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ABSTRACT: Small Molecule Enhancement SpectroscopY (SMol-
ESY) was employed to develop a unique and fully automated
computational solution for the assignment and integration of 1H
nuclear magnetic resonance (NMR) signals from metabolites in
challenging matrices containing macromolecules (herein blood
products). Sensitive and reliable quantitation is provided by instant
signal deconvolution and straightforward integration bolstered by
spectral resolution enhancement and macromolecular signal suppression. The approach is highly efficient, requiring only standard
one-dimensional 1H NMR spectra and avoiding the need for sample preprocessing, complex deconvolution, and spectral baseline
fitting. The performance of the algorithm, developed using >4000 NMR serum and plasma spectra, was evaluated using an additional
>8800 spectra, yielding an assignment accuracy greater than 99.5% for all 22 metabolites targeted. Further validation of its
quantitation capabilities illustrated a reliable performance among challenging phenotypes. The simplicity and complete automation
of the approach support the application of NMR-based metabolite panel measurements in clinical and population screening
applications.

Metabolic profiling technologies are powerful in their
ability to represent the chemical complexity of human

biofluids and tissue extracts with both analytical specificity and
breadth.1 Proton nuclear magnetic resonance (1H NMR)
spectroscopy is one of the principal analytical tools used for
metabolic profiling of biofluids owing to its minimal require-
ment for sample preparation, ease of automation, accurate
quantitation, robustness, and reliability.2 Together, these
qualities make NMR ideal for both population screening and
translation into clinical environments for use in patient health
monitoring and diagnostics.3 However, the interpretation of
1H NMR profiles is often brokered by dedicated bioinformatic
data processing efforts required to reduce data complexity
(e.g., bucketing) as well as align, normalize, and assign
chemical identity to the signals (resonances) detected. These
steps often disconnect and distance powerful metabolic
measurement data from the clinicians, dietitians, biologists,
epidemiologists, etc. who could otherwise more directly
interact with the data to investigate their hypotheses.
Therefore, to propel the technique’s utility and application in
these research areas, automated solutions are needed to
reliably elucidate NMR profiling data in a readily interpretable
form as metabolite panel measurements.
To achieve this, the causes of variation in the underlying

NMR profile, which hinder automated metabolite quantitation,
must be considered. The sensitivity of NMR profiles to the
chemical composition of each sample potentially complicate
the prerequisite chemical annotation of resonances due to

chemical shift (δ) variations and resolution.4,5 Fortunately, the
homeostatic control of blood, in contrast to urine, ensures a
relatively stable chemical composition, and δ variation is
further controlled in blood product analysis by the addition of
a common buffer to the sample.6 However, the macro-
molecular content (e.g., lipids and proteins) of blood product
samples yields broad signals that overlap and hinder the facile
assignment of signals from small molecule (SM) species.7

Additionally, abundant macromolecules facilitate the exchange
between bound and free SMs, which broadens line widths
(Δv1/2) and degrades spectral resolution, further complicating
the automated assignment and integration of SM-derived 1H
NMR signals.8

Overcoming these obstacles has conventionally required
additional experiments beyond the standard 1D 1H NMR
including a spin−echo experiment (e.g., Carr−Purcell−
Meiboom−Gill, CPMG, pulse sequence9) for the attenuation
of macromolecular signals and a pseudo 2D (e.g., Jres). The
combination of these NMR experiments comprising the now-
standard metabolomics pipeline, when augmented by addi-
tional 2D validation experiments, has been sufficient to support
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the assignment of >36 metabolites in serum/plasma samples.10

More recently, strong magnetic field analysis was applied to
concentrated and pooled samples after physical removal of the
macromolecules, expanding the number of assigned metabo-
lites to 678 and pushing the boundaries of what is detectable by
NMR at the expense of routine applicability. Solutions for
more routine targeted assignment and quantitation of selected
SMs have emerged, including the commercial Bruker IVDr
algorithm7 which employs both 1D- and 2D-Jres spectra for
the automated assignment/quantification of up to 40 plasma/
serum metabolites. Other commercial or freely available
software require either extensive sample preprocessing11 (i.e.,
manual protein/lipids removal) or the construction of high-
quality reference spectra databases, which require manual
intervention for Δv1/2 or baseline fitting adjustments to ensure
applicability to real world samples.12,13

Recently, we introduced Small Molecule Enhancement
SpectroscopY (SMolESY),5 a highly validated computational
approach that exclusively utilizes the standard 1D 1H NMR
experiment to derive enhanced SM profiles from macro-
molecule-rich sample types such as serum and plasma.
SMolESY maintains both the qualitative and quantitative
features of the original experiment while suppressing the
macromolecular signal and increasing spectral resolution (see
more details in the Supporting Information). These enhance-
ments benefit the interpretation of the SM profile, demon-
strated here among amino acids and sugars with 1H NMR
signals otherwise invisible or barely visible in the CPMG
profile (Figure 1a−c).
Building on these observations, we report a novel,

automated, and reliable approach to metabolite panel
measurement in human plasma/serum using only the standard
1D 1H NMR experiment and SMolESY. The algorithm
(SMolESY-select) has been validated for the assignment and
integration of resonances from one or more 1H NMR spin
systems across 22 clinically important metabolites (Table S1)
in plasma/serum profiles. It accomplishes this without
requiring the construction and/or adaptation of databases,
additional NMR experiments, and any need for complex and
computationally expensive deconvolution algorithms. Con-
sequently, SMolESY-select delivers readily interpretable
relative serum/plasma metabolite quantification with signifi-
cantly reduced time and cost compared to alternative
approaches. The freely available algorithm is suitable for 1D
1H NMR data acquired using widely established NMR sample
preparation and spectra acquisition protocols/SOPs (see the
experimental details in the Supporting Information).

■ EXPERIMENTAL SECTION

Reagents for NMR sample preparation were purchased from
Sigma-Aldrich, and NMR samples were acquired using Bruker
IVDr 600 MHz spectrometers. Further details as well as
computational/functional features of SMolESY-select are
reported in the Supporting Information.

■ RESULTS AND DISCUSSION

Figure 2 summarizes the steps followed for metabolite
assignment. Initially, all spectra are automatically calibrated
to the 1H NMR signals of glucose, in particular, to the
anomeric proton of glucose (Figure 2a) resonating at 5.233
ppm as routinely done for the analysis of blood 1H NMR
profiles.14 Next, the algorithm searches the SMolESY data for

each spin system pattern within defined spectral windows
(bins). Bins were defined for each of the 24 1H NMR spin
systems using a cohort of 4023 unique plasma/serum samples
(3023 plasma and 1000 serum) and employing several
statistically-based tools (e.g., STOCSY, Figure S1), spiking
experiments, and additional multidimensional NMR experi-
ments (e.g., Jres) to validate each NMR signal assignment per
spectrum. In routine operation, the assignment process is
straightforward for multiplets (i.e., doublets, triplets, etc.)
(Figure 2a) owing to both applied J-coupling constraint and
SMolESY resolution enhancement. The automatic identifica-
tion of the 1H NMR singlets is more challenging, including
those belonging to particular chemical groups of glycine,
creatine/creatinine, choline, dimethyl-sulfone (DMSO2),
acetone, and acetic acid (Figure 2b). The width of the
selected bins encompassing the NMR signals of these spin
systems consisted of at least 10 SMolESY Δv1/2 (>0.01 ppm,
where 0.0009 < SMolESY Δv1/2 < 0.0011 ppm for the 600
MHz NMR instrument), resulting in a high risk of misassign-
ment. To mitigate this, a strategy similar to that published
previously for the δ prediction of urine metabolites4 was
pursued whereby the δ values of singlets were correlated with
those from the most abundant and frequently occurrent
serum/plasma metabolites.10 Specifically, singlets from glycine,

Figure 1. Pearson linear correlation between 2026 plasma CPMG and
SMolESY 1H NMR spectra. Correlation between each SMolESY
feature versus its corresponding one in the CPMG shows the
enhanced SM signals, highlighting the detection ability of SMolESY
with respect to the spin−echo experiment (e.g., CPMG). Low
correlated features correspond to being barely visible/highly over-
lapped by other signals/baseline in the CPMG, whereas in SMolESY,
they are partially or totally deconvolved. By employing 2D 1H NMR
correlation spectroscopy (COSY) and statistical correlation spectros-
copy, (STOCSY;15 Figure S1), we were able to assign several of these
features, which were subsequently confirmed by spiking experiments
(left-hand panels). Examples of resonances now visible in the
SMolESY spectrum are shown in the right-hand panels: (a)
methionine, (b) fructose, and (c) alanine.
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creatinine, choline, and DMSO2 were correlated among the
4023 serum/plasma spectra with signals from lactic acid and
alanine (Figure 2b). The approach yields significantly smaller
spectral bins for the above-mentioned metabolites with a
maximum width of 3−5 SMolESY Δv1/2 (Figure 2c,d),
facilitating the assignment of metabolite signals including
those from creatine and ethanol (Figure 2b,e). The spectral
window ranges for acetone/acetate and formic acid NMR
signals (Figure 2f) were already narrow enough (i.e., <5 and <7
SMolESY Δv1/2, respectively), which combined with the
homeostatic nature of blood products, minimize the risk of
misassignment for the corresponding metabolite signals.
Further details of various NMR signal automated assignment
are described in Table S2 and Figure S2.
A smoothing filter is then applied within selected NMR

spectral windows to help with the recovery of signals belonging
to frequently low abundance metabolites, which appear in
noisy spectral regions (i.e., aromatic region, around the

suppressed H2O signal, etc.) (Figure S3a).5 Specifically,
SMolESY-select utilizes a moving average filter spanning 11-
points (see the Supporting Information) across the high
resolution data of the selected windows, which increases the s/
n of signals belonging to tyrosine, phenylalanine, histidine,
creatinine, and choline (Figure S3b),16 while maintaining the
attenuation of macromolecular signals/baseline background at
the slight expense of resolution enhancement. The denoised
SMolESY signals still maintain a slightly narrower Δv1/2
compared to the standard 1D 1H NMR experiment, and
their s/n is a maximum of ∼10% less than that of the CPMG
spectra (Figure S3b,c). The metabolite assignment capability
of the SMolESY-select algorithm was extensively validated
using an independent cohort of 8834 blood product samples
consisting of 5338 plasma and 3496 serum spectra from our
internal databases (see the experimental details in the
Supporting Information) as well as one serum cohort from
the Metabolights repository (https://www.ebi.ac.uk/

Figure 2. Employed strategy for the automated assignment of 22 serum/plasma metabolites. (a) 1H NMR/SMolESY spectra are calibrated to the
glucose anomeric proton doublet. Signals corresponding to the 1H highlighted in red font are used for assignment/quantitation of all metabolites.
The glucose doublet and metabolites in the green boxes are assigned by pattern recognition (e.g., by imposing J-coupling constraints) in previously
defined spectral windows with a width ≥0.01 ppm at 600 MHz. (b) Simple correlations, based upon 4023 plasma/serum unique spectra, with
alanine and lactic acid methyl group signals are used as assignment constraints for metabolites in gray squares, which cannot otherwise be assigned
using J-coupling constraints because they present either singlets or multiplets whose SMolESY components have a high risk of overlap (Table S2
and Figure S2). (c) Glycine singlet assignment is further supported by the minimization of the predefined spectral window owing to the decrease in
line broadening achieved via SMolESY (≤0.004 ppm at 600 MHz). (d) Assignment of creatinine requires all previous constraints plus (e) extra
correlations between intra molecular 1H NMR spin systems (e.g., between the −CH3 and −CH2 groups of creatinine). (f) The singlets from acetic
acid, acetone, and formic acid were not found to significantly correlate with any other abundant metabolite; however, the predefined windows for
these metabolites’ signals were sufficiently narrow (≤0.006 ppm for acetone/acetate and ≤0.008 ppm for formic acid) following spectral calibration
to glucose which, combined with SMolESY and the general homeostatic nature of blood matrices, allows for their reliable identification.

Analytical Chemistry pubs.acs.org/ac Letter

https://doi.org/10.1021/acs.analchem.1c00113
Anal. Chem. 2021, 93, 4995−5000

4997

http://pubs.acs.org/doi/suppl/10.1021/acs.analchem.1c00113/suppl_file/ac1c00113_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.analchem.1c00113/suppl_file/ac1c00113_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.analchem.1c00113/suppl_file/ac1c00113_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.analchem.1c00113/suppl_file/ac1c00113_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.analchem.1c00113/suppl_file/ac1c00113_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.analchem.1c00113/suppl_file/ac1c00113_si_001.pdf
https://www.ebi.ac.uk/metabolights
https://pubs.acs.org/doi/10.1021/acs.analchem.1c00113?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.analchem.1c00113?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.analchem.1c00113?fig=fig2&ref=pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.analchem.1c00113/suppl_file/ac1c00113_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.analchem.1c00113/suppl_file/ac1c00113_si_001.pdf
https://pubs.acs.org/doi/10.1021/acs.analchem.1c00113?fig=fig2&ref=pdf
pubs.acs.org/ac?ref=pdf
https://doi.org/10.1021/acs.analchem.1c00113?rel=cite-as&ref=PDF&jav=VoR


metabolights) (MTBLS395). Several examples of the assigned
24 1H NMR spin systems’ signals from 22 metabolites are
reported in Figure S4a−j. Note that SMolESY-select aligns
only each assigned spin system to a random ppm value within
their corresponding predefined spectral window, easing the
visual detection of any misassignment. For the 22 metabolites
in the unique 8834 blood serum/plasma spectra, false positive
or nonassigned NMR signals ranged from zero to a maximum
of 40 (i.e., 0−0.45% failure) (Figure 3), highlighting the

accuracy and robustness of the method. It is noteworthy that
SMolESY succeeded in recovering barely visible signals of
metabolites in the standard 1D 1H NMR experiment (Figure
S4h), increasing indirectly the limit of detection for specific 1H
NMR spin systems’ signals.
The use of SMolESY, with its baseline suppression and

resolution enhancement features, enables the direct integration
of the assigned spectral components, precluding the need for
complex signal deconvolution or baseline fitting, substantially
improving the efficiency of computation. To achieve this, a
thorough examination of the 4023 plasma/serum 1D spectra
was conducted to evaluate the overlap of each spin system’s
SMolESY pattern with other SM signals using STOCSY and
2D-Jres analyses for the 22 metabolites (Figure S1b,c) when
needed. Only the most reliable components of the SMolESY
features from each metabolite were selected, defining the final
set used by the algorithm for automated integration (Figure
S5).
The initial validation of the method’s performance was

performed by standard addition of the 22 metabolites to a
single representative plasma sample, yielding exceptional
correlation (R2 > 0.98) with automatically calculated integrals
(Table S3, Figure S6). To further validate integration
performance in the context of real-world application,
SMolESY-select was applied to a selected subset (see the
experimental details in the Supporting Information) of ∼380
plasma/serum spectra from a diabetic cohort, specifically
challenging the spectral deconvolution due to abundant
glucose and low abundance of selected metabolites.17 Results

were compared with those obtained from absolute concen-
tration values provided by successful and manually validated
application of the established commercial standard approach,
Bruker IVDr (Figures 4 and S7),7 which requires all three

routine experiments (1D 1H NMR, CPMG, and Jres) and
polynomial fitting for baseline removal. Linear regression
revealed a good correlation for several tested metabolite
integrals (0.89 < R2 < 0.99) (Figures 4 and S7a−k).
Additionally, SMolESY-select integrals were compared with
independent, biochemically measured concentrations using
routine clinical methods yielding a linear correlation (Figure
S7l,m). When compared with a biomarker discovery approach
utilizing the whole 1H NMR profile, principal component
analysis (PCA) of the 22 plasma metabolites’ relative
concentration values from SMolESY-select in a cohort of 361
plasma samples consisting of two independent NMR data sets
efficiently reveals the same biomarkers (Figure S8). Together,
these analyses demonstrate the direct applicability and
reliability of the algorithm present for the 22 metabolites’
panel measurements in the serum/plasma matrices.

■ CONCLUSIONS
In summary, we introduced a unique algorithm, SMolESY-
select, which demonstrates exclusive advantages and signifi-
cantly contributes to the NMR-based metabolomics pipeline
by the sizable decrease of both experimental and computa-
tional time required to generate reliable metabolite panel

Figure 3. Performance of the automated assignment applied to 8834
serum/plasma samples, illustrated as a percentage of failures (i.e.,
wrong and/or missed assignments of SMolESY features) for each
metabolite. Figure 4. Linear regression analyses of SMolESY integrals

(normalized to one proton) versus absolute concentrations produced
by commercial software for (a−f) six metabolites in 380 plasma
samples from a diabetic cohort. The calculated R2 values indicate a
good correlation between SMolESY feature integrals (independently
of smoothing, e.g., panel (b)) and the concentration values from
“expensive” fitting/deconvolution processes. Additional comparisons
are presented in Figure S7.
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measurements. Here, the relative concentrations of 22 serum/
plasma metabolites are efficiently produced from human
serum/plasma samples without computationally expensive
algorithms, database construction, laborious sample prepro-
cessing (i.e., protein removal), or manual intervention. The
analysis is fully automated and requires, on average, less than
15 s per spectrum on a conventional laptop, dramatically
outperforming fitting and deconvolution approaches that
require several minutes of computation per spectral set. It
leverages the performance characteristics of the SMolESY
application to standard 1D 1H NMR spectra without further
dependency on additional NMR data types. This in turn
increases the potential throughput of NMR metabolite panel
measurement and maximizes the utility of existing 1D 1H
NMR data sets without preventing the traditional discovery
analysis approach2 of either the regularly processed or
SMolESY enhanced profiles.5 These advantages are particularly
important in epidemiology, biobanking research applications
that require the sequential automated analysis of thousands of
human samples and the translation of NMR into clinical
practice. The performance of SMolESY-select has been
extensively validated across >8800 serum/plasma samples of
varying phenotypes. Its use is supported by a graphical user
interface (GUI) (Figure S9, Video S1) requiring minimal
prerequisite knowledge to operate, and it is freely available to
download at https://github.com/pantakis/SMolESY-select.

■ ASSOCIATED CONTENT
*sı Supporting Information
The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/acs.analchem.1c00113.

SMolESY details; NMR experiments/apparatus; re-
agents; NMR sample preparation SOPs; computational
details software; ethics declarations for the serum/
plasma cohort studies; selected metabolites (Table S1);
STOCSY examples (Figure S1); autoassignment details
(Figure S2, Table S2); smoothing filter details (Figure
S3); examples of several assigned 1H NMR spin systems
(Figure S4); SMolESY patterns and components for
integration (Figure S5); validation of SMolESY-select
quantitative ability: against experimental data (Figure
S6, Table S3); validation of SMolESY-select quantitative
ability: against quantitation results by commercial
software and clinical methods (Figure S7); combination
of targeted/untargeted multivariate analysis on NMR
data sets (Figure S8); overview of the SMolESY-select
graphical user interface (GUI) (Figure S9) (PDF)
Video S1: SMolESY-select demonstration/functional-
ities (MP4)
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