Skip to main content
. 2021 Mar 12;93(11):4850–4858. doi: 10.1021/acs.analchem.0c04555

Table 2. Characteristics of Classification Models and Correctly Predicted Crude Test Set Samplesa.

      OPLS-DA
RF
classification model attribution capacity class comp.a R2X (cum) R2Y (cum) Q2(cum) prediction OOB error (%) prediction
M1crude ethylene or TDG routes R(1–9) 1 + 2 + 0 0.72 0.99 0.95 9/9 2.3 9/9
R(10, 11) 2/2 2/2
M2crude chlorination methods R(1, 4, 7) 2 + 2 + 0 0.61 0.98 0.95 3/3   3/3
R(2, 5, 8) 3/3 0.0 3/3
R(3, 6, 9) 3/3   3/3
M3a crude TDG synthesis methods of R(1, 4, 7) samples R1 2 + 2 + 0 0.70 0.98 0.90 1/1   1/1
R4 0/1 33.3 1/1
R7 0/1   1/1
M3bcrude TDG synthesis methods of R(2, 5, 8) samples R2 2 + 1 + 0 0.63 0.98 0.88 1/1   1/1
R5 1/1 16.7 1/1
R8 0/1   1/1
M3ccrude TDG synthesis methods of R(3, 6, 9) samples R3 2 + 1 + 0 0.55 0.97 0.91 1/1   1/1
R6 0/1 8.3 0/1
R9 1/1   1/1
a

Comp. shows the number of components (x/y joint predictive variation + variation in x orthogonal to y + variation in y orthogonal to x) included in each model.