sharing control proportionately without 

any top down mechanism or meta-controller: in essence a form of competitive anarchy. 

However, what we know about the architecture of the brain strongly argues against this type 

of anarchical system. Decades of work in neuropsychology, electrophysiology and 

neuroimaging strongly supports the suggestion that the prefrontal cortex plays a major role 

in cognitive control and in the co-ordination of neural structures elsewhere in the brain for 

the purpose of guiding behavior (Burgess and Shallice, 1996; Miller and Cohen, 2001). The 
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prefrontal cortex therefore is a natural candidate for the location of a “manager” which 

exerts control over subsidiary experts. This proposal resonates with a number of 

longstanding proposals about the prefrontal cortex, in which this region has been proposed 

to act as a “central executive”, (Baddeley, 1996) or as a conductor of goal-directed control 

(Miller and Cohen, 2001; Norman and Shallice, 1986).

The MoE framework provides for specific predictions about the neural computations that 

might be expected of the MoE manager. Specifically, one prediction is that the manager will 

have access to neural signatures of the uncertainty in the predictions of the various expert 

systems, or even more usefully, the “precision” in the predictions of the various expert 

systems (the inverse or negative of the uncertainty). These precision signals would 

subsequently be utilized by the manager to allocate responsibility over behavior. In order to 

accomplish this, the manager would need to normalize across the relative precisions of each 

expert in order to assign relative weights for behavioral control. Another feature of the MoE 

framework is that somewhere in the brain there should be an output channel that encodes the 

combined recommendations of the various systems about the behavioral policy. In essence, 

the output channel combines across the predictions of each of the experts weighted by their 

relative precisions, and this output channel is utilized directly to control behavior. How 

might the output system be influenced by the manager? One way this could be done is via a 

gating mechanism – in which the manager gates the contribution of each of the individual 

experts to the overall recommendation, by for instance, either inhibiting the contributions 

from the experts that have high prediction uncertainty (or low precision), and/or by actively 

amplifying the contributions from the experts with low prediction uncertainty (or high 

precision). A possible architecture for the manager of the mixture of experts is illustrated in 

Figure 1. In the following section we review neuroscience evidence for the existence of a 

MoE framework in the brain, highlighting in particular the role of prefrontal cortex as a 

manager over the experts, further specifically localizing this manager to specific sub-regions 

of the prefrontal cortex.

Empirical evidence

The MoE framework makes the following specific predictions: (1) That each expert should 

compute its own predictions and that these predictions should be measurable in the brain for 

each putative expert system. (2) That the reliability of the predictions of each expert should 

be represented somewhere in the brain ideally within the same prefrontal cortex manager, so 

that they can be flexibly used to assign weights to each expert. (3) That this influence will be 

exerted possibly due to an inhibitory mechanism operating on the constituent experts (or 

potentially via both an excitatory and inhibitory mechanism). (4) That the reliability 

estimates are predicted to enable an overall output to be computed that reflects an integrated 

policy recommendation and that this output signal will be represented in the brain so that it 

can be used to guide the agent’s overall choice behavior at the time of decision-making.

In the following section we briefly review evidence in support of these findings from 

ourselves and others. The evidence we present is inherently limited in scope because to date 

we and others have focused mostly on only a small number of putative experts, 
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predominantly model-based and model-free RL, and also more recently emulation and 

imitation in the domain of observational learning.

1 ) Separable value predictions for different experts—We (Lee et al., 2014), 

studied the interaction and arbitration between model-based and model-free RL using fMRI. 

We found evidence for a representation of separate value predictions for the two systems in 

multiple areas of the brain including medial prefrontal cortex (for model-based control) and 

posterior putamen for model-free control. A number of other studies have also found similar 

findings (Doll et al., 2015; Horga et al., 2015; Huang et al., 2020; Kim et al., 2019).

2 ) Reliability signals for different experts—In that same Lee et al. study we tested 

for brain regions involved in representing the reliability of the predictions of both systems. 

We found evidence for overlapping reliability signals for both MB and MF RL in the 

ventrolateral prefrontal cortex in particular, as well as in the rostral prefrontal cortex (Figure 

2A). The presence of both of these reliability signals in the anterior prefrontal cortex led us 

to hypothesize a role for this region as mediating the arbitration process between MB and 

MF RL. In the language of the broader MoE framework this region can be implicated as the 

“manager” of the MoE. Moreover, Kim et al., (2019) replicated the reliability signal findings 

in vlPFC in another variant of the multi-step MDP used by Lee et al. (2014). Another study 

by Korn and Bach (2018), provides evidence of a role for vlPFC in tracking reliability. In 

that study two different foraging strategies were examined during a sequential decision task 

in which participants could either deploy an optimal strategy or a simpler heuristic strategy 

(which may be loosely analogous to a model-based and model-free strategy respectively). 

Although not the main focus of these authors’ conclusions, they reported a negative 

correlation with uncertainty in the choice for both the optimal and heuristic strategies in 

ventrolateral prefrontal cortex. The negative of uncertainty is reliability. Thus, we interpret 

those findings as likely reflecting a similar signal to that reported by Lee et al. (2014).

Evidence that the contributions of vlPFC might also generalize to managing other experts 

beyond model-free and model-based RL in the experiential domain, arose from a recent 

study of observational learning (Charpentier et al., 2020). In this study, we examined the 

process of arbitration between two of the strategies for guiding observational learning 

alluded to earlier: emulation and imitation. Using a task that differentially induced variance 

in the predictions of the two strategies, we found that the control over behavior of the two 

systems was moderated by the reliability (or precision) of the predictions, especially that of 

the emulation system. In the brain we found evidence once again of a role for the 

ventrolateral prefrontal cortex (alongside rostral cingulate cortex and temporoparietal 

junction) in tracking the reliability or precision of the predictions, particularly of the 

emulation system (Figure 2B).

When taken together, these results implicate the anterior prefrontal cortex as contributing to 

the MoE manager.

3 ) The role of prefrontal cortex in setting the weights over the experts.—
Furthermore, in the Lee et al. study of model-based and model-free RL arbitration, we also 

found that functional connectivity between the ventrolateral prefrontal cortex and regions 
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involved in encoding model-free predictions changed as a function of a change in the degree 

predicted by the reliability-based arbitration system as to which behavior should be under 

model-based or model-free control. When behavior was predicted to be more model-based, 

there was an increase in connectivity between these two regions, while conversely when 

behavior was predicted to be model-free, there was reduced connectivity between these two 

regions. This finding led us to speculate that one additional contribution of vlPFC is to act as 

a gate on the degree to which the model-based and model-free systems exert control over 

behavior. One way this could be accomplished is via an active inhibition of the system 

involved in model-free control, which would be applied when behavior is predicted to be 

more model-based, thereby ceding control to the model-based system.

Causal evidence supporting this putative inhibitory mechanism arose from a transcranial 

direct current stimulation study (tDCS; Weissengruber et al., 2019). In that study, anodal 

tDCS stimulation was applied over the vlPFC while participants performed the model-based 

vs model-free arbitration task. We expected that anodal stimulation over this region would 

produce an increase in activity in vlPFC, thereby producing an increase in the inhibitory 

action of this region on the model-free areas. This was in turn predicted to cause an increase 

in model-based control. Consistent with this prediction, we found that when participants 

were exposed to the anodal stimulation over this region, the degree to which they manifested 

model-based control was (in one of the key task conditions) increased. In addition to the 

anodal stimulation we also produced cathodal stimulation over the same region. Because 

cathodal stimulation is known to decrease or inhibit activity in a given region, we expected 

that cathodal stimulation would reduce the inhibitory action over the vlPFC which 

consequently would result in an increase in model-free behavior. Once again, our predictions 

were supported. These results suggest that one way in which the vlPFC gates the control of 

the model-based and model-free systems over behavior is via an inhibitory action on striatal 

areas involved in model-free control. In these findings also lies a clue about the possible 

gating mechanism for a more generalized MoE framework. Specifically, the prefrontal MoE 

manager might influence the output of individual experts via an inhibitory effect on those 

experts as a function of the relative precision in their predictions. Crucially, the inhibition 

may not impact on the ability of those systems to make predictions in the first place, but 

only gate the extent to which that individual expert exerts influence on the output channel. A 

study by Bogdanov et al., (2018) also provided direct evidence that neuromodulation of 

vlPFC impacts the relative control of different expert systems. In that study, theta-burst TMS 

was used to inhibit activity in vlPFC while participants performed a slips-of-action task 

aimed at pitting goal-directed and habitual strategies. In that task, participants learn multiple 

action-outcome relationships, and then some of the outcomes are devalued, requiring 

participants to selectively stop responding to those actions, setting up a conflict between 

goal-directed and habitual performance. Inhibition of ventrolateral prefrontal cortex was 

found to reduce participant’s capacity to flexibly adjust their behavior in a goal-directed 

fashion, consistent with an increased engagement of the habitual system. The specific 

contribution identified here of a causal role for vlPFC in mediating the balance of control 

between MB and MF systems, is also consistent with a broader literature implicating the 

vlPFC in inhibitory control more generally, specifically in the capacity for inhibiting motor 

responses that are no longer relevant (Aron et al., 2014).
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Another feature of the findings by Lee et al. (2014) in their connectivity analysis was that 

the manager putatively located in anterior prefrontal cortex in that study selectively showed 

changes in functional connectivity with regions involved in model-free control as a function 

of the arbitration (reliability-based) weights, but did not show any evidence of connectivity-

based modulation on regions involved in model-based control. This raises the possibility that 

one possible way in which the MoE framework might operate is by inhibiting the simpler or 

default strategy when necessary (in this case model-free control), as opposed to directly 

modulating brain regions involved in implementing the more complex strategy. However, we 

should note, that it remains possible that the manager of the MoE could also exert an 

excitatory influence on experts that are deemed to have higher precision in their predictions. 

Although we are not aware of any evidence to support this latter possibility, it should not be 

ruled out at this juncture.

4 ) Candidate neural substrates for the output channel—There is evidence to 

suggest that the ventromedial prefrontal cortex (vmPFC) acts as an output channel of the 

MoE system. The output channel involves the representation of an integrated prediction, that 

corresponds to the average across the predictions of the individual experts, weighted by the 

relative reliabilities of the predictions of each expert. This signal is the one that can be used 

as an input to the overall decision process, in order to settle on the actual behavioral policy 

that should be taken on a given trial. The first evidence to implicate the vmPFC in this 

function arose from a study by Hampton et al. ( 2006), in which two different computational 

strategies were investigated for their role in accounting for behavior and neural effects 

during performance of a stimulus-reward reversal learning paradigm. In that study, 

participants selected one of two stimuli that delivered different amounts of monetary gains 

and losses. One of the stimuli gave more gains than losses, and hence should be favored, 

while the other stimulus gave more losses than gains, and hence should be avoided. 

However, after a period of time the reward contingencies accorded to the two stimuli was 

reversed, so that participants should then switch their choice of stimulus. The performance 

of two computational strategies in capturing participants’ behavioral and neural activity on 

the task was compared. One strategy incorporated knowledge of the task rules and reversals, 

while another just learned from reward feedback without incorporating any structural 

knowledge. These two strategies can be seen to map onto a model-based vs model-free 

framework. Participants appeared to deploy the more model-based strategy, suggesting they 

were using knowledge of the task to guide their behavior. In the brain within vmPFC, BOLD 

activity was found to be correlated with both strategies, albeit more strongly with the model-

based strategy than the model-free (Figure 3A). This finding could be interpreted in the 

context of a mixture of experts framework that in fact the recommendations of both 

strategies are actively represented in the vmPFC, albeit with a stronger weighting toward the 

“model-based” strategy in this particular instance. Wunderlich et al. (2012), also found 

evidence to support the existence of an integrated strategy in the ventromedial prefrontal 

cortex. These authors compared two different strategies for learning values and guiding 

behavior, a model-based strategy that used planning to guide behavior, and a model-free 

strategy that emerged with extensive training. They found that while each of the two 

strategies was encoded in unique brain structures in the striatum (anterior caudate for the 

planning strategy and posterior putamen for the model-free strategy), an integrated value 
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signal that combined the predictions of both strategies was found in the vmPFC. Once again, 

these findings support the notion that vmPFC integrates over the predictions of these 

multiple systems, providing an overall recommendation (in the form of a value signal), that 

can be used to guide behavior (see also Beierholm et al., 2011). Lee et al., also examined the 

representation of value signals from both model-based and model-free strategies. They 

found that similar to Wunderlich et al., while the model-based and model-free strategies 

were represented in a number of distinct brain structures including posterior putamen for 

model-free values, and medial prefrontal cortex for model-based values, an integrated value 

signal which correlated with the value predictions of the two systems weighted by their 

relative contribution to behavior estimated by the arbitration system, was found to be present 

in the vmPFC (Figure 3B). Finally, in the recent study by Charpentier et al. on arbitration 

over observational learning strategies, the vmPFC was found once again to encode an 

integrated value signal at the time when participants needed to use information they had 

gleaned through observational learning to make their own decisions, the integrated value 

signal reflected a combination of the value predictions of the imitation and emulation 

systems weighted by their relative contributions to behavior as estimated by the arbitration 

system (Figure 3C). When taking all of these findings together, the evidence points to a role 

for the vmPFC as integrating across predictions of multiple systems in a manner 

proportional to the relative reliabilities of the predictions as computed by the arbitrator. In 

other words, we suggest that the vmPFC acts as an output channel of the MoE system. Value 

signals computed with vmPFC that reflect the integrated predictions of the MoE system can 

then be fed into decision-making comparators so as to derive choices over actions, that take 

into account the different predictions (or advice) of the various constituent experts for each 

action or object in the choice set.

Hierarchical mixture of experts

So far, we have considered an MoE architecture that is relatively flat in that we have 

envisaged the existence of multiple experts at the same level of seniority, alongside a 

manager which reads out the relative reliabilities of the experts’ predictions and combines 

those together to generate an output signal weighted by their relative precision. However, we 

think it is likely the case that the MoE architecture is substantially richer. Rather than being 

flat, we suspect that the MoE architecture is in fact hierarchical, in the sense that each 

constituent expert likely depends on the nested contributions of sub-experts. In turn, sub-

experts produce predictions that are integrated at the level of the individual expert in order to 

be passed on to the higher-up manager. Such a hierarchical organization would imply that 

each expert acts as its own manager for its own set of individual sub-experts, gating their 

contributions to the overall recommendation of each expert. What would the sub-experts be 

concerned with? We suggest that the sub-experts might be usefully focused on computing 

recommendations arising from different interpretations of the state-space and/or task 

structure. It is probably most useful to illustrate this idea by reference to a specific class of 

experts. For this we will return to the model-based vs model-free distinction, though we 

emphasize that this idea should not be considered limited to the model-based vs model-free 

distinction and that in fact a similar principle should apply across a whole host of experts. 

Let’s take a model-based agent first. When behaving in model-based manner, it is essential 

for the agent to encode a cognitive map or model of the world, so that when using that 
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cognitive map, it is possible for the agent to engage in planning in order to compute model-

based values that in turn can be used to guide behavior. However, in an uncertain and noisy 

environment, there is no guarantee that (except in a very stereotyped environment such as 

might happen in a laboratory experiment) the agent has converged on the correct cognitive 

model. In fact, there may be multiple possible cognitive models of the world that have non-

zero probabilities from the organism’s perspective. One way this could be resolved would be 

by having multiple model-based sub-experts make different predictions on the basis of 

differing possible hypotheses about the nature of the model of the state-space. So for 

instance, if computing which model-based policy to pursue to gain access to your office 

building after office hours, you might compute two model-based policies, one based on the 

possibility that the main entrance will have a security guard posted and thus be open, and 

another based on the possibility that the rear entrance will be open instead. At the level of 

the model-based expert, two possible strategies might therefore be available as 

recommended policies, with an overall uncertainty over them depending on how likely each 

of these hypotheses over the state-space are likely to be true. The strategy of considering 

multiple hypotheses about the nature of the state-space simultaneously, such as by 

entertaining the possibility that both the front and back doors are open, could help ensure 

that the brain is maximally sensitive to varying possibilities about the state of the word. It 

would also likely improve its capacity to flexibly adapt to new situations, because new 

situations can as a first pass be approached using a weighted combination of existing beliefs 

about the world.

A recent study by de Silva and Hare (Feher da Silva and Hare, 2020) supports this 

possibility. In this paper, the authors found evidence to suggest the possibility that 

participants might actually compute multiple model-based strategies to solve a standard two-

step task, based on wildly different beliefs about the nature of the task-structure (and hence 

leading to very distinct cognitive models). Similarly, for a model-free agent, beliefs over 

very different state-space structures could give rise to very distinct model-free predictions. 

For instance, in the typical two-step task, one model-free strategy would be to rely on a 

state-space structure in which each trial (two-steps) in the MDP is treated as being 

independent from each other trial, and thus the agent learns about the cached values of each 

of the states within a trial only. Alternatively, a much richer state-space is possible, in which 

the outcomes received on the preceding trial become states that are used in the subsequent 

trial to compute values. Thus, it is easy to imagine that depending on how the state-space is 

carved up, that a model-free agent can produce very distinct (and sometimes very rich 

predictions that can appear model-based). Thus, it is possible to envisage that each 

constituent expert in fact relies on multiple sub-experts which make predictions as a function 

of differing hypotheses or beliefs about the nature of the state-space and transition 

probabilities that make up the causal structure of the world. As alluded to earlier, multiple 

sub-experts have also been suggested to contribute to predictions in the Pavlovian system 

(Dayan and Long, 1998).

Naturally, a pernicious scaling problem emerges with having multiple sub-experts each 

trying to provide (sometimes) competing advice: one could quickly end up with an 

exponentially large number of sub-experts across all the experts each competing to make 

predictions that would quickly run into limits of cognitive capacity. For this reason, we 
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suspect that the bias/variance tradeoff would quickly result in sub-experts being favored that 

are likely to have more plausible hypotheses about the state-of-the-world, as well as 

hypotheses that are parsimonious and not too complex. It is likely that sub-experts with 

prediction reliabilities that are in fact very low, would end up being discounted completely 

and not actively polled for their advice. This would imply that once a sub-expert has very 

poor reliability it will quickly be discounted, ignored and no longer required to actively 

provide advice.

Relationship between MoE and other frameworks of hierarchical control

The MoE framework we have just outlined might raise the question about how similar it is to 

other existing frameworks of hierarchical control. One such framework is hierarchical 

reinforcement-learning (HRL; Botvinick et al., 2009). According to HRL, when solving a 

decision problem, a given task is typically broken down into sub-tasks. Each sub-task 

concerns itself with a particular partition of the state-space, which can exist at different 

levels of the hierarchy. For instance, the sub-task “open the red door”, has to be 

implemented by performing a number of discrete actions, including walking to the door, 

putting one’s hand on the handle, turning the handle, and pulling on the door etc. In HRL 

terms, groups of actions are clustered together to form “options”, which can facilitate easier 

learning of an overall policy, than if each individual action has to be independently learned 

about. We suspect that HRL can be viewed as a special case of the MoE framework, where a 

particular expert is concerned with solving different sub-tasks or problems that exist at 

different levels of a hierarchy over state-space features. In current implementations of HRL 

as applied to neurobiology, each of the sub-tasks are solved by the same expert. That is the 

same algorithm is used to solve problems at each level of the hierarchy, for instance, a 

model-free RL agent. In the MoE framework, we consider the possibility that the same sub-

problem can be focused on by a range of different experts. For instance, when working out 

how to open the red door, both model-based and model-free experts might contribute to 

working out how to solve this problem, and indeed multiple model-based and model-free 

strategies might be deployed depending on how much uncertainty exists about the nature of 

the state-space and/or transition model within that space. Thus, the MoE framework can 

accommodate HRL in the sense that unlike a single system HRL framework, the hierarchical 

decomposition occurs not only at the level of tasks and sub-tasks, but also at the level of 

which set of experts is utilized to solve a given task and sub-task. The hierarchical MoE 

framework also bears some relationship to broader theories of cognitive function such as the 

free energy principle and predictive coding models more generally (Friston, 2010; Mumford, 

1992; Rao and Ballard, 1999; Srinivasan et al., 1982). In the free energy theory (Friston, 

2010) the agent acts to minimize its own prediction errors, either actively or passively. This 

theory also envisages a hierarchical organization of brain function, in which each level of the 

hierarchy computes prediction errors that are passed to the next level of the hierarchy. These 

prediction errors are minimized throughout the system by adjusting predictions to better 

account for sensory data, as well as by adjusting behavior to actively minimize uncertainty. 

In this sense, it is possible to envisage that an MoE architecture would emerge in the context 

of a system that is designed to minimize prediction errors. Indeed, in the MoE framework, 

the experts that are nominated to provide the most control over behavior are those that by 

definition generate the smallest prediction errors, and hence have the highest reliability or 
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precision. The MoE framework as envisaged here has more in common with traditional 

reinforcement-learning in the sense that it envisages the ultimate goal of the organism is to 

maximize expected future reward by selecting from those experts best equipped to deliver on 

that promise as opposed to minimizing surprise per se. However, both frameworks predict an 

important role for prediction uncertainty and/or precision, as well as making predictions that 

prediction errors should be prevalent as a means of updating and learning predictions as well 

in learning about the precision of those predictions within each constituent expert 

throughout the brain.

Summary and conclusion

Here we outline a framework for conceptualizing the contribution of multiple systems to 

behavioral control in the human brain. Our main argument is that the brain utilizes a 

framework loosely analogous to the mixture of experts in machine learning, in which a 

prefrontal-based manager, reads out the reliability of the predictions by each of the 

constituent experts, and uses these predictions to allocate control over behavior to the 

experts in a manner that is proportional to the relative precision or uncertainties in their 

predictions. This reliability-based framework is suggested to be mediated via prediction 

errors, which are likely to be present in each expert system provided the system generates a 

unique prediction. At the level of neural implementation, we propose that the ventrolateral 

prefrontal cortex and anterior frontal pole encode reliabilities for multiple expert strategies 

and that connectivity between the anterior frontal cortex and other brain regions is involved 

in the allocation of control of different systems over behavior. By contrast, the ventromedial 

prefrontal cortex represents an integrated policy that takes into account the predictions of the 

different expert systems weighted by their relative reliabilities. We suggest that this 

reliability-based arbitration process between experts is both necessary and sufficient for the 

efficient allocation of control between systems, as this approach takes into account not only 

the accuracy and hence the average expected value of the actions nominated by each expert, 

but also implicitly takes into account the cognitive costs and cognitive constraints. The 

interaction between systems that makes up the experts is we suggest, better conceived of as 

one of polling the advice from different systems that each have different relevant expertise 

that can and should be respected owing to differences in the nature of the information that is 

being processed, and in the algorithmic transformations that are performed on that 

information. These experts should be listened to as a collective, because they provide the 

right mixture of opinions needed to act in the world effectively.
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BOX 1:

In the illustration above, different experts (colored in red, yellow, green and blue) make 

different predictions about the expected future reward that will follow for a particular 

action or set of actions. Each expert has a different mean prediction (dotted lines), but 

also has an uncertainty about its prediction (depicted by the width of each of the curves). 

A manager of these experts can elect to compute a more accurate estimate of the expected 

reward by averaging over the predictions of each expert, weighted by the amount of 

uncertainty inherent in the predictions of each expert*. One frugal and efficient way to 

approximate the uncertainty that each expert has in its predictions, is to see how well the 

expert has done in successfully predicting actual reward outcomes. A measure of this is 

the reliability or inverse of the average unsigned prediction error for each expert. The 

unsigned prediction error for each expert is simply the unsigned difference between its 

predictions and actual outcomes, and a recency weighted average over that signal 

corresponds to a measure of current reliability. The averaged unsigned prediction error 

can also be viewed as a yielding an approximate yet computationally tractable estimate of 

different forms of uncertainty, thereby linking to theoretical perspectives on distinct 

forms of prediction uncertainty alluded to in the main text. Expected uncertainty can be 

approximated by integrating over a longer time window of prediction errors generated in 

the past, while unexpected uncertainty can be approximated by sampling prediction 

errors that have occurred in the recent past (see Iigaya, 2016). However, because the MoE 

does not care about the source of uncertainty, just how well an expert is doing in its 

predictions overall, those different time-scales of prediction error are pooled over in this 

case.

*This concept is related to Gaussian Mixture Models in statistics and machine learning (Williams and Rasmussen, 1996), but note 
here we are not committing to particular distributional assumptions. The figure depicts distributions with a Gaussian form for ease 
of illustration.
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Highlights

• The brain can be thought of as a “Mixture of Experts” in which different 

expert systems propose strategies for action.

• This is accomplished by keeping track of the precision of the predictions 

within each system, and by allocating control over behavior in a manner that 

depends on the relative reliability of those predictions.

• This reliability-based control mechanism is domain general, exerting control 

over many different expert systems simultaneously in order to produce 

sophisticated behavior.
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Figure 1: Schematic of a putative mixture of experts system for the brain.
Each individual expert receives sensory input and makes its own predictions about the 

expected value of taking different actions. The predictions of each expert can then be 

compared with reality, when the organism takes an action and experiences an outcome. The 

difference between predicted and actual outcomes are then compared to yield a prediction 

error. The prediction errors for each system are then reported to a “manager” which uses 

them to compute a reliability signal (blue line), corresponding to a recency-weighted 

cumulative averaged prediction error for that controller. The manager uses these reliability 

signals to compute weights over the experts, proportional to their relative reliabilities. These 

weights are used by the manager to implement a gating of the outputs of each expert (red 

line), modulating the degree to which each expert contributes its “advice” toward the overall 

control of behavior (black line). The overall behavioral policy of the organism then 

corresponds to a combination of the advice of each expert, weighted by its overall reliability. 

The present schematic is agnostic as to the nature of the experts or their number. Four 

generic experts are depicted here. For a related mixture of experts implementation in 

computational reinforcement-learning see Hamrick et al., (2017).
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Figure 2. Evidence for the role of anterior prefrontal cortex in encoding the reliability of 
different “expert” strategies in the human brain.
This signal that could be used by a prefrontal-based manager of the mixture of experts. A. 

Shows regions of ventrolateral prefrontal cortex bilaterally in which activity (measured with 

fMRI) correlates with the reliability of both model-based and model-free reinforcement 

learning systems during performance of a multi-step MDP. From Lee et al., (2014).

(b) A region of ventrolateral prefrontal cortex (on the right) was found to correlate with the 

reliability of a strategy for “emulation” in which participants infer the goals of another agent 

while observing them perform a simple decision-making task. This finding supports a wider 

contribution of ventrolateral prefrontal cortex to the process of representing reliability of 

different strategies, supporting a more general contribution of anterior prefrontal cortex as 

the manager over multiple experts. From Charpentier et al., (2020).
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Figure 3: Evidence of a role for vmPFC in representing combined predictions from multiple 
controllers.
This is consistent with a role for vmPFC (comprising medial orbital and adjacent medial 

prefrontal cortex) as the output of the mixture of experts, where predictions are assembled 

that are used to guide the overall behavior of the organism. A. Region of mPFC showing 

activity correlating with both model-based and model-free value predictions during 

performance of probabilistic reversal learning task in humans. From Hampton et al., (2006). 

B. Region of ventromedial prefrontal cortex (colored in green) correlating with the 

combined weighted predictions of model-based and model-free RL, in which the weights are 

set by an arbitration scheme (in essence a reduced form of the proposed mixture of experts 

mechanism). From Lee et al. (2014). C. Plot of regression coefficients from a functionally 

defined region of interest defined in the medial orbitofrontal cortex. Average activity in this 

ROI was found to reflect the combined value predictions of emulation and imitation 

strategies for observational learning weighted by their relative reliability as determined by an 

arbitration scheme. The plots show separate results from two independent fMRI studies. 

From Charpentier et al., (2020).
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