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Abstract

Through the successes of checkpoint blockade and adoptive cellular therapy, immunotherapy has 

become an established treatment modality for cancer. Cellular metabolism has emerged as a 

critical determinant of the viability and function of both cancer cells and immune cells. In order to 

sustain prodigious anabolic needs, tumours employ a specialized metabolism that differs from 

untransformed somatic cells. This metabolism leads to a tumour microenvironment that is 

commonly acidic, hypoxic and/or depleted of critical nutrients required by immune cells. In this 

context, tumour metabolism itself is a checkpoint that can limit immune-mediated tumour 

destruction. Because our understanding of immune cell metabolism and cancer metabolism has 

grown significantly in the past decade, we are on the cusp of being able to unravel the interaction 

of cancer cell metabolism and immune metabolism in therapeutically meaningful ways. Although 

there are metabolic processes that are seemingly fundamental to both cancer and responding 

immune cells, metabolic heterogeneity and plasticity may serve to distinguish the two. As such, 

understanding the differential metabolic requirements of the diverse cells that comprise an immune 

response to cancer offers an opportunity to selectively regulate immune cell function. Such a 

nuanced evaluation of cancer and immune metabolism can uncover metabolic vulnerabilities and 

therapeutic windows upon which to intervene for enhanced immunotherapy.

Work over the past several decades has shown that activated immune cells employ many 

metabolic pathways attributed to cancer cells1-3 (Fig. 1). This convergence of metabolic 

adaptations creates a fundamental competition for nutrients required by cancer cells and 

immune cells within the tumour microenvironment (TME). However, we are coming to find 
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fundamental differences between the metabolic programmes of cancer cells and immune 

cells, as well as between different immune cells. Understanding these differences can reveal 

specific metabolic vulnerabilities and, consequently, novel targets for therapeutic approaches 

aimed at metabolic programming in order to enhance cancer immunotherapy.

Although the ability of cancer cells and tumour tissue to upregulate glycolytic catabolism of 

glucose to form lactate, even in oxygen-replete conditions (aerobic glycolysis), a process 

known as the ‘Warburg effect’, has been considered a hallmark of malignancy, it has become 

increasingly clear that cancer metabolism is heterogeneous, and that cancer cells can engage 

in a broad range of metabolic programmes to meet the demands of growth and proliferation, 

and that in addition to aerobic glycolysis, mitochondrial respiration is fundamentally 

important in this regard4-7. Predictably, highly metabolically active cancer cells (Fig. 1) 

impart profound effects on the TME, leading to nutrient depletion, hypoxia, acidity and the 

generation of metabolites that can be toxic at certain concentrations. A significant amount of 

glucose from the TME is metabolized through aerobic glycolysis, generating high amounts 

of lactate and H+, thereby lowering the intratumoural pH. That said, it is likely that the 

balance between lactate-generating glycolysis and oxidative phosphorylation (OXPHOS) is 

dependent on the degree of hypoxia, which can be both heterogeneous and wide ranging 

within the TME. It is instructive to note that in moderately hypoxic regions, CO2 derived 

from mitochondrial respiration is hydrated by extracellular carbonic anhydrase enzymes, 

forming HCO3
− and H+. Thus, oxidative metabolism can be a significant and often 

overlooked source of extracellular acidification within the TME.

Given the recent establishment of cancer immunotherapy, including the use of blocking 

antibodies against immune checkpoint pathways and adoptive cell therapy with chimeric 

antigen receptor T cells (CAR T cells), several recent studies have begun to establish the 

relationship of tumour-intrinsic metabolism to successful immunotherapy. For instance, it 

has been reported that increased glycolytic metabolism in melanoma cells is associated with 

resistance to adoptive T cell therapy and checkpoint blockade8,9. Other studies have shown 

that signalling through immune checkpoint proteins on tumour cells, including PD1 and B7-

H3, was responsible for increased glucose depletion within the TME10-12. Interestingly, 

some immunosuppressive checkpoint pathways are actually induced as a direct consequence 

of tumour acidification13. Further, immune checkpoint blockade can dampen glycolysis of 

tumour cells, restore glucose in the TME and permit T cell glycolysis and cytokine 

production14. Several recent studies have demonstrated that targeting specific aspects of 

tumour-intrinsic metabolism, such as the hexosamine biosynthesis pathway (HBP) or 

glutamine metabolism, could foster an immune response and sensitize tumours to 

checkpoint blockade15,16.

Because of the emergence of immunotherapy as a pillar of oncologic therapy, it is 

increasingly vital to understand as much as possible about the metabolic interdependence of 

infiltrating immune cells and cancer. This Review aims to discuss the following fundamental 

questions: which metabolic programmes are critical for the function of specific cell subsets 

involved in the immune response to cancer; how these metabolic programmes might be 

perturbed within the TME; the implications of metabolic derangements in the TME for 
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current immunotherapeutic paradigms; and how metabolic interventions might be leveraged 

to enhance the antitumour immune response.

The TME and immune contexture

Highly active metabolic pathways that are characteristic of cancer cells (Fig. 1) can create 

profound changes in the composition of nutrients and other small molecules within the 

TME. This can have critical effects on the immune response. The high metabolic activity of 

cancer cells and disorganized vasculature within the TME can contribute to a nutrient-

depleted and hypoxic microenvironment, establishing metabolic competition between cancer 

cells and infiltrating immune cells14,17,18. Indeed, the glucose uptake and effector function 

of antitumour CD4+ T cells has been shown to be inversely proportional to glycolytic 

activity of cancer cells in mouse models18, and glucose availability in the TME allows for 

improved cytokine expression from antitumour CD8+ T cells14. Furthermore, transcriptomic 

analyses of patients with melanoma from The Cancer Genome Atlas revealed that effector T 

(Teff) cell genes, such as CD40lg and IFNG, are inversely correlated with HK2 expression, 

which encodes the rate-limiting enzyme in the glycolytic pathway18. Metabolic programmes 

active within cells of the TME can also lead to the generation of toxic concentrations of 

certain metabolites. Elevated levels of adenosine, kynurenine, ornithine, reactive oxygen 

species (ROS) and potassium, as well as increased acidosis, have all been reported in the 

TME, and each can have profound effects in suppressing the antitumour immune response.

The immune contexture of the TME comprises a range of distinct cell types19 (TAbLe 1). 

Effector cells perform functions aimed at cell killing and can arise from either the innate 

(non-specific) or adaptive (antigen-specific) arms of the immune system. Antitumour 

effector cells arising from the adaptive system include CD4+ and CD8+ Teff cells, which 

orchestrate and carry out antigen-specific killing of cancer cells, respectively. CD8+ Teff 

cells are critically important in direct tumour cell killing through the induction of apoptosis 

and cytokine secretion. CD4+ T cells comprise numerous subsets. Some of these subsets, the 

most well studied of which is the T helper 1 (TH1) subset, can also provide significant 

antitumour activity. These antitumour CD4+ T cells, collectively termed conventional CD4+ 

(CD4+
con)v T cells, are distinct from immunosuppressive, pro-tumorigenic CD4+ T cells 

known as regulatory T (Treg) cells. Although CD4conv
+  cells may engage in direct tumour cell 

killing, they primarily contribute to antitumour immunity through cytokine secretion and 

assisting in CD8+ T cell activation. Antitumour CD4+ conv T cells share significant 

metabolic characteristics with CD8+Teff cells. Although less well understood in terms of 

antitumour immunity, B cells may also perform effector roles in the TME20. Importantly, as 

part of the adaptive immune system, T cells and B cells can give rise to memory cell 

populations, which can persist long after the resolution of an infection or tumour response. 

CD8+ memory T (Tmem) cells are a crucial aspect of long-term tumour control. Innate cells, 

such as natural killer (NK) cells and inflammatory macrophages, perform critical antitumour 

effector functions as well. There are also immunosuppressive cell populations within the 

TME, including CD4+FOXP3+Treg cells, myeloid-derived suppressor cells (MDSCs), anti-

inflammatory macrophages and some B cell populations20. Through various mechanisms, 

including cytokine secretion and metabolic derangements, these cells can dampen or 
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eliminate the effectiveness of antitumour effector cell populations. Lastly, antigen-presenting 

cells, such as intratumoural dendritic cells (DCs), have been shown to perform essential 

roles in maintaining active adaptive immune response within the TME21,22. Numerous 

excellent reviews can be referred to for more detailed discussions of tumour immunology 

and immunotherapy19,23-25.

The metabolism of the antitumour response

Glucose metabolism of antitumour effector T cells.

CD4+
conv and CD8+ Teff cells form the critical effector compartment of the antitumour 

response. When naive CD4+ and CD8+ T cells, which are non-proliferative, recognize their 

cognate antigen in the context of co-stimulatory signalling, they become proliferative and 

enact metabolic features to support immense growth26-28. Although many early 

investigations highlighted the upregulation of aerobic glycolysis as a hallmark of T cell 

activation, it is now clear that upregulated tricarboxylic acid (TCA) cycle metabolism and 

OXPHOS are also a critical aspect of CD4+
conv and CD8+ T cell activation. Although TCA 

cycle metabolism is upregulated within 24 h post activation, upregulated aerobic glycolysis 

appears to be a more rapid event, occurring within 6 h after activation27-32.

The transcriptional activity of MYC and hypoxia inducible factor 1 (HIF-1) are both 

upregulated in response to T cell activation and promote metabolic 

reprogramming26,29,33,34. Notably, although HIF-1 is well known to regulate metabolism in 

response to hypoxia, its activity is also induced in response to T cell activation in the 

absence of hypoxia. MYC and HIF-1 transcriptional activity leads to upregulation of genes 

encoding enzymes that promote glycolysis, such as pyruvate kinase (PKM1), hexokinase 2 

(HK2) and GLUT1 (ReFS29,34,35). Pathways emanating from proximal metabolites in the 

glycolytic pathway are also integral components of T cell activation and function (Fig. 1). 

The pentose phosphate pathway (PPP) metabolizes glucose-6-phosphate to generate 

NADPH and ribose-5-phosphate36. Glucose shuttling into the PPP is significantly increased 

upon CD4+ T cell activation29. The PPP is the primary cellular source for NADPH, which is 

required for fatty acid and plasma membrane synthesis in newly activated CD8+ T cells37. 

NADPH is also critical for REDOX homeostasis in proliferating manunalian cells38-40. ROS 

levels in activated T cells need to be finely regulated. Although dysregulated ROS levels can 

be toxic39,41,42, ROS play an important role in Teff cell activation, having been shown to 

promote nuclear factor of activated T cells (NFAT)-dependent IL-2 expression in CD4+ and 

CD8+ T cells. Another pathway originating from early glycolytic reactions, the HBP, is the 

primary cellular source of glycosylation substrates, which mediate a variety of effects on a 

broad range of proteins, including stability, trafficking and function. The HBP relies on 

metabolism of glucose and glutamine and is responsive to their availability. The main 

substrate produced by the HBP, UDP-GlcNAc, is critical for effector CD4+ and CD8+ T cell 

expansion and function43. Lastly, the serine–glycine–one-carbon pathway allows cells the 

ability to generate serine, glycine, NADPH and one-carbon units for use in the folate cycle. 

Teff cell proliferation and function were dependent on sufficient serine metabolism in vitro 

and in vivo44 (Fig. 1).
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Glucose carbons that are not metabolized to lactate or by proximal glycolytic pathways 

contribute significantly to the TCA cycle in Teff cells6 (Fig. 1). In highly proliferative cells, 

intermediates of the TCA cycle are rapidly consumed to serve as building blocks for a broad 

range of biomolecular syntheses, a process called cataplerosis45. For example, citrate can be 

exported to the cytoplasm to regenerate acetyl-CoA for use in lipid and cholesterol 

synthesis, both of which are critical for producing membranes in proliferative Teff cells. 

Other TCA cycle intermediates function as building blocks for biosynthesis of, for example, 

nucleotides and amino acids, which are in high demand during proliferation. Like cancer 

cells, Teff cells are highly proliferative and upregulate specific glycolytic programmes, 

including aerobic glycolysis, PPP, HBP and TCA cycle support, to allow massive cell 

division and effector functions.

T cells and glucose restriction in the TME.

Glucose limitation within the TME can markedly affect the T cell response. For example, 

low-glucose conditions (0.1 mM) suppressed the generation of the glycolytic intermediate 

phosphoenolpyruvate (PEP) in T cells, which disrupted calcium-dependent NFAT signalling 

in vitro18. Compared with control, decreasing the glucose concentration in growth media has 

been shown to suppress the extracellular acidification rate (a measure of aerobic glycolysis), 

augment the oxygen consumption rate (a measure of OXPHOS), attenuate mTOR signalling 

and suppress the effector function of both CD4+ and CD8+ Teff cells46-48. Reduced mTOR 

complex 1 (mTORC1) signalling interfered with Teff cell differentiation and, in the case of 

CD4+ T cells, specifically favoured the development of immunosuppressive, pro-

tumorigenic Treg cells49. Interestingly, in CD8+ T cells, mTOR blockade with rapamycin 

favoured differentiation of long-lived Tmem cells, which may play an important role in 

sustaining antitumour responses49-51. Decreasing glucose availability in culture suppressed 

production of the critical effector molecules interferon-γ (INFγ), IL-17 and granzyme B in 

Teff cells compared with control growth media47,48,52,53. In activated CD4+ T cells cultured 

in glucose-free media containing the alternative sugar fuel galactose (which suppresses 

aerobic glycolysis), the glycolytic enzyme GAPDH assumed a moonlighting role, binding 

the 3′ untranslated region of Ifng mRNA and suppressing its translation and Teff cell 

function31. Glucose restriction in media conditioned by primary ovarian cancer cells led to 

microRNA-mediated suppression of the histone methylase EZH2 (enhancer of zeste 

homologue 2), leading to decreased NOTCH signalling, suppressed cytokine production and 

decreased viability of Teff cells54.

Increasing the glycolytic capacity of mouse sarcoma cells through either pharmacologic 

treatment with the AKT activator 4-hydroxytamoxifen in co-culture experiments or 

overexpression of key glycolytic enzymes (for example, Glut1, Hk2 and Pdk1) in tumour 

cells followed by injection into mice led to suppression of CD8+ T cell effector function 

compared with vehicle-treated tumour cells or empty vector overexpression, respectively14. 

Similarly, compared with wild-type tumours, implanted Hk2- overexpressing melanoma 

cells suppressed CD4+ T cell antitumour effector function and in vivo responses in mouse 

models18. Furthermore, expression of glycolysis-related genes in tumour samples from 

patients with melanoma and non-small-cell lung cancer was inversely correlated to T cell 

infiltration8. Tipping the metabolic balance can also be accomplished through directly 
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manipulating T cell metabolism. For example, overexpression of the glycolytic enzyme PEP 

carboxykinase in tumour-specific CD4+ T cells improved antitumour responses compared 

with control vector-transfected T cells in an adoptive T cell model using melanoma-specific 

T cells18.

Mitochondrial respiration is also a critical aspect of Teff cell metabolism. Several recent 

studies have reported that T cells in patients with cancer (compared with healthy controls) 

and tumour-infiltrating CD8+ T cells in tumour-bearing mice (compared with non-

infiltrating CD8+ T cells) displayed decreased mitochondrial mass as well as indicators of 

mitochondrial dysfunction55-57. Mitochondrial fitness of resting peripheral CD8+ T cells 

was impaired in patients with chronic lymphocytic leukaemia compared with healthy 

controls55. Furthermore, the degree of response in these patients to CAR T cell therapy was 

negatively correlated to the degree of mitochondrial impairment of infused CAR T cells55. 

Tumour-infiltrating CD8+ T cells from patients with renal cell carcinoma showed 

dysregulated mitochondrial dynamics and function, including elevated levels of 

mitochondrial ROS and hyperpolarization, compared with CD8+ T cells from healthy 

donors56. Normal ex vivo activation of these T cells could be rescued with mitochondrial 

ROS scavengers or pyruvate supplementation. Mitochondrial biogenesis and function are 

particularly deranged in a subset of dysfunctional tumour-infiltrating CD8+ T cells termed 

exhausted T cells (box 1). As a whole, these studies demonstrate that cancer itself can lead 

to derangements in the metabolism of Teff cells, including mitochondrial dynamics, and that 

a reciprocal relationship exists between the degree of glycolytic activity of cancer cells and 

the antitumour effector function of infiltrating T cells.

Amino acids and the antitumour T cell response.

Like cancer cells, highly proliferative immune cells, such as activated T cells, are reliant on 

amino acid metabolism to support protein and nucleotide synthesis. As such, amino acid 

transporters, including SLC7A5 (also known as LAT1)58, SLC38A1 (also known as 

SNAT1), SLC38A2 (also known as SNAT2)59 and SLC1A5 (also known as ASCT2)60, have 

been found to be highly upregulated during T cell activation compared with naive cells in in 

vitro human and mouse studies61. Essential amino acids must be obtained exogenously. For 

example, leucine was required for mTORC1 signalling, effector function and proper 

differentiation in effector CD8+ and CD4+ CD4+ T
conv

 cells. Interestingly, deletion of the 

leucine transporter, Slc7a5, in mouse models caused metabolic failure during in vitro 

activation and cytokine-directed differentiation of CD4+ (TH1, IL-17-producing TH17) and 

CD8+ Teff cells, but had no adverse effect on the differentiation of Treg cells26,62. Activated 

T cells also rapidly metabolize arginine, and exogenous arginine supplementation leads to 

improved T cell fitness and increased generation of central Tmem cells63. Serine, tryptophan 

and cysteine are also vital nutrients for T cell responses and, as such, are important 

mediators of antitumour immune responses44,64-66. Tryptophan is an essential amino acid 

and its availability within the TME is an important factor in determining strength and quality 

of the T cell response. Human T cell proliferation and activation were strongly suppressed in 

tryptophan-free media compared with normal growth media66,67. Cancer cells, tumour-

associated macrophages (TAMs), MDSCs, suppressive DCs and cancer-associated 
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fibroblasts can deplete tryptophan levels through enzymatic activity of indoleamine 2,3-

dioxygenase (IDO)68, which can be expressed at high levels in these cells within the TME. 

Underlining the importance of this metabolic pathway for tumour growth, IDO expression 

has been correlated with poor outcomes in patients with several cancer types, including 

gastric cancer, colorectal cancer, non-small-cell lung cancer and melanoma69-71.

In proliferating cells, glutamine provides nitrogen for amino acid and nucleic acid synthesis 

and carbon to replenish TCA cycle intermediates that are syphoned off as building blocks 

for biosynthesis — a process called anaplerosis (Fig. 1). Cancer cells and some activated 

immune cells, such as T cells and macrophages, are generally highly glutamine avid59,72. 

The expression of glutamine transporters SLC1A5 and SLC38A1 and/or SLC38A2 was 

significantly upregulated during in vitro stimulation of murine CD4+
conv T cells60. Driven 

by MYC, glutamine is metabolized by glutaminase (GLS) to glutamate, which may enter the 

TCA cycle after conversion by glutamate dehydrogenase (GLUD1) to α-ketoglutarate 

(αKG; also known as 2-oxoglutarate). αKG is subsequently metabolized to succinate and 

fumarate in the TCA cycle29. Interestingly, in settings of glutamine restriction, some cancer 

cell lines switch to glucose-fuelled anaplerosis, wherein pyruvate is converted by pyruvate 

carboxylase to oxaloacetate, which enters the TCA cycle73. Our group has recently shown 

that effector CD8+ T cells are also capable of upregulating pyruvate carboxylase activity 

under conditions of glutamine blockade in vitro16.

Although effector function and proliferation in differentiated CD8+ Teff cells was suppressed 

by limiting glutamine in media59, if glutamine availability was restricted during activation of 

CD8+ T cells, it altered differentiation towards a long-lived, memory phenotype74. This 

effect on differentiation was shown to be mediated by αKG. αKG and other TCA 

metabolites, such as succinate and fumarate, can modulate the activity of a wide range of 

cellular processes, including epigenetic remodelling and the stability of critical transcription 

factors, such as HIF-1α (ReFS45,75).

Lipid metabolism and T cells.

Activated T cells also reprogramme lipid metabolism, upregulating de novo lipid synthesis 

and cholesterol uptake, which are critical for membrane synthesis and mediated by the 

transcription factors sterol regulatory element-binding protein 1 (SREBP1) and SREBP2, 

respectively37,76. Proliferation, metabolic reprogramming and antiviral activity were 

dramatically suppressed in activated mouse CD8+ T cells lacking SREBP1 and SREBP2 

functionality. In addition, the cholesterol content in membranes during CD8+ T cell 

activation and expansion in vitro was, in part, regulated by cholesterol esterification enzyme 

acetyl-CoA acetyltransferase (ACAT1). Acat1 knockout CD8+ T cells showed increased 

membrane cholesterol and improved T cell receptor clustering and signalling, leading to 

enhanced proliferation, function and improved tumour killing in adoptive-transfer mouse 

tumour models76. Pharmacologic inhibition of ACAT1 with avasimide improved the 

antitumour effect in mice compared with vehicle-treated control animals. Cholesterol 

metabolism and antitumour T cell function is an evolving story, however. A recent study by 

Ma et al. demonstrated that a high cholesterol content in tumours can induce T cell 

dysfunction by activating the endo-plasmic reticulum stress response77. As such, although 
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cholesterol is important for Teff cell proliferation and metabolism, the benefit of targeting 

specific aspects of cholesterol metabolism to improve the antitumour immune response 

needs further study.

The metabolism of immunologic memory.

Unlike Teff cells, CD8+ Tmem cells preferentially rely on OXPEIOS78-81. Compared with 

CD8+ Teff cells, enhanced spare respiratory capacity, a parameter indicative of the ability of 

cells to upregulate OXPEIOS, is also highly characteristic of Tmem cells78. Initial studies 

using etomoxir as an inhibitor of carnitine palmitoyl transferase 1A (CPT1A), a 

mitochondrial transporter responsible for the import of long-chain fatty acids destined for 

fatty acid β-oxidation (FAO), implicated FAO as the primary fuel for OXPEIOS in Tmem 

cells. However, more recent work using T cell-specific Cpt1a knockout models has called 

this into question and demonstrated that off-target effects of high-dose etomoxir (200 μM) 

are likely responsible for the earlier findings82. This should not be taken to imply that Tmem 

cells do not use FAO in support of OXPHOS and spare respiratory capacity but, rather, that 

FAO is not the sole pathway responsible for this metabolic phenotype. Indeed, the 

expression of CPT1A is consistently upregulated in CD8+ Tmem cells compared with Teff 

cells. Furthermore, a CD8+T cell subset known as tissue-resident memory cells were 

specifically dependent on fatty acid binding protein 4 (FABP4) and FABP5 to import 

extracellular fatty acids for FAO and for maintenance of a long-term memory phenotype83.

Intermediates of the TCA cycle, such as αKG, succinate and fumarate, are particularly 

important in adaptive memory. Inhibition of 2-oxoglutarate-dependent dioxygenases 

(2OGDD) through alterations in these TCA metabolites has been shown to increase memory 

cell differentiation in CD8+ T cells84,85. Although glucose, glutamine and fatty acids are the 

primary nutrient sources fuelling the TCA cycle, a range of other nutrients, such as amino 

acids and acetate, can also enter the cycle. In particular, acetate metabolism is emerging as 

an important source of acetyl-CoA in CD8+ T cells and some cancer types16,86-88. In the 

mitochondria, acetate can enter the TCA cycle after it is metabolized by acyl-CoA 

synthetase short chain family member 1 (ACSS1) to form acetyl-CoA. Alternatively, acetate 

can be converted to acetyl-CoA by ACSS2 in the cytoplasm, where it can contribute to fatty 

acid synthesis and acetylation reactions important in epigenetic reprogramming and post-

translational modifications. The metabolism of acetate is an important metabolic pathway 

for promoting the function of memory CD8+T cells88. Interestingly, blockade of glutamine 

metabolism during T cell activation increased Tmemcell differentiation and induced acetate 

metabolism and associated enzymes, including ACSS1 and ACSS216,85. As quiescent cells, 

Tmem cells preferentially rely on OXPHOS relative to aerobic glycolysis and have significant 

mitochondrial reserve that is required to upregulate OXPHOS further upon antigen 

activation. Tmem cells can adapt several distinct nutrient sources to fuel this metabolic 

programme.

Hypoxia and the antitmnour T cell response.

Although tumours are highly heterogeneous, high levels of metabolic activity and associated 

oxygen consumption, as well as disorganized, poorly functioning vasculature, can generate 

hypoxic regions with median oxygen saturation levels <2 % (compared with a median of 
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about 5% in normal tissues)89,90. The effect of hypoxia on Teff cells is not straightforward. 

Complicating this area of study is the fact that HIF-1 transcriptional activity is upregulated 

in response to T cell activation in normoxic conditions34, so it is challenging to understand 

the effect of hypoxia on further augmenting HIF-1 activity while also evaluating HIF-1-

independent effects. Early in vitro studies of CD8+ Teff cell activation, differentiation and 

function showed that whereas proliferation and the expression of some cytokines were 

suppressed in hypoxia, the lytic capacity, activation markers and survival were improved91. 

Subsequent in vivo studies showed that CD4+ and CD8+ splenic T cells were more poorly 

activated after concanavalin A challenge in mice exposed to subatmospheric O2 tension 

(8%) compared with mice exposed to ambient O2 tension (20%)92. Other studies showed 

that in vitro hypoxic exposure causes intracellular accumulation of the metabolite (S)-2-

hydroxyglutarate (S-2-HG), which profoundly alters CD8+ T cell activation and 

differentiation, suppressing cytokine secretion and cytolytic capacity, but, interestingly, 

augmenting proliferation, long-term survival and antitumour response after in vivo transfer 

in mouse models84. Contrary to previous findings demonstrating the necessity of oxidative 

metabolism and oxidative metabolic capacity in forming long-lived memory CD8+ T cells, 

glycolytic activity enforced through constitutive HIF-1α activity (achieved through 

conditional knockout of the HIF-1 regulator Vhl) actually favoured the formation of long-

lived effector memory cells in mouse vaccine models93. Other work has demonstrated that 

hypoxia induced the expression of the ectonucleotidases CD39 and CD73 on various cells in 

the TME94,95. These enzymes break down ATP in the TME to adenosine. Adenosine is a 

ligand for the A2A and A2B purinergic receptors, which are expressed on a large range of 

immune cells, and is broadly immunosuppressive, inhibiting effector cell function and 

proliferation of Teff cells96-101. Interestingly, supplemental oxygen enhanced the antitumour 

immune response of T cells in mice by downregulating the adenosine signalling pathway102. 

The effect of hypoxia on antitumour T cells is an evolving area of study. Further research 

will clearly benefit the field of immunotherapy, given both the prevalence of hypoxic regions 

in tumours as well as the profound effects hypoxia can have on the adaptive immune 

response.

Toxic metabolites.

In addition to adenosine, many other products generated from cancer cell metabolism 

influence infiltrating T cells (Figs 1 and 2). Elevated levels of extracellular lactate and H+ in 

the TME can suppress T cell proliferation, survival, cytotoxicity and cytokine production in 

in vitro studies of mouse and human CD8+ T cells103,104. The upregulation of the gene 

encoding the key Teff cell transcription factor NFAT was impaired during in vitro activation 

of mouse CD8+ T cells in the presence of high levels of lactate and H+ compared with 

standard growth media104. In vivo mouse studies showed that mouse melanoma cells that 

have Ldha knocked down produced less lactate and were more responsive to immune-

mediated tumour rejection than empty vector-transfected control melanoma cells104. MAP 

kinase signalling was also severely impaired in human effector CD8+ T cells activated in the 

presence of elevated lactate and H+ compared with control media105.

The accumulation of specific amino acids within tumours can also suppress the Teff cell 

response. Probably the most well studied in this regard are the effects of tryptophan 
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metabolites, especially kynurenine, which is generated through the activity of IDO1 106. 

Functioning as an endogenous ligand for aryl hydrocarbon receptors on T cells, kynurenine 

caused upregulation of the PD1 co-inhibitory pathway on activated CD8+ T cells in vitro 

compared with vehicle-treated control107. This upregulation of PD1 was also observed on 

tumour-infiltrating CD8+ T cells in mouse models treated with exogenous kynurenine 

compared with vehicle-treated controls. Tumour-infiltrating CD8+ T cells from kynurenine 

treated tumour-bearing mice produced less IFNγ and TNF.

Cancer cells have also been reported to suppress T cell activity through release of the 

oncometabolite (R)-2-hydroxyglutarate (R-2-HG). This metabolite can inhibit epigenetic 

dioxygenase enzymes, such as histone demethylases, leading to increased methylation and 

modified transcription. R-2-HG produced by isocitrate dehydrogenase (IDH)-mutant human 

glioma was taken up by T cells in in vitro studies. R-2-HG interfered with proliferation, T 

cell receptor signalling, NFAT activity and polyamine biosynthesis in activated human CD4+ 

and CD8+ T cells in vitro108. This was corroborated by the finding that R-2-HG released 

into the TME in IDH-mutant glioma-bearing mice inhibited complement-mediated 

antitumour response as well as T cell migration, proliferation and cytokine secretion109. 

These studies highlight the intricate interplay of cancer metabolites and immune function 

within the TME (Fig. 2).

High levels of necrosis lead to increased levels of potassium within the TME, which limits T 

cell effector function110. Mediated by reduced cytoplasmic levels of acetyl-CoA, this state 

induced epigenetic remodelling of activated T cells, inducing a dysfunctional state of Teff 

cells within the TME111. However, this dysfunctional state was enriched with characteristics 

of T cell stemness. In accord with the induction of a stem-like state, ex vivo stimulation and 

expansion of Teff cells in high potassium produced T cells with improved in vivo 

persistence, multipotency and capacity for tumour clearance111. The generation of T cell-

suppressive metabolites through tumour necrosis and metabolic activity intrinsic to the TME 

forms an important mechanism of tumour immune evasion.

Metabolism and the innate effector response.

Because NK cells are particularly adept at cell killing during major histocompatibility 

complex class I (MHC-I) down-regulation, a common evasion strategy of cancer cells, they 

form a critical effector component of tire innate response. Metabolically, aerobic glycolysis 

and OXPHOS were upregulated after in vitro cytokine stimulation (IL-12 and IL-15) of NK 

cells112. Interestingly, SREBP transcription factors were required for these cytokine-induced 

metabolic changes during in vitro NK cell stimulation113. Pharmacologic inhibition of 

SREBP activity suppressed metabolic reprogramming, cytokine production and cytotoxicity 

in vitro and curtailed anti-tumour response in an adoptive NK cell mouse model. 

Interestingly, it has been reported that endogenous SREBP inhibitors, such as 27-

hydroxycholesterol, can be increased within the TME and thus may be a mechanism of NK 

cell suppression112,114-118. Lung cancer progression in mice and tumour-associated 

transforming growth factor-β (TGFβ) are correlated with increased fructose-1,6-

bisphosphatase (FBP1) expression in tumour-associated NK cells119. FBP1 is a key enzyme 

in gluconeogenesis, which, when activated, strongly suppressed glycolysis in NK cells, 
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leading to dysfunction and diminished viability. Interestingly, pharmacologic inhibition of 

FBP1 was sufficient to re-establish glycolytic metabolism, as well as cytokine production 

and cytotoxicity in vitro, and improve antitumour response in adoptive cell therapy mouse 

models119. These studies showed that rescuing NK function through FBP1 inhibition was 

dependent on restoration of glucose metabolism, as blocking glucose metabolism with 2-

deoxyglucose (2-DG) prevented the rescue caused by FBP1 inhibition. 2-DG by itself also 

led to NK cell dysfunction119, implying that inhibition of glucose metabolism could have 

profound effects on NK cell antitumour response. Other metabolic derangements within the 

TME are likely to affect NK cell function as well. For instance, low arginine levels can 

impair NK cell proliferation and IFNγ production120,121, and hypoxia can suppress cytolytic 

activity122-124. Human NK cell-activating receptors, such as NKp46 and NKp30, are 

suppressed in response to hypoxia or low arginine in in vitro studies121,124. High lactate 

levels and associated low pH, as in the TME, also suppressed NK cell cytotoxicity, cytokine 

production and NFAT signalling in in vitro studies104,125,126. Lastly, elevated adenosine 

levels within the TME can strongly suppress NK cell effector function and proliferation127.

Other innate cells, macrophages and DCs also enact specific metabolic programmes upon 

activation. Although early in vitro work using activation schemes with specific cytokines 

classified macrophages into inflammatory (M1) or immunosuppressive (M2) phenotypes, 

there is poor evidence that these polarized phenotypes play distinct roles in vivo128,129. 

More recent work has uncovered a spectrum of macrophage phenotypes characterized by 

distinct transcriptional states130. That said, macrophages with inflammatory characteristics 

can play an important role in antitumour immunity19, and in this regard it is instructive to 

examine what has been established regarding the metabolic programming of in vitro derived 

‘M1’ macrophages. Glucose metabolism is a vital aspect of the inflammatory phenotype in 

macrophages. Upon activation, for example by a Toll-like receptor agonist, these cells 

showed increased expression of glycolytic genes, high levels of glucose uptake, increased 

lactate production and upregulated glutamine anaplerosis131. This metabolic reprogramming 

led to increased succinate levels, which increased expression of the inflammatory cytokine 

IL-1β by stabilizing HIF-1 (ReF.132). Inflammatory macrophages are also particularly reliant 

on the PPP for the generation of NADPH, with 13C-glucose tracing studies confirming 

increased routing of glucose though this pathway upon activating inflammatory phenotypes 

in culture133,134. NADPH is necessary to produce high levels of ROS as part of an oxidative 

burst, a key effector mechanism for these cells132,135,136. Arginine is also a critical nutrient 

in the function of pro-inflammatory ‘M1’ macrophages as they express high levels of 

inducible nitric oxide synthase (iNOS) compared with alternatively activated or ‘M2’ 

polarized macrophages in in vitro studies137. iNOS requires arginine to generate cytotoxic 

nitric oxide, an important pro-inflammatory mediator of antitumour response138,139.

Specific nutrient deficits within the TME, particularly glucose and arginine, can severely 

limit the metabolism and related elaboration of effector programmes in these cells. Glucose 

limitation not only suppresses glycolysis as a whole but can curtail PPP activity and TCA 

cycle function, thus limiting the generation of NADPH, ROS and succinate, all of which can 

severely limit M1 macrophage function. Supporting this idea, the secretion of pro-

inflammatory cytokines by macrophages was significantly reduced by glycolysis inhibition 

with 2-DG140.
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DCs are an important class of antigen-presenting cells involved in the antitumour response. 

Intratumoural DCs that are capable of antigen cross-presentation have specifically emerged 

as a vital component of this response22. Upon activation, DCs undergo maturation allowing 

antigen processing and presentation to T cells. This response was coupled to a metabolic 

switch from OXPHOS to aerobic glycolysis, mediated by HIF-1α in response to in vitro 

LPS activation141, and by the PI3K–AKT pathway in response to Toll-like receptor 

stimulation in vitro142. This switch to glycolysis and away from OXPHOS during DC 

activation is critical for DC survival, production of stimulatory cytokines and activation of T 

cells142. Interestingly, pharmacologic activation of AMPK, which promotes mitochondrial 

biogenesis and oxidative respiration143, was sufficient to block DC maturation in vitro142. 

Given this critical dependence on aerobic glycolysis, glucose competition in the TME may 

significantly suppress DC activation and viability and thus limit the ability of DCs to foster 

an effective and persistent T cell response.

The metabolism of cancer immune evasion

Metabolism of adaptive immune suppression.

Immunosuppressive Treg cells preferentially rely on TCA cycle function and mitochondrial 

respiration144,145. Although initial studies demonstrating the dependence of Treg cells on 

FAO did not account for off-target effects of etomoxir, other studies have shown that FAO 

does support OXPHOS in Treg cells, although not as the sole pathway82,146,147. In contrast 

to Teff cells, Treg cells showed decreased glucose uptake and expressed lower levels of 

GLUT1 in vitro144. Interestingly, although glycolysis did not appear to play a crucial role in 

Treg cell differentiation or a long-lived phenotype, our laboratory has reported that a subset 

of highly active Treg cells, termed effector Treg cells, relied on the upregulation of glycolysis 

for optimal function148. As such, Treg cells appear to be metabolically flexible, which may 

allow them to thrive within relatively harsh and heterogeneous conditions, such as the TME. 

To this end, it has been reported that the Treg cell-defining transcription factor, FOXP3, 

reprogrammes cellular metabolism through suppression of MYC favouring OXPHOS and 

NAD(H) oxidation149. In conditions of low glucose and high lactate, such as found in the 

TME, these adaptations allow for a metabolic advantage of these immunosuppressive cells, 

allowing Treg cells to resist lactate-induced functional and proliferative suppression (unlike 

Teff cells) in vitro149. Glucose or glutamine deprivation (leading to reduced intracellular 

αKG) in media during in vitro skewing experiments can alter CD4 differentiation and favour 

the development of Treg cells150,151.

Similar to Teff cells, Treg cell response to hypoxia is not entirely clear. Hypoxia has been 

shown to promote cytokine-mediated recruitment of Treg cells into the tumour 

environment152. Other work has demonstrated that FOXP3 transcript is actually increased in 

response to HIF-1α induction153-155. Also, adoptively transferred Treg cell-specific Hif1 

knockout cells failed to migrate into brain tumours in mouse models compared with wild-

type controls, an effect that was also observed in dichloroacetate-treated Treg cells, in which 

glycolysis is inhibited compared with vehicle-treated control Treg cells156. Interestingly, 

hypoxia-responsive adenosine signalling through the adenosine receptor A2A on Treg cells 

induced proliferation and significantly stronger immunoregulatory activity in mixed 
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lymphocyte culture experiments157,158. Conversely, several groups have reported that 

hypoxia-induced HIF-1α can destabilize Treg cells, with reports demonstrating that hypoxia 

can promote TH17 CD4+ T cells through direct HIF-1α interactions with the cell subtype-

defining transcription factors FOXP3 and RORγt, respectively52,53,159.

The unique metabolism of amino acids within the TME can also have a profound effect on 

Treg cells. IDO1 activity can strongly promote Tregcell differentiation in vitro, an effect that 

appears to be secondary to both tryptophan deficiency as well as the generation of 

downstream metabolites, such as kynurenine160,161. Kynurenine has been found to induce 

the generation of FOXP3-expressing Treg cells by functioning as an endogenous ligand for 

aryl hydrocarbon receptors on T cells162. Interestingly, many of the qualities of the TME 

that make it inhospitable for Teff cells are either well tolerated by Treg cells (elevated lactate 

and H+) or can induce Treg cell responses (for example, accumulation of adenosine, 

kynurenine and hypoxia).

Metabolism of innate immune suppression.

TAMs can adopt phenotypes that are highly immunosuppressive. Although there is a 

spectrum of TAM phenotypes as mentioned above, it is useful to examine the metabolic 

programming of what heretofore had been established as an ‘M2’ anti-inflammatory 

macrophage subset, characteristics of which are clearly evident within immunosuppressive 

TAMs. Like Treg cells, M2 macrophages upregulate FAO and mitochondrial 

respiration134,163. Although early studies demonstrating that FAO is obligatory in M2 

macrophages did not take into account the off-target effects of the CPT1A inhibitor 

etomoxir164, forced induction of FAO and mitochondrial biogenesis by overexpression of 

Pgc1α primes macrophages for an immunosuppressive phenotype and strongly suppresses 

the production of pro-inflammatory cytokines163.

M2 macrophages metabolize amino acids in a distinct manner from inflammatory 

macrophages, expressing high levels of arginase 1 (ARG1), which depletes arginine and 

generates polyamines that are important mediators of wound healing but also highly 

immunosuppressive165-168.

Another group of tumour-associated immunosuppressive innate cells, MDSCs, appear to be 

highly metabolically active. Both aerobic glycolysis and OXPHOS were upregulated in 

tumour-associated MDSCs compared with MDSCs in the periphery169. In another study, 

granulocytic MDSCs from the spleens of tumour-bearing mice also showed increases in both 

aerobic glycolysis and OXPHOS compared with splenic neutrophils from the same mice. 

Interestingly, MD SC expansion in vitro and accumulation in the TME in mouse breast 

cancer models could be attenuated through blockade of glycolysis with 2-DG, likely by 

causing increased ROS levels in these cells170.

Hypoxic regions within tumours have been associated with the accumulation of 

macrophages, where they aid tumour development through the production of angiogenesis 

factors, mitogenic factors and cytokines associated with tumour metastasis171-173. 

Furthermore, hypoxia can promote the generation of immunosuppressive macrophage 

phenotypes174. Adenosine, which can be generated as a result of hypoxia, can trigger 
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signalling through A2A and A2B receptors on macrophages, both of which augment the 

differentiation and functional capabilities of immunosuppressive macrophages as well as 

attenuate the cytokine release of pro-inflammatory macrophages in vitro96,175. Elevated 

lactic acid in culture has been shown to promote the M2 phenotype, increasing ARG1 

expression and polyamine-dependent immunosuppression176. High glycolytic rates in triple-

negative breast cancer were shown to promote MDSCs, whereas restricting glycolysis in 

these cancer cells inhibited granulocyte colony-stimulating factor and granulocyte–

macrophage colony-stimulating factor secretion from cancer cells and limited MDSC 

development177. Interestingly, hypoxia skewed MDSCs towards an immunosuppressive, 

M2-like TAM phenotype compared with normoxic MDSCs in vitro. This occurred via 

HIF-1α mechanisms, as Hif1a knockout MDSCs displayed increased tumour growth 

compared with wild-type MDSCs in mouse melanoma tumour models178.

Exploiting differential metabolic plasticity

Whereas the activation, proliferation and function of Teff cells can be attenuated through 

inhibiting numerous metabolic pathways, other attributes, such as long-term viability or 

effector function upon restimulation, may be enhanced. Although inhibiting glycolytic 

metabolism with 2-DG inhibited Teff cell generation, it also conditioned T cells towards a 

long-lived, memory-like phenotype50. Interestingly, blocking glycolysis during ex vivo T 

cell activation and expansion, before reinfusion for tumour treatment, not only allowed for 

increased survival of antitumour T cells but also for improved cytokine production and 

cytotoxicity. Similar phenomena have been reported in CD8+ Teff cells in response to AKT 

inhibition, glutamine blockade, hypoxia, arginine supplementation and potassium 

supplementation16,63,74,93, 111,179. It may be possible to differentially affect cancer and the 

immune response. For example, acetate metabolism can rescue T cell function in glucose-

restricted CD8+Teff cells87. In addition, our group recently demonstrated the importance of 

this pathway in maintaining metabolic homeostasis in CD8+ T cells undergoing glutamine 

blockade16. These findings could imply a generalizable therapeutic strategy, in that blocking 

the use of typical metabolic fuels, such as glucose or glutamine, may render some cancers 

metabolically compromised, but may leave antitumour T cells metabolically intact and 

functional given their ability to use alternative sources, such as acetate. Although specific 

metabolic interventions may be introduced pharmacologically as adjuncts to checkpoint 

blockade (TAbLe 2), these targets may be particularly applicable to CAR T cell therapy, 

wherein manipulation of metabolic pathways can be precisely defined through genetic 

means (box 2). Future studies delineating the degree of metabolic flexibility possible within 

a given immune cell subset and functional capacity are clearly warranted.

Checkpoint blockade and immunometabolism.

It is of great interest to define both the metabolic consequences of checkpoint therapy and 

the metabolic determinants of response. Checkpoint signalling has been shown to regulate 

metabolism in several studies. For example, PDL1 expression on cancer cells can drive Akt–

mTOR activation and glycolysis in cancer cells, increasing glucose uptake and augmenting 

competition with T cells for glucose14. CD155-TIGIT signalling in T cells from human 

gastric cancer tissue dampened glucose uptake, lactate production and expression of 
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glycolytic enzymes GLUT1 and HK2180. Conversely, agonism of the co-stimulatory 

pathway GITR broadly increased T cell metabolic activity and proliferation compared with 

isotype-treated control T cells181. Lastly, in vitro PD1 and CTLA4 signalling on activated 

human T cells suppressed metabolic pathways, such as aerobic glycolysis, that are 

associated with T cell activation182. To this end, the prospect of combining metabolic 

inhibitors (TAbLe 2) with checkpoint inhibitors holds promise to enhance the efficacy of 

checkpoint blockade. Targeting tumour metabolism by inhibiting glutamine metabolism in 

mouse models inhibited tumour growth and conditioned the TME to be more hospitable for 

antitumour effector cells16. Also, metabolically reprogramming T cells to make them more 

robust, long-lasting memory cells might improve their response to checkpoint inhibitors. 

This has been heralded by recent clinical trials combining the anti-folate pemetrexed with 

anti-PDL1 immune checkpoint blockade183. In addition to having direct antitumour effects, 

pemetrexed treatment enhanced the metabolic fitness and effector function of antitumour 

CD8+ T cells, as well as induced immunologic cell death of cancer cells to trigger the 

immune response.

Conclusion and perspective

Although much of the foundation of immunometabolism has been informed by observations 

of cancer metabolism, it is clear that there are distinct differences between cancer and 

immunologic metabolic reprogramming. These differences provide opportunities to target 

metabolism as a means of enhancing the efficacy of immunotherapy (Fig. 3). Such an 

approach can be achieved through numerous different strategies. These include targeting 

tumourmetabolic programmes to inhibit growth and alter the TME, targeting the metabolism 

of suppressive immune cells to inhibit their function and targeting effector cell metabolism 

to enhance tumour killing. Likewise, ex vivo pharmacologic or genetic reprogramming of T 

cell metabolic pathways prior to adoptive cellular therapy offers an opportunity to 

dramatically engineer enhanced features, which may include longevity or enhanced effector 

function (bOX 2).

Future work should begin to focus on the metabolic interdependence of immune cells and 

cancer cells within the TME. In addition to nutrient depletion and the generation of 

metabolites that can suppress the immune response at certain concentrations, cancer cells 

can engage in metabolic crosstalk with other cells within the TME, wherein metabolic 

programmes can be induced and co-opted to benefit malignant progression. It has been 

reported that pancreatic stellate cells can provide alanine to cancer cells and, thus, fuel 

proliferation184, and bone marrow stromal cells have been reported to provide cysteine to 

promote survival of chronic lymphocytic leukaemia cells185. In another report, ammonia 

from cancer cell glutamine metabolism diffused through the TME and triggered autophagy 

in cancer-associated fibroblasts, which in turn provided protein breakdown products, such as 

glutamine itself, to further support cancer cell metabolism186. It will be important to 

understand whether and by what mechanism immune-evading cancers may be co-opting the 

metabolic machinery of immune cells and benefitting from their remarkable metabolic 

flexibility.
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Oxidative phosphorylation (OXPHOS).

A highly efficient form of cellular respiration synthesizing ATP from the phosphorylation 

of ADP using electrochemical potential energy generated by the transfer of electrons 

from NADH or FADH2 to oxygen through a series of mitochondrial electron carriers.

Leone and Powell Page 28

Nat Rev Cancer. Author manuscript; available in PMC 2021 April 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Immune checkpoint pathways

Pathways mediated by cell surface proteins on immune cells, such as PD1 or CTLA4, 

that serve to suppress the immune response, which can be activated by ligands within the 

tumour microenvironment or draining lymph nodes.
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Chimeric antigen receptor T cells (CAR T cells).

T cells harvested from a patien’s blood and genetically modified to express a special 

receptor that can recognize and respond to specific, predefined molecular targets on 

tumour cells.
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Hexosamine biosynthesis pathway (HbP).

A branch of glycolysis that generates building blocks used for glycosylation of proteins 

and lipids.

Leone and Powell Page 31

Nat Rev Cancer. Author manuscript; available in PMC 2021 April 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Pentose phosphate pathway (PPP).

A metabolic branch of glycolysis generating NADPH, used for fatty acid synthesis and 

redox homeostasis, and 5-carbon sugars used in nucleotide synthesis.
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Nuclear factor of activated T cells (NFAT).

A calcium-dependent transcription factor activated in response to T cell receptor 

stimulation. Cooperation with the AP-1 transcription factor results in a productive 

immune response and transcription of pro-inflammatory cytokines, such as iL-2 and 

interferon-γ.
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Cataplerosis

The loss of metabolic intermediates in a metabolic pathway (particularly the tricarboxylic 

acid cycle) owing to consumption or degradation.
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Anaplerosis

The process of replenishing intermediates of the tricarboxylic acid cycle to support 

biosynthesis.
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De novo lipid synthesis

The cellular biosynthesis of fatty acids, triglycerides, cholesterol and other lipids from 

carbohydrates or other non-lipid precursors.
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2-Oxoglutarate-dependent dioxygenases (2OgDD).

A family of enzymes that catalyse the hydroxylation of macromolecules, often as a 

prerequisite to demethylation, reliant on α-ketoglutarate, Fe2+, ascorbate and oxygen as 

cofactors.
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Major histocompatibility complex (MHC).

MHC class i (MHC-i) is expressed on all nucleated cells, a molecular complex presenting 

intracellular peptide epitopes for CD8+ T cell receptor recognition. Also expressed on 

antigen-presenting cells, allowing initial antigen-specific activation of cytotoxic CD8+ T 

cells. MHC-ii is highly expressed on antigen-presenting cells for presenting antigenic 

epitopes for CD4+ T cell receptor recognition and activation.
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Antigen cross-presentation

The ability of antigen-presenting cells to process extracellular antigens and present them 

to CD8+ T cells through major histocompatibility complex class 1 presentation.
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Box 1 ∣

Metabolism of T cell exhaustion

CD8+ T cells in the tumour microenvironment (TME) can adopt a state of functional 

exhaustion wherein they are poorly proliferative and unable to generate sufficient 

cytotoxicity against target cancer cells. A similar cell subset exists during chronic viral 

infections, such as lymphocytic choriomeningitis virus (LCMV) clone 13 in mice or 

hepatitis C virus in humans243. There are numerous metabolic features that are emerging 

as characteristic of this set of immune cells, termed CD8+ exhausted T cells. Some of the 

metabolic characteristics appear to be a consequence of co-inhibitory signalling, such as 

PD1, which is highly characteristic of CD8+ exhausted T cells. In a chronic LCMV 

mouse model, PD1 signalling inhibited the expression of peroxisome proliferator-

activated receptor-γ co-activator 1α (PGC1α), which disrupted mitochondrial and 

effector function and led to significantly less oxidative capacity compared with T cells 

responding to an acute LCMV infection244. Overexpression of PGC1α in adoptively 

transferred T cells improved mitochondrial function and restored T cell function. T cells 

infiltrating tumours showed similar mitochondrial dysfunction and loss of oxidative 

capacity secondary to inhibited PGC1α activity57. Interestingly, antitumour T cells also 

regained function through overexpression of PGC1α, implying that the activity of a 

metabolic programme can, in and of itself, overcome functional T cell exhaustion. PD1 

signalling also suppressed mTOR complex 1 (mTORC1) signalling and glycolytic 

activity in infiltrating CD8+ T cells in a progressive mouse tumour model14. Given the 

dependence of T cell function (and loss of function) on metabolic programming, more 

studies are needed to assess the determinants of metabolic dysfunction and associated T 

cell exhaustion within the TME.

Leone and Powell Page 40

Nat Rev Cancer. Author manuscript; available in PMC 2021 April 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Box 2 ∣

Adoptive T cell therapies enable highly flexible approaches to metabolic 
therapy through ex vivo culture conditioning or genetic targeting of 

metabolic processes

T cells in such regimens can be genetically modified to express chimeric antigen 

receptors (CARs) that recognize known tumour surface antigens and trigger T cell 

receptor signalling in the absence of major histocompatibility complex presentation. T 

cells can be metabolically conditioned through the use of chemical inhibitors or genetic 

editing during ex vivo expansion, through metabolically engineered media or through 

pharmacologic treatment after T cell reinfusion. Many of the interventions discussed, 

including inhibiting glycolysis, glutamine metabolism with 6-diazo-5-oxo-l-norleucine 

(DON), AKT–mTOR signalling and potassium supplementation, have been used in ex 

vivo T cell expansion and led to improved T cell persistence and antitumour 

response50,74,111,179 (see the figure). Recent studies demonstrated that forced expression 

of peroxisome proliferator-activated receptor-γ co-activator 1α (PGC1α), which 

promotes mitochondrial biogenesis, in adoptively transferred CD8+ T cells resulted in 

superior intratumoural metabolic and effector function57. Several groups have also 

reported the importance of the co-stimulatory receptor 4-1BB in positively conditioning 

mitochondrial health and biogenesis for robust antitumour immunity245,246. These 

findings have been validated in the CAR T cell field, wherein the addition of the 4-1BB 

receptor module has enhanced T cell persistence and increased therapeutic 

efficacy247-251. 2-DG, 2-deoxyglucose; TCA, tricarboxylic acid.
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Fig. 1 ∣. Cancer cell metabolism and derangements in the TME.
Mitochondrial oxidation of nutrients, including glucose, amino acids and fatty acids, through 

the tricarboxylic acid (TCA) cycle and the electron transport chain (ETC) is a highly 

efficient means of producing energy for quiescent, differentiated cells. However, during 

periods of increased proliferation, such as after immune activation or malignant 

transformation, cells upregulate an alternative pathway for glucose metabolism, called 

aerobic glycolysis. Although less efficient in generating ATP, aerobic glycolysis allows for 

more rapid metabolism of glucose, efficient disposal of excess carbon and regeneration of 

NAD+ while preserving mitochondrial enzymatic activity for anabolic processes242. 

Glycolytic intermediates are channelled through other essential pathways, such as the 

pentose phosphate pathway, the one-carbon pathway and the hexosamine biosynthesis 

pathway. These pathways support cellular processes that are critical for highly proliferative 

cells, such as synthesis of fatty acids and nucleic acids. Pathways for the metabolism of 

glutamine are also upregulated in the setting of increased proliferation72. In addition to 

supplying the TCA cycle with carbon skeletons that maintain intermediates for biosynthesis 

of amino acids, nucleic acids and fatty acids (a process known as anaplerosis), glutamine is 

the primary source of nitrogen used for amino acid and nucleic acid synthesis. These cells 

also upregulate a broad range of amino acid transporters and maintain tightly controlled 

redox balance, primarily through NADPH synthesis. Many cells within the tumour 

microenvironment (TME) express ectoenzymes, such as indoleamine 2,3-dioxygenase 

(IDO), arginase 1 (ARG1) and CD73, which deplete nutrients, as well as increase 

immunosuppressive metabolites, such as kynurenine and adenosine. Along with a deranged 

microvasculature, these metabolic adaptations can have profound effects on the metabolic 

make-up of the TME, leading to depletion of vital nutrients, hypoxia, acidosis and the 

generation of immune-toxic metabolites as shown. MDSC, myeloid-derived suppressor cell; 

R-2-HG, (R)-2-hydroxyglutarate; ROS, reactive oxygen species; Teff, effector T; Treg, 

regulatory T.
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Fig. 2 ∣. Metabolic derangements in the TME inhibit T cell function.
The metabolic milieu of the tumour microenvironment (TME) is a reflection of cancer 

metabolic programmes. Nutrient deprivation, hypoxia and toxic metabolites are conditions 

within the TME that confront and influence T cell metabolism and function. The 

consequences of TME conditions on immune cell responses can be predicted based on a 

growing literature of preclinical, translational and clinical studies. AMPK, AMP kinase; 

EZH2, enhancer of zeste homologue 2; Granz B, granzyme B; IFNγ, interferon-γ; MDSC, 

myeloid-derived suppressor cell; miRNA, microRNA; NFAT, nuclear factor of activated T 

cells; PKA, protein kinase A; R-2-HG, (R)-2-hydroxyglutarate; TCR, T cell receptor; Teff, 

effector T; TH1, T helper 1; Tmem, memory T;Treg, regulatory T;Tscm, stem cell memory T; 

TNF, tumour necrosis factor.
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Fig. 3 ∣. Potential metabolic targets for enhancing immune response in cancer.
Using small molecules, monoclonal antibodies and genetic editing, metabolic processes can 

be targeted to either disable cancer and suppressive immune cell metabolism or, conversely, 

engage and support effector cell metabolism. Metabolic processes in suppressive immune 

populations and cancer cells can be targeted to directly decrease viability, as well as to 

disable metabolic pathways that deplete nutrients (for example, arginase 1 (ARG1) and 

indoleamine 2,3-dioxygenase (IDO)), lead to toxic metabolites (for example, lactate and 

CD73) or induce metabolic control of effector cell populations (for example, mutant IDH1 

generation of the oncometabolite (R)-2-hydroxyglutarate (R-2-HG)). Metabolic 

interventions may also be able to induce beneficial changes in effector populations, such as 

increasing longevity and antigen-specific immunologic memory. A2AR, adenosine receptor 

subtype A2A; AOA, amino-oxyacetic acid; 2-DG, 2-deoxyglucose; DON, 6-diazo-5-oxo-l-

norleucine; ETC, electron transport chain; G6PD, glucose-6-phosphate dehydrogenase; 

MDSC, myeloid-derived suppressor cell; PGM3, phosphoglucomutase; TCA, tricarboxylic 

acid; Teff, effector T; Treg, regulatory T.

Leone and Powell Page 44

Nat Rev Cancer. Author manuscript; available in PMC 2021 April 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Leone and Powell Page 45

Table 1 ∣

Functional and metabolic phenotypes of immune cells within the TME

Cell type Function Metabolic phenotype

Immune activation or inflammatory

NK cell MHC-independent cytotoxicity:
Perforin, granzymes
FASL, TRAIL
IFNγ, TNF

Glycolysis and OXPHOS

Inflammatory TAM MHC-independent cytotoxicity:
TNF, IL-1β
Oxidative burst
Antigen presentation

Glycolysis and PPP

DC DAMP processing
Teff cell activation
Antigen presentation

Glycolysis

Teffcell Antigen-specific cytotoxicity:
Perforin, granzymes
FASL
IFNγ, TNF

Highly glycolytic and OXPHOS
Amino acid metabolism (arginine, tryptophan, serine, leucine, glutamine, 
cysteine)
PPP

Tmem Cell Maintain long-lived response OXPHOS

Immunosuppression

MDSC IL-10, TGFβ
Amino acid depletion
Polyamines, kynurenine

Glycolysis and OXPHOS

Immunosuppressive TAM IL-10
Amino acid depletion
Polyamines, kynurenine
VEGF

OXPHOS, HBP

Tregcell IL-2 sequestration:
Dampen APC co-stimulation
IL-10, TGFβ
Adenosine

OXPHOS

APC, antigen-presenting cell; DAMP, damage-associated molecular pattern; DC, dendritic cell; FASL, fas ligand; HBP, hexosamine biosynthesis 
pathway; IFNγ, interferon-γ; MDSC, myeloid-derived suppressor cell; MHC, major histocompatibility complex; NK, natural killer; OXPHOS, 
oxidative phosphorylation; PPP, pentose phosphate pathway; TAM, tumour-associated macrophage; TGFβ, transforming growth factor-β; Teff, 

effector T; TME, tumour microenvironment; Tmem, memory T; TNF, tumour necrosis factor; TRAIL, TNF-related apoptosis-inducing ligand; 

Treg, regulatory T; VEGF, vascular endothelial growth factor.
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