
Quantitative Methods for Metabolomic Analyses Evaluated in the 
Children’s Health Exposure Analysis Resource (CHEAR)

CHEAR Metabolomics Analysis Team
Maya A. Deyssenroth#1,*, Elena Colicino#1, Paul Curtin#1, Megan M. Niedzwiecki#1

, Matthew Mazzella1, Susan J. Sumner2, Shangzhi Gao4, Li Su4, Nancy Diao4, Golam 
Mostofa5, Qazi Qamruzzaman5, Wimal Pathmasiri2, David C. Christiani4, Timothy Fennell3, 
Chris Gennings1

1Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount 
Sinai, New York, NY 10029, USA

2Department of Nutrition, School of Public Health, University of North Carolina-Chapel Hill, 
Kannapolis, NC 28081, USA

3RTI International, 3040 E Cornwallis Road, Research Triangle Park, NC 27709, USA

4Harvard T.H.Chan School of Public Health and Harvard Medical School, 665 Huntington Avenue, 
Building I Room 1401, Boston, MA, 02115, USA

5Dhaka Community Hospital, Dhaka, Bangladesh

# These authors contributed equally to this work.

Abstract

With advances in technologies that facilitate metabolome-wide analyses, the incorporation of 

metabolomics in the pursuit of biomarkers of exposure and effect is rapidly evolving in population 

health studies. However, many analytic approaches are limited in their capacity to address high-

dimensional metabolomics data within an epidemiologic framework, including the highly collinear 

nature of the metabolites and consideration of confounding variables. In this Children’s Health 

Exposure Analysis Resource (CHEAR) network study, we showcase various analytic approaches 

that are established as well as novel in the field of metabolomics, including univariate single 

metabolite models, least absolute shrinkage and selection operator (LASSO), random forest, 

weighted quantile sum (WQSRS) regression, exploratory factor analysis (EFA) and latent class 

analysis (LCA). Here, in a Bangladeshi birth cohort (n=199), we illustrate research questions that 

can be addressed by each analytic method in the assessment of associations between cord blood 

metabolites (1H NMR measurements) and birth anthropometric measurements (birth weight and 

head circumference).
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Introduction:

Technological advancements have made ‘omics scale assessments of molecular markers, 

including DNA variants and modifications, gene transcripts, proteins and metabolites, 

feasible in human population studies. Profiling the metabolome is of particular interest in 

environmental epidemiology, as it provides a functional readout of a collection of small 

molecules produced by the cell, in addition to internalized environmental exposures and the 

bioeffective dose of those exposures [1]. As this readout reflects an integration of genetic 

and environmental cues, metabolomic assessments offer more proximal insights into 

perturbed physiologic processes compared to other commonly surveyed ‘omics approaches 

[2]. Additionally, with the recognition that adverse metabolic health outcomes across the 

lifespan may have origins early in life, metabolomic profiling is emerging as a particularly 

pertinent tool in epidemiologic studies aiming to identify markers reflecting the 

developmental origins of disease.

While standardized analytic strategies exist to address epidemiologic questions using certain 

‘omics scale assessments, including genomic [3,4] and methylomic data [5], mature 

methodologic pipelines to incorporate metabolome-wide data within an epidemiologic 

framework are not yet established. For example, greater attention is required to address the 

control of covariates, a concern that is particularly relevant given the observational nature 

common to epidemiologic studies. In addition to framing analyses within an epidemiologic 

framework, additional considerations pertinent to multi-dimensional datasets are also 

relevant to metabolomics analyses. For instance, co-metabolites may be collinear, 

complicating the ability to disentangle the effect of a specific metabolite. Co-metabolites 

may act in synergistic or antagonistic ways, such that an adverse effect is elicited in 

combination even when no adverse effect is observable due to individual metabolites. 

Furthermore, the complex relationship among metabolites may translate into nonlinear, non-

additive associations with outcomes of interest.

Existing statistical approaches to evaluate metabolomics range from traditional univariate 

analyses [6] to more complex multivariate methods that consider multiple analytes 

simultaneously (Table 1, adapted from [7]). These approaches are unambiguously useful in a 

variety of contexts, but are each constrained in their utility in observational epidemiological 

studies. Standard regression approaches to high-dimensional data can highlight individual 

analytes of interest, for example, but typically require adjustments for multiple comparisons, 

e.g. false discovery rate (FDR), which penalize model sensitivity. Further, this reductionist 

approach misses the important aforementioned contextual information by failing to take into 

account the composite presence of co-analytes. Alternative dimensionality-reduction 

approaches, e.g. exploratory factor analysis (EFA) or partial least squares (PLS), can 

alleviate the multiple testing burden of traditional univariate approaches but are limited in 

their capacity to adjust for relevant covariates, which in the context of population-wide 
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studies may introduce confounding or require unwanted stratification. Identifying relevant 

metabolites among collinear metabolites is facilitated by features selection methods, such as 

least absolute shrinkage and selection operator (LASSO), while mixture modeling methods, 

such as weighted quantile sum (WQS) regression analysis, can reveal combinatorial mixture 

effects. Both are easily implemented in a regression-based framework, facilitating 

interpretation, however, neither is well suited to model complex nonlinear, non-additive 

relationships. Other machine learning methods, including Random Forest and Bayesian 

Kernel Machine Regression (BKMR), can more flexible model associations with outcomes 

of interest but may not be as easily interpretable. Finally, rather than modeling the analytes, 

latent class analysis (LCA) and related methods focus on distinguishing subgroups of 

individuals based on the analyte data. The relationship of these classes to outcomes of 

interest can then provide insight into at-risk analyte profiles. Given these varying properties 

across methods, the selection of an analytic strategy should be motivated by the research 

question of interest.

The recognition for the need to develop methods that incorporate ‘omics-scale analyses in 

epidemiologic studies is underscored by recent initiatives, including the Children’s Health 

Exposure Analysis Resource (CHEAR) established by the National Institute of 

Environmental Health Sciences (NIEHS), which provides standardized laboratory protocols 

and analytic strategies to conduct exposomic assessments in relation to children’s 

environmental health [8].

Herein, we leverage CHEAR to evaluate methodologies assessing associations between 

metabolic profiles ascertained in cord blood serum samples using a targeted NMR-based 

approach and two continuous anthropometric measures assessed at birth, birthweight and 

head circumference, in a population-wide study. Our approach included applications of 

standard and novel methods in order to demonstrate analytical services provided through 

CHEAR and highlight novel approaches that may be advantageous in modeling 

metabolomics data in environmental epidemiological contexts.

Methods:

Study Population.

(n=199). Women residing in the Sirajdikhan and Pabna Upazilas in Bangladesh were 

recruited during pregnancy, as previously described [9]. All recruited participants provided 

written informed consent. The study was approved by the Human Research Committees at 

the Harvard School of Public Health (HSPH) and Dhaka Community Hospital (DCH). The 

study population is a representative subset of the total cohort (n=1089) that was selected 

based on the availability of environmental data ascertained in cord blood samples.

Sample Collection.

Umbilical cord blood was collected at the time of delivery using EDTA-coated vacutainer 

tubes (B.D. Scientific, Franklin Lakes, NJ, USA). The samples remained at room 

temperature for 20–30 minutes, centrifuged at 1200 RPM for 12 minutes, and serum was 

dispensed into 5mL cryogenic vials. Serum samples were transferred on ice to a −80C 
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freezer at DCH. Serum samples were shipped to HSPH on dry ice and stored at −80°C. For 

the current NMR analysis, serum samples were shipped from HSPH to RTI International on 

dry ice.

1H-Nuclear Magnetic Resonance (1H NMR).

Cord blood serum sample preparation, data acquisition, and concentration determination of 

metabolites were conducted at RTI International and followed procedures previously 

described[10]. Briefly, samples were thawed on ice and 150 μL were transferred to labeled 

tubes where they were mixed with 100 μL of NMR 0.9% saline solution containing 2.5 mM 

formate. Sample tubes were vortexed for 4 min and centrifuged at 16,000 rcf for 4 min. A 

volume of 225 μL was taken from each sample supernatant and transferred into 3mm NMR 

tubes.

In addition to acquiring data for the individual study samples, quality control pools (QC 

pools) were created. Study samples were randomly assigned to one of two pools - Pool 1 or 

Pool 2. An aliquot of 15 μL of each study sample was added to create their corresponding 

pool. A 150 μL aliquot was taken from each pool to make a total of 20 QC pools. In 

addition, nine pools were created from the CHEAR reference material samples, and were 

aliquoted and processed along with the study samples and QC pools. QC and CHEAR pool 

aliquots were processed identically to the study samples, as described above.

1H NMR spectra of study samples and QC pools were acquired on a Bruker Avance III 600 

MHz NMR spectrometer (located at David H Murdock Research Institute, Kannapolis, NC, 

USA) using a 5 mm cryogenically cooled ATMA inverse probe and ambient temperature of 

25°C. A 1D CPMG presaturation pulse sequence (cpmgpr1d) was used for data acquisition. 

For each sample 128 transients were collected into 64k data points using a spectral width of 

12.0 ppm, 2s relaxation delay, and an acquisition time of 4.5 s per FID. The water resonance 

was suppressed using resonance irradiation during the relaxation delay. NMR spectra were 

processed using TopSpin 3.5 software (Bruker-Biospin, Germany). Spectra were zero filled, 

and Fourier transformed after exponential multiplication with line broadening factor of 0.5. 

Phase and baseline of the spectra were manually corrected for each spectrum. Spectra were 

referenced internally to the formate signal (8.45 ppm). The quality of each NMR spectrum 

was assessed for the level of noise and alignment of identified markers. Spectra were 

assessed for missing data and underwent quality checks.

Unsupervised multivariate statistics (PCA) was used to demonstrate that the QC Pools were 

tightly clustered and in the center of the samples from which they were derived 

(Supplementary Figure 1). The Chenomx NMR Suite 8.1 Professional (Chenomx, 

Edmonton, Alberta, Canada) software was utilize to match NMR signals to metabolites 

(https://www.chenomx.com/wp-content/uploads/2016/01/Compound-listing.pdf) and to 

determine the relative concentrations of metabolites relative to 1 mM formate. NMR data are 

hosted at the CHEAR Data Center Repository (https://cheardatacenter.mssm.edu/).
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Statistical Analysis.

Data pre-processing: The NMR data were restricted to metabolites annotated in the 

Reference Sequence database [11] (n=50) with detectable levels in more than 50% samples, 

leaving a total of 39 metabolites in the analysis. Four samples were considered outliers and 

removed based on Hotelling’s T-squared statistics (p<10−5). An additional sample with 

incomplete covariate information was removed, leaving a sample size of 194 subjects. The 

data was log2 transformed, centered and scaled.

Single Metabolite models: Simple linear models, following the equation 

y =   β0 +   β1X1… +   βzXz, were initially used to test for associations between individual 

metabolites and health outcomes, where y was a given anthropometry measure, βo was the 

model intercept, β1X1 corresponds to a given metabolite’s parameter estimate and 

concentration, and βzX z corresponds to covariates and associated parameter estimates. P-

values for metabolite parameters were adjusted for false-discovery rates (FDR) to correct for 

multiple comparisons.

LASSO.—We reduced the multiple comparisons issue of the single metabolite models and 

enhanced the model interpretability with a bootstrap least absolute shrinkage and selection 

operator (LASSO) approach [12–14]. This approach, as in the single metabolite analysis, 

assumes linearity between each metabolite and the outcome, but also assumes additivity 

among metabolites. This approach complemented the results from the single metabolite 

models, showing the significant metabolites after adjusting for all others. We extracted the 

residuals from linear regression models of each response variable (birthweight/head-

circumference) against all considered epidemiological covariates. Covariate-adjusted 

outcome variables were computed, adding the mean of each outcome variable to the 

residuals of the corresponding regression. Finally we implemented LASSO using the R-

package HCDI, specifying the covariate-adjusted outcomes as dependent variables and all 

metabolites as predictors in the LASSO models. This approach selected a small subset of 

metabolites that exhibited an effect on each outcome (birth weight/head circumference), 

taking into account of the complex correlation structure of metabolites. We finally enhanced 

the consistency of the results, computing 95% confidence intervals (95% CI) for each 

estimate with 1,000 bootstraps. The tuning LASSO parameter, controlling for the amount of 

regularization applied to the estimate, was selected by 5-fold Cross Validation on the 

LASSO procedure. We validated the robustness of this approach with changes of seed 

specification.

Random Forest.—To explore non-linear relationships between the metabolites and the 

outcome, we used the random forest (RF) algorithm, which is an ensemble learning 

technique that combines random decision trees with bootstrap aggregating for classification 

and regression (Breiman 2001). We used the R package randomForest [15] to implement the 

RF algorithm for covariate-adjusted outcome variables (birth weight: 1,000 trees, 3 variables 

sampled at each split, 55% of sample drawn, and maximum terminal node size of 7; head 

circumference: 1,000 trees, 6 variables sampled at each split, 80% of sample drawn, and 

maximum terminal node size of 7). RF parameters were selected based on the lowest out-of-

bag root mean square error (OOB-RMSE) from RFs grown from a range of values for mtry 
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(number of variables sampled at each split: 3, 4, 5, and 6), nodesize (maximum size of 

terminal nodes: 3, 5, 7, and 9), and sampsize (size of samples to draw: 55%, 63.2%, 70%, 

and 80% of sample). We determined feature significance using the Altmann algorithm with 

the R package vita, which calculates feature p-values by comparing the original variable 

importance measures (VIMs) against VIMs obtained from RFs grown with random 

permutations of the outcome variables (500 permutations) [16].

Weighted Quantile Sum (WQSRS) Regression.—Weighted Quantile Sum (WQS) 

regression [17], generally, is a modeling strategy for “mixtures analyses”, wherein high-

dimensional predictor sets are accommodated in a traditional regression framework through 

the construction of an empirically-estimated weighted index. The variant of WQS applied 

here, WQSRS[18], utilizes a random subset ensemble strategy during the estimation of 

variable weights used to construct the WQS index. In contrast to other implementations of 

WQS[19–21], which rely on a bootstrap ensemble method, the use of a random subset 

ensemble in WQSRS was recently shown[18] to be both sensitive and specific to the 

detection of metabolite-specific effects in the context of high-dimensional datasets, 

particularly metabolomic data, and for that reason WQSRS was used in this study. In the 

implementation of this method, predictors (i.e., analyte concentrations) are scored into 

quantiles (e.g., quartiles) to diminish the impact of influential observations, and associated 

parameters are estimated using ensemble techniques associated with bootstrap or random 

variable subsets. The WQS index is then constructed by averaging the weight parameters 

estimated for each variable across the ensemble procedure with the quantiled abundance for 

each subject, such that W QS = ∑j = 1
c wjqj. The high-dimensional matrix of predictors 

associated with each subject is thus reduced to a single index value (per subject), which can 

be tested in a traditional generalized linear framework, using the link function g(.), given by

g(μ) = β0 + β1W QS + z′φ (1)

The significance of the WQS term thus provides an overall test for the significance of the 

analyte set as it relates to the health outcome, and the per-variable weights estimated in the 

ensemble steps provides a direct measure of analyte importance. In the current analysis, 

predictors were deciled then randomly divided into training and validation sets, with 40% of 

data (N=88) used for training and 60% (N=108) used for validation. During the ensemble 

random subset procedure used for parameter estimation, 1000 random sets comprised of size 

6 randomly-selected metabolites were used in each subset, as per Curtin et al [18]. Each of 

39 metabolites was included in an average of 154 analyses (SD=11, min=133, max=180).

Exploratory Factor Analysis (EFA).—Exploratory Factor Analysis facilitates reduction 

of a large set of predictors into a smaller set of summary variables[22]. EFA was conducted 

using the minimum residual method and oblimin factor rotation implemented by the psych R 

package [23]. The number of factors to retain in the analysis (n=5) was determined based on 

evaluating eigenvalues against successive number of components in the observed data 

compared to a random matrix of the same size. Factor scores were estimated based on the 

tenBerge method[24]. Covariate-adjusted generalized linear models were run to assess the 
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association between each of the 5 factors and each response variable (birthweight/head 

circumference).

Latent Class Analysis (LCA): Latent class analysis (LCA) was used to identify 

metabolic profiles, and assign each subject to a given profile type. This method, 

implemented in PROC LCA (SAS v9.4), calculates class membership probabilities to 

characterize each subjects’ likelihood of belong to a pre-specified class, and provides item-

response probabilities, to describe the likelihood of each class responding at a given item. In 

the context of this study, item responses consisted of the ranked (quintile) concentration for 

each metabolite; thus, each class is characterized according to its relative abundance for each 

metabolite to create an overall profile. Class membership was then used as a predictor of 

anthropometry measures to determine if metabolic profiles relate to infant growth.

All models assessing associations with outcomes of interest considered maternal body mass 

index (BMI), gestational age at birth, maternal education, maternal age, infant gender and 

parity as confounding variables. Specifically for the EFA and LCA models, factors were 

extracted agnostic to any covariates (unsupervised), followed by inclusion of selected 

confounding variables in regression models testing the association between the extracted 

factors and the outcome of interest. For the LASSO and Random Forest models, selected 

confounding variables were regressed out of the data to generate a residual matrix that 

served as the input for the respective models. Gestational age demonstrated a nonlinear 

association with the outcome of interest and, to allow this flexible non-linear association 

with outcome, it was subsequently modeled using cubic splines with the spline R package. 

Univariate, WQS and LCA analyses were conducted using SAS (v9.4). Random Forest, 

LASSO and EFA were conducted using R version 3.4.1. Code used in the implementation of 

these models is available at https://github.com/CHEAR-Metabolomics/

Christiani_NMR_Analysis.

Results

Demographic characteristics of the study population are shown in Table 2. Average maternal 

BMI and maternal age tended to be lower than typically reported in Western populations 

[25] but in range for demographic characteristics reported in comparable cohorts in 

Bangladesh [26].The distributions of detected metabolite levels, ranging from lactic acid 

(mean = 1100.9 umol/L) to isopropyl alcohol (mean=7.7 umol/L), are shown in Figure 1. 

Extensive correlations were observed across the analyzed metabolites, particularly among 

metabolites involved in common molecular pathways (Supplementary Figure 2). For 

example, glucose was inversely correlated with its metabolite, pyruvic acid. Similarly, the 

branched chain amino acids, leucine, isoleucine and valine, were highly correlated, as were 

the organic acids, lactic acid, acetic acid and succinic acid.

Single-metabolite models:

We tested for covariate-adjusted associations between single metabolites and birth outcomes 

in univariate models. In exploratory analyses conducted without adjustment for multiple 

comparisons, we found significant negative associations between birthweight and sn-

glycero-3-phosphocholine, glycerol, citric acid, leucine, and glycine; however, following 
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adjustment by false-discovery rate (FDR), these associations were no longer statistically 

significant (Supplementary Table 1). Similar patterns were apparent in our analysis of head 

circumference with a number of negatively-associated metabolites, including pyruvic acid, 

trimethylamine-N-oxide, acetylcholine, threonine, alanine, and citric acid. Although these 

associations did not survive adjustment for multiple comparisons, pyruvic acid and 

trimethylamine-N-oxide might be considered a noteworthy trend, with FDR-adjusted p-

values of 0.08 (Supplementary Table 2).

LASSO:

We identified two metabolites negatively associated with covariate-adjusted birthweight, 

glycine (β= −0.01 (−0.03, −0.01)) and sn-glycero-3-phosphocholine (β =−0.02 (−0.04, 

−0.01)), Figure 2A). We additionally identified that covariate-adjusted head-circumference 

was negatively associated with pyruvic acid (β =−0.1 (−0.22, −0.04)) and threonine (β =0.08 

(−0.16, −0.05)) and trimethylamine-N-oxide(β =−0.08 (−0.18, −0.02)) and positively 

associated with acetylcholine (β =0.05 (0.05,0.12)) (Figure 2B). All results were robust to 

changes in seed specification.

Random Forest:

The Altmann algorithm selected sn-glycero-3-phosphocholine (p=0.04) as a significant 

predictor of birthweight (Figure 3), which was negatively associated with birthweight in 

single-metabolite models. We also identified several significant predictors of head 

circumference with negative associations, including alanine (p=0.04) and trimethylamine-N-

oxide (p=0.04) (Figure 3).

WQS:

The LOESS (locally estimated scatterplot smoothing) associations between 

anthropomorphic outcomes and the WQS indices in both training and validation datasets are 

shown in Figure 4. Significant negative associations were observed in validation datasets 

between WQS indices and birthweight (p=0.03) and head circumference analyses (p=0.01). 

Main contributors (>5%) to the birthweight WQS index include citric acid, formic acid, 

acetic acid, and leucine (Supplementary Table 3). Main contributors to the head 

circumference WQS index include pyruvic acid, phenylalanine, threonine, acetylcholine, 

alanine, acetic acid and formic acid (Supplementary Table 4).

EFA:

The loadings of the identified factors (Supplementary Figure 3) largely align with the 

correlation patterns observed in the data. Two metabolites, betahydroxybutyric acid and 3-

amino isobutanoic acid, did not meaningfully contribute to any of the extracted factors 

(factor loadings <0.2). A negative association (p=0.03) was observed between EFA factor 1 

(succinic acid, glycerol, choline, myoinositol, acetic acid, acetylcarnitine, creatine, citric 

acid, lactic acid, betaine, phenylalanine, serine and sn-glycero-3-phosphocholine) and 

birthweight in the covariate-adjusted model (Figure 5A). A borderline negative association 

(p=0.05) was also observed between EFA factor 4 (formic acid, trimethylamine-N-oxide and 

choline phosphate) and head circumference (Figure 5B).
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Latent Class Analysis:

Model fit indices indicated a three-class model provided the best fit to these data. Item 

response profiles, shown in Figure 6, indicate these profiles roughly corresponded to a 

general profile of low, intermediate, and high exposures. The top panel of Figure 6, showing 

the likelihood of class members having a per-metabolite exposure in the first quantile, 

indicates one group (green line) substantially more likely to exhibit low metabolite 

concentrations. Similarly, the bottom panel of Figure 6, showing likelihood of group 

members to exhibit per-metabolite concentrations in the highest quintile, indicates another 

group (red line) is most likely to be represented. The middle panel of Figure 6 shows the 

third group (blue line) is most likely to be represented with exposures in the third 

concentration quantile, i.e. a “median abundance” group. These response profiles thus 

generally discriminate between groupings roughly corresponding to metabolite abundance, 

but some noticeable exceptions were observed. The “low abundance” group (Figure 6, green 

line), for example, tended to conversely exhibit high abundance of formic acid and glucose; 

the “high exposure” group, in contrast, had low abundance of these features.

To determine the relevance of these profiles to measures of birth anthropometry, we included 

group membership in an adjusted linear model. We found significant differences in birth 

weight across metabolomics profiles, with the mid-abundance (p=0.02) and low-abundance 

(p=0.06) groups exhibiting higher birthweights than the high-abundance groups. 

Supplementary Table 5 provides full details on parameter estimates in the associated model. 

Similar models found no significant differences between head circumference and between 

LCA-derived metabolomics class assignment.

Discussion:

In this study, we applied multiple analytic strategies to identify cord blood serum 

metabolites associated with birth weight and head circumference using a targeted 

metabolomics platform. The implemented methods showcase strategies that can be 

implemented to take the multidimensional nature of metabolomics datasets into account 

within an epidemiologic framework, each providing context-specific insights.

Environment-wide association studies, which test the associations between individual 

analytes and outcomes of interest, employ an analytic framework that is widely implemented 

across ‘omics studies (e.g., genome-wide association studies (GWAS)) and provides outputs 

that are readily interpretable and easily developed into clinically-relevant biomarkers. 

However, these studies test the independent effect of individual metabolites without taking 

into account the presence of co-analytes. Associations with the outcome of interest may vary 

depending on this metabolomic context, informed by the interrelationships across the 

metabolites. Co-analytes, particularly those arising from a common metabolic pathway, are 

also often collinear. Additionally, the detection of relevant metabolites is hampered by the 

heavy burden of surviving multiple testing adjustments, as highlighted by our single 

metabolite analysis where no associations surpassed FDR correction.

Tree-based methods, such as Random Forest and LASSO, facilitate identifying relevant 

features in the presence of collinear analytes. While Random Forest more flexibly allows for 

et al. Page 9

J Expo Sci Environ Epidemiol. Author manuscript; available in PMC 2021 April 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



nonlinear relationships, LASSO is implemented within a linear model framework, allowing 

confidence interval estimation. Feature selection is also more easily realized through 

LASSO. This is a particularly attractive feature in the development of diagnostic/prognostic 

biomarkers from ‘omics scale data, as this facilitates the identification of a small set of 

predictive markers that can be screened in a population-based setting. Both methods 

identified sn-glycero-3-phosphocholine and trimethylamine-N-oxide as relevant metabolites 

in relation to birth weight and head circumference, respectively. Additional metabolites 

identified in relation to the assessed outcomes using Random Forest may suggest potential 

nonlinear relationships that were not captured through the LASSO implementation.

Similar to LASSO, WQS enables simultaneous modeling of all co-analytes within a 

regression framework. However, unlike feature selection methods, in WQS, the weighted 

analytes are combined into a unified index that provides additional insight into mixed 

composition effects on outcomes of interest. Additionally, in contrast to LASSO and 

Random Forest, in instances where multiple correlated features are associated with an 

outcome, the ensembling procedure implemented in WQS facilitates retaining information 

on these correlated metabolites in informing the generated WQS index. Hence, while some 

major contributors to the WQS indices were also identified in the other evaluated methods 

(e.g., glycerol (birth weight), glycine (birth weight), pyruvic acid (head circumference), 

threonine (head circumference) and acetylcholine (head circumference)), other identified 

major contributors were unique to the WQS index (e.g., leucine (birth weight) and acetic 

acid (head circumference)). Differences in scaling across methods may also contribute to 

differences in findings. In binning metabolites into quantiles, WQS is less sensitive to the 

influence of extreme observations. However, if associations with an outcome are driven by 

variability within upper quantiles, the averaging effect of quantiling may lead to a loss in 

resolution to detect such associations.

In contrast to the aforementioned methods implemented in the current study, EFA is an 

unsupervised method that attempts to resolve the underlying structure within the dataset. 

Here it is assumed that unobserved latent factors drive the variability among the measured 

set of metabolites. The uncovered factors are, therefore, summary variables representative of 

the larger set of measured features. In our study, for example, the 39 analyzed metabolites 

were captured by 5 underlying factors. In addition to dimension reduction, feature loadings 

within factors can reveal synergistic relationships. Accordingly, the birth weight-associated 

EFA factor included sn-glycero-3-phosphocholine, a metabolite that was also identified by a 

number of other methods evaluated in this study. Additional correlated metabolites (e.g., 

glycerol and citric acid) also loaded onto this factor, potentially providing additional insight 

to the involvement of a specific metabolic pathway. However, in instances where a large 

number of metabolites load onto factors, as in the birth weight-associated factor identified in 

the current study, there is insufficient resolution to tease out which among the correlated 

metabolites may be driving the observed association.

The latent class analysis (LCA) applied in this study was generally intended to differentiate 

between metabolomics profiles rather than the abundance of individual features; in doing so, 

we differentiated three general classes of response profiles and found these were associated 

with birthweight. These findings were nonetheless informative toward differentiating 
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relevant metabolites, as two metabolites we found key to differentiating response profiles, 

glucose and formic acid, are each critical to healthy metabolic function. More generally, this 

approach may prove a relevant tool in using metabolomics data to classify subject/patient 

“types” according to their metabolic profiles.

Notable limitations in our study warrant caution in the interpretation of the reported 

findings. Given the cross-sectional study design, we are unable to resolve the directionality 

of the observed associations. While on par with other cord blood metabolomics studies [29–

31], the limited sample size of our study likely impacts the generalizability of our findings. 

The analysis implemented in the current study were based on concentrations derived from a 

targeted panel of metabolites. This interrogated set of metabolites likely captures markers of 

an internal biologic response to environmental exposures as opposed to direct markers of 

exogenous sources of exposures that are additionally captured in untargeted metabolomics 

analyses. In addition, the number of assayed features in the current study entails a smaller 

scale of features compared to data generated by untargeted platforms. However, despite the 

differences in dimension, the pitfalls raised in the current study are still relevant and 

applicable to studies capturing a broader spectrum of the exposome. The current study 

addresses strategies and considerations, notably dimension reduction, the presence of 

collinearity and consideration of confounding variables, through the application of both 

known and novel methods to delineate metabolomic features that distinguish health 

outcomes in a population health setting.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Distribution of metabolite levels (umol/L).
Lactic acid and Isopropyl alcohol were among the most and least abundant metabolites 

detected, respectively.
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Figure 2. LASSO-derived associations for (A) birth weight and (B) head circumference.
Estimated association and 95% Confidence Interval (95% CI) (X-axis) between 1-Standard 

Deviation (SD) change of each metabolite (Y-axis) with birthweight (panel A) and head 

circumference (panel B).
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Figure 3. Random forest variable importance plots for (A) birth weight and (B) head 
circumference datasets.
Points in blue and red represent metabolites associated with birth outcomes at p<0.10 and 

p<0.05 thresholds, respectively.
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Figure 4. 
LOESS of association between WQS (training and validation) across (A) birth weight 

(p=0.018) and (B) head circumference.
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Figure 5. 
Generalized Linear Models associations between EFA-derived metabolite factors and (A) 

birth weight and (B) head circumference.
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Figure 6. Item response likelihood for latent metabolomics classes.
Plots show the likelihood that subjects assigned to varying latent classes (blue, green, red 

lines) would exhibit concentrations of a given metabolite in the lowest quintile (top plot), 

third quintile (middle plot), or highest quintile (bottom plot).
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Table 1.

Analytic Strategies for Evaluating Metabolomics Data in Epidemiologic Studies*

Question Methods Challenges

Which analytes are best for 
development of biomarkers 
of effect or exposure?

• Shrinkage methods (e.g., LASSO, 
elastic net)

• Semi-Bayesian shrinkage methods 
[32]

• Tree-based methods (e.g., Random 
Forest)

• Environment-wide association 
study (EWAS) [33]

• Ability to address confounding among co-
analytes.

• Discerning individual effects among highly 
collinear analytes

• Detection of relevant analytes given 
stringent multiple comparison adjustments 
[EWAS]

What are the interactions 
between analytes?

• Generalized linear models 
(GLMs)with product interaction 
terms

• Sufficient statistical power to detect 
interaction

• Interpretability of effect size estimates

• Degree of interaction to estimate (i.e., 2-
way or higher order) [GLMs]

Is there a mixture effect 
(i.e., a cumulative pattern 
of association)?

• Toxic equivalency (TEQ) summary 
measures [34]

• Weighted quantile sum (WQS) 
regression [17]

• Verifying assumption of additivity between 
individual components [WQS/TEQ]

• Availability of information of toxicity to 
create biologically weighted summary 
measures [TEQ]

Can the metabolome be 
summarized via 
dimensionality-reduction 
techniques?

• Exploratory Factor Analysis (EFA)

• Principal components Analysis 
(PCA)

• Partial least squares discriminant 
analysis (PLS-DA)

• Interpretation of factors/components from 
variable loadings complicated as 
dimensionality of datasets increase

• Consideration of covariates in extraction of 
factors/components/phenotypes

Are there susceptible 
subgroups within the 
population?

• Latent Class/Profile Analyses 
(LCA/LPA)

• Consideration of covariates in extraction of 
profiles

Does the metabolome 
predict disease status or 
health phenotype?

• Artificial Neural Networks / Deep 
Learning

• Machine Learning (e.g., LASSO, 
support vector machine (SVM), 
Random Forest, gradient boosting)

• Inference with respect to individual 
metabolites given “black box” nature of 
machine/deep learning methods

What metabolic pathways 
are affected in the observed 
association?

• Pathway Enrichment Analysis 
following network based 
(WGCNA) or clustering-based (k-
means clustering) summaries of 
metabolomics data

• Existing experimental data that inform 
curated datasets (e.g., KEGG) used to infer 
functional pathways may be incomplete 
representation of biologic pathways

• Potential biased representation in the 
annotation of pathways

*
adapted from [7]
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Table 2.

Demographic characteristics of the study population (n=199)

Variables Mean (min,max)

Birth weight (z-score) 2.9 (1.7, 3.5)

Birth length 45.7 (33.0, 64.0)

Head circumference 32.5 (28.0, 36.0)

Gestational age (weeks) 38.3 (33.0, 41.0)

Maternal age (years) 23.1 (18.0, 35.0)

Maternal BMI (kg/m2) 20.5 (15.0, 33.3)

N (%)

Infant Gender

 Female (1) 92 (46.2)

 Male (0) 107 (53.8)

Maternal Education

 0 38 (19.0)

 1 60 (30.2)

 2 101 (50.8)

Parity

 0 88 (44.3)

 1 111 (55.7)
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