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BACKGROUND: Humans and environmental organisms are constantly exposed to complex mixtures of chemicals. Extending our knowledge about the
combined effects of chemicals is thus essential for assessing the potential consequences of these exposures. In this context, comprehensive molecular
readouts as retrieved by omics techniques are advancing our understanding of the diversity of effects upon chemical exposure. This is especially true
for effects induced by chemical concentrations that do not instantaneously lead to mortality, as is commonly the case for environmental exposures.
However, omics profiles induced by chemical exposures have rarely been systematically considered in mixture contexts.

OBJECTIVES: In this study, we aimed to investigate the predictability of chemical mixture effects on the whole-transcriptome scale.
METHODS:We predicted and measured the toxicogenomic effects of a synthetic mixture on zebrafish embryos. The mixture contained the compounds
diuron, diclofenac, and naproxen. To predict concentration- and time-resolved whole-transcriptome responses to the mixture exposure, we adopted
the mixture concept of concentration addition. Predictions were based on the transcriptome profiles obtained for the individual mixture components in
a previous study. Finally, concentration- and time-resolved mixture exposures and subsequent toxicogenomic measurements were performed and the
results were compared with the predictions.

RESULTS: This comparison of the predictions with the observations showed that the concept of concentration addition provided reasonable estimates
for the effects induced by the mixture exposure on the whole transcriptome. Although nonadditive effects were observed only occasionally, combined,
that is, multicomponent-driven, effects were found for mixture components with anticipated similar, as well as dissimilar, modes of action.

DISCUSSION: Overall, this study demonstrates that using a concentration- and time-resolved approach, the occurrence and size of combined effects of
chemicals may be predicted at the whole-transcriptome scale. This allows improving effect assessment of mixture exposures on the molecular scale
that might not only be of relevance in terms of risk assessment but also for pharmacological applications. https://doi.org/10.1289/EHP7773

Introduction
Understanding the combined effects of substances that occur due
to mixture exposures is of long-standing interest in the bioscien-
ces. While physiologists and pharmacologists search to optimize
intended drug activity by combination therapy (Kuhn-Nentwig
et al. 2019; Zimmer et al. 2016), toxicologists seek to safeguard
against the unintended combined effects concerning adverse out-
comes in humans (Goodson et al. 2015; Jiang et al. 2018) and
environmental organisms (Cedergreen 2014) resulting from mix-
ture exposure. Society demands the inclusion of mixtures in
chemical hazard and risk assessment (EC 2019). The European
Commission in its European Green Deal, for example, calls for a
regulatory framework that can reflect risks posed by the com-
bined effects of multiple chemicals (EC 2019). The consideration
of combined effects can also be found on the agenda of interna-
tional policy advisory (Meek et al. 2011) and regulatory institu-
tions (Rotter et al. 2018; Wegner et al. 2016).

Environmental chemists have argued that multiple substances
can occur in large varieties (Escher et al. 2020) and that resulting

environmental exposures may be complex in composition and
dynamic over time for individuals (Jiang et al. 2018). Thus, the
exposure of humans and environmental organisms to mixtures of
chemicals instead of to single compounds solely is rather the rule
than the exception. Universal experimental evaluation of the
effects resulting from each potentially occurring mixture expo-
sure is not feasible. Thus, reasonable predictions of the effects of
mixtures should be based on models that can use knowledge of
the bioactivity of the compounds to estimate their combined
effects in a mixture (Altenburger et al. 2013).

Most existing models for combined effects are based on sim-
plistic toxicodynamic assumptions of either simple similar or in-
dependent action (Altenburger et al. 2013). Among those, the
concept of concentration addition (CA) has been shown to be
rather useful to quantitatively predict the combined effects in
short-term in vivo studies and the observations of gross changes,
that is, apical effects such as death, growth impairment, or devel-
opmental dysfunction (reviewed by Kortenkamp et al. 2009). The
situation is less clear, however, for sublethal, long-term effects
and low-dose exposures. Here, the evidence is limited regarding
the predictivity for outcomes. Moreover, qualitative interaction,
that is, the emergence of novel outcomes not seen for the individ-
ual compounds is suggested to occur for mixture exposures in
some studies (Rodea-Palomares et al. 2016; Zimmer et al. 2016).

The standard in long-term toxicity assessment, for example,
for prospective risk assessment, is based on in vivo assays under
chronic chemical exposure. Such assays are, however, highly
time and cost demanding and are, therefore, limited in through-
put. As an alternative to in vivo testing, high-content in vitro
assays are being conducted, and researchers have found that mo-
lecular outcomes, such as those identified using toxicogenomic
measurements, may be indicative of long-term effects, for exam-
ple, carcinogenicity (Li et al. 2019). Thus, it has been anticipated
that toxicogenomic methods may also help in advancing insight
into questions of mixture toxicology for long-term and multivari-
ate effect detection (Altenburger et al. 2012). Evaluating mixture
effects using toxicogenomics would support the establishment of
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this method to obtain comprehensive information for chemical
hazard assessment (EFSA et al. 2018) and environmental moni-
toring (Bahamonde et al. 2016) in an untargeted manner.

Despite these ambitious expectations, mixture effects are still
perceived as the elephant in the room in the field of toxicogenomics
(Schroeder et al. 2016) and there is no consensus on terminology,
approaches, and assessment. A major obstacle in present toxicoge-
nomic mixture studies results from the use of experimental designs
whereby the doses used to study the compounds individually are
simply put together in a mixture (Altenburger et al. 2012). The
observed effect of the mixture is then compared against the effects
of the single compounds. Acknowledging that toxicogenomic
responses are known to be concentration dependent (Kopec et al.
2010; Smetanová et al. 2015), this assessment strategy is of limited
value because any changes in the mixture response have to be
judged as interactive given that reasonable expectations for the
combined effect cannot be obtained (Altenburger et al. 2012;
Berenbaum 1981). The challenge for mixture studies using toxico-
genomic methods, therefore, is to show the validity, limits, and
usefulness of established mixture methodology (Altenburger et al.
2012), whichwe tackle in this study.

The basis for mixture prediction, when applying a concept such
as CA, therefore, requires the explicit description of single-
substance effects resolved at least for concentration. Regression
models for concentration-dependent toxicogenomic responses
have been described before (Smetanová et al. 2015; Thomas et al.
2007) and have recently been extended for the time domain in a
concentration- and time-dependent response model (CTR-model)
(Schüttler et al. 2019). The CTR-model describes the logarithmic
fold-change (log2FC) during chemical exposure. It follows a sig-
moidal shape for the concentration dependence and a biphasic
shape for the time dependence of the response. Among the model
parameters, Smax represents the maximum sensitivity, S. The sensi-
tivity is defined as the reciprocal of the minimum of EC50 over
time, that is, the minimum concentration over time leading to a
half-maximum effect. Thus, Smax indicates the concentration de-
pendence of the response. The parameter tmax stands for the point
in time when Smax is reached, thus indicating the time dependence
of response. The CTR-model has been applied to describe the toxi-
cogenomic responses of single substances (Schüttler et al. 2019).
In the present study, it provides the basis for calculating mixture
expectations and for describing the observedmixture responses.

To reduce the dimensionality of toxicogenomic responses,
reduce noise, and improve the robustness of the CTR-model fits,
the analyses were not performed on individual genes but, rather, on
groups of coexpressed genes. Based on a compiled data set of
many toxicogenomic zebrafish studies, similar responding genes
had been clustered in 3,600 nodes on a two-dimensional 60× 60
grid (a toxicogenomic universe) in a previous study (Schüttler et al.
2019). This was achieved with the help of the self-organizing map
(SOM) algorithm (Kohonen 1982). The approach is based on the
assumption that genes, which are functionally related or affected
by the same regulators, are coexpressed (Nikkilä et al. 2002). Thus,
different areas of the toxicogenomic universe can be assigned to
specific functions or anatomical regions (Schüttler et al. 2019).
The mapping of toxicogenomic measurements on this toxicoge-
nomic universe results in toxicogenomic fingerprints that depict
the effects of an investigated compound on the whole transcrip-
tome for each concentration and time point (Schüttler et al. 2019).
A subsequent CTR-model fit for each of the 3,600 nodes results in
model parameter values that can as well be mapped on the toxico-
genomic universe. These dynamic toxicogenomic fingerprints
allow direct comparisons between different compounds and sim-
plify the formulation of hypotheses regarding the affected physio-
logical or molecular functions.

In the present study, we performed a case study and evaluated
the effects of a three-component synthetic mixture on the tran-
scriptome of the zebrafish embryo (ZFE). We calculated explicit
time-resolved expectations for the toxicogenomic effects of the
mixture applying the concept of CA. Subsequently, we compared
these predictions with experimental observations using a fixed
mixture ratio (Altenburger et al. 2012), or so-called diagonal
design (Berenbaum 1981), that also allows comparisons with al-
ternative mixture concepts.

In this study, we investigated the mixture of the three com-
pounds—diuron, diclofenac, and naproxen—for which we had
earlier obtained toxicogenomic fingerprints (Schüttler et al.
2019). The compounds are known to co-occur as freshwater con-
taminants (Bradley et al. 2017; Busch et al. 2016). Moreover,
because they have been developed for specific pharmacological
or toxicological applications, their molecular targets and intended
action in organisms are well characterized (as summarized by
Schüttler et al. 2019). We intentionally mixed two compounds
with the same known molecular target and pharmacological
mode of action [cyclooxygenase (COX) inhibition: diclofenac
and naproxen] and one compound with a target and mode of
action assumed to be dissimilar to the above (the herbicide
diuron, which has no specific mode of action in fish). In our pre-
vious investigation of the components, we indeed found similar
toxicogenomic responses for the two COX inhibitors, such as an
alteration of transcripts related to the arachidonic acid metabo-
lism and the activation of cyp2k18 (Schüttler et al. 2019).
However, distinct differences between the effects of the two
COX inhibitors and commonalities to the third compound diuron
also became apparent. For example, we found genes related to
pancreas development that were affected by naproxen and diuron
but not by diclofenac (Schüttler et al. 2019). The same was found
for the induction of cyp1a genes. We also showed that the curves
for the uptake of the individual compounds into ZFE over time
are very different for the three compounds (Schüttler et al. 2019).
The observed induction of genes coding for respective metaboliz-
ing enzymes, such as Cyp2k18 (a zebrafish orthologue of
CYP2C9) due to diclofenac and naproxen exposure, as well as
the induction of Cyp1a caused with diuron and naproxen but not
with diclofenac, indicates differences between the compounds
and underlines the metabolic activity of ZFE, which seems to be
qualitatively similar to that of mammals.

In the present study, we predicted and investigated how these
observations on gene expression, made under single-substance
exposure, translate to effects under mixture exposure. Our objec-
tives were to evaluate whether we can quantitatively and qualita-
tively predict the effects of a mixture from the effects of its
components on the whole-transcriptome scale. Moreover, we
tackled the question of whether we can trace the toxicogenomic
effects of the components under a mixture exposure.

Materials and Methods
In this study, we used the previously published time-resolved tox-
icogenomic fingerprints obtained with the ZFE after exposure to
diuron [Chemical Abstracts Service Registry Number (CAS RN):
330-54-1], diclofenac sodium salt (CAS RN: 15307-79-6), and
naproxen sodium salt (CAS RN: 26159-34-2) (Schüttler et al.
2019) to predict the effects and component contributions in qual-
ity and quantity for a mixture of these compounds. The CTR-
model parameters for all nodes of the previously published toxi-
cogenomic fingerprints can be found in Excel Table S1.

Furthermore, we experimentally retrieved a concentration- and
time-resolved toxicogenomic fingerprint of the mixture of these
three compounds. All data analyses were performed in R (version
3.4.3; R Core Development Team). Functions used for analysis
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were compiled in the custom-built R package omixR (Schüttler
2020). All scripts and code used for the data analysis can be found
in the SupplementalMaterial, “SupplementaryInformation.html.”

Zebrafish Husbandry
Wild-type adult zebrafish, originally received from OBI pet shop
(Leipzig, Germany) were kept in 40-L fish tanks containing
carbon-filtered tap water at 26°C under a 10 h:14 h dark:light
cycle (30 fish per tank, male:female ratio= 2:1). Eggs were col-
lected approximately 1 h after light onset and inspected using a
light microscope (Olympus SZx7-ILLT). Fertilized eggs were
incubated at 26°C, whereas unfertilized eggs were discarded.

Mixture Preparation
The mixture contained three substances: diuron (CAS RN: 330-
54-1; purity: 99.6%; batch: #SZBB265XV; Fluka), diclofenac so-
dium salt (CAS RN: 15307-79-6; purity: not available; batch:
#BCBP9916V; Sigma), and naproxen sodium salt (CAS RN:
26159-34-2; purity: 98-102%; batch: #MKBV4690V; Sigma).
The ratios of the three substances in the mixture were diuron
11%, diclofenac 2.6%, and naproxen 86.4% (the process of mix-
ture design is described in more detail below in section “Mixture
Design”). One day before the experiment, diclofenac and nap-
roxen stock solutions were prepared in oxygenated ISO water
(ISO 7346-3: 79:99mM calcium chloride dihydrate, 20:00mM
magnesium sulfate heptahydrate, 30:83mM sodium bicarbonate,
3:09mM potassium chloride; pH 7.4, oxygenized) and methanol
[CAS RN: 67-56-1; purity: high-performance liquid chromatog-
raphy (LC) grade, J.T. Baker] and was applied as the solubilizing
agent for the diuron stock solution preparation. On the day of ex-
posure, mixture exposure solutions were prepared by diluting the
respective stock solutions of mixture constituents to the desired
concentration. Therefore, a specific amount of concentrated
single-substance stock solution (Excel Table S2) was transferred
into a 1-L volumetric flask. Subsequently, a specific amount of
methanol was added to guarantee an equal fraction of solvent
(0.1%) throughout all exposure solutions and, finally, the flask
was filled with oxygenated ISO water up to its benchmark.
Mixture exposure solutions were stirred, pH and oxygen content
checked, and stored at room temperature until usage. pH (meas-
ured with pH-Meter 765 Calimatic; Knick) was adjusted to pH
7:1 ± 0:1 and remained at or above pH 6 throughout the test.
Oxygen saturation (measured with Oxi 340 with probe CellOx
325; WTW) was maintained at a level between 80% (beginning
of the test) and 60% (end of the test).

Diuron, naproxen, and diclofenac were quantified in the expo-
sure media by LC coupled to high-resolution mass spectrometry
(LC-HRMS) using an LTQOrbitrap XL instrument (Thermo) with
positive-mode electrospray ionization (ESI). The separation was
carried out using a ThermoUltimate 3000 LC system consisting of
degasser, ternary pump, autosampler, and column oven.We used a
reversed-phase gradient separation with water (Eluent A) and
methanol (Eluent B), both containing 0.1% formic acid on
a Kinetex C18 column (50× 3:0 mm, 2:6 lm particle size;
Phenomenex) at a flow rate of 300 lL=min. The gradient started at
20% of Eluent B, was held for 0.5 min, then increased to 100% of
Eluent B in 5.5 min, and subsequently held at 100% Eluent B for 8
min before reequilibration to the initial conditions. The injection
volume was 15 lL and the column ovenwas kept at 40°C. The ESI
voltage was set to 3:1 kV, the heater temperature to 250°C, the
sheath gas flow rate to 20 a.u., and the auxiliary gas flow rate to
5 a.u. The LTQ Orbitrap was operated in full-scan mode (m/z 80–
600) at a nominal resolving power of 30,000 (referenced to m/z
400). Calibration standards were prepared matrix-matched in ISO

water (calibration range 1–1,000 ng=mL) and the samples were
diluted in ISO water to match this range. Quantification was done
against the internal standards isoproturon-d6 (for diuron; obtained
from CDN Isotopes) and diclofenac-d4 (for diclofenac and nap-
roxen; obtained from CDN Isotopes) using the QuanBrowser of
theXcalibur software (Thermo). The internal standardswere added
as a mixture in methanol:water 50:50 to the samples to obtain a
final concentration of 100 ng=mL.

Exposure of Zebrafish Embryos
Our earlier findings (Schüttler et al. 2019) revealed that
compound-specific, mode-of-action–related effects occur together
with unspecific, development-related effects. Both depend on the
embryonic stage because molecular targets or respective cell types
need to be present to be affected. Particularly, in a developing sys-
tem, such as the ZFE, toxicity is dependent not only on exposure
duration but also on the exposure start point, age, and developmen-
tal stage of the embryo [addressed in more detail by Jakobs et al.
(2020)]. Therefore, we started exposures of ZFEs to the above-
described mixture solution on purpose at 24 h postfertilization
(hpf) to avoid many unspecific effects that can be expected when
disturbing the first hours of development (Kimmel et al. 1995). The
test used in our experiments can be considered to be a ZFE toxicity
test because the zebrafish larvae we used were never older than 96
hpf. This test is considered to be a nonanimal test alternative to the
adult acute fish toxicity test (Scholz et al. 2008) and the fish early
life stage test (Scholz et al. 2018).

Determination of Lethality
Exposure concentrations for the transcriptome analyses were anch-
ored to lethal effects obtained after 72 h postexposure (hpe). To
determine lethal effects, six technical replicates were used for con-
trols and three for mixture treatments. Each replicate contained
three embryos that were exposed to 6 mL of control or diluted mix-
ture exposure solution, respectively, and incubated for the desired
exposure time in 7:5-mL gas chromatography (GC) vials (VWR
International), closed with an aluminum lid and an aluminum-
coated septum (Supelco Analytical). Effects were observed with a
light microscope (Olympus SZx7-ILLT). Three independent
experiments were performed with a broad range of dilutions to get
complete dose–response curveswith 0–100% lethality.

Lethal effects were modeled similar to those proposed by
Scholze et al. (2001) with two different regression models (logit
and weibull; Excel Table S3) using a maximum-likelihood
approach [R package bbme (Bolker and R Development Core
Team 2017)]. The best-fitting model was selected based on the
Akaike information criterion (AIC). From these curves, the LC25
and LC05 were determined, and a dilution factor was calculated
to determine the five concentrations applied for the microarray
analysis according to Equations 1 and 2. More details on this can
be found in the paper by Schüttler et al. (2019).

Dilution factor dfð Þ=
ffiffiffiffiffiffiffiffiffiffiffi
LC25

LC0:5

6

r
; ð1Þ

Exposure concentrations=
LC25

df x
; x=0,1,2,4,6: ð2Þ

Transcriptome Experiment
For the transcriptome experiment, 20 embryos per replicate were
transferred to two 20-mL GC vials at 24 hpf. A volume of 18 mL
of exposure medium was added to each vial, and the vials were
sealed and incubated in a shaking climate chamber (climate
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chamber: Vötsch 1514, Vötsch Industrietechnik GmbH (Balingen-
Frommern); Edmund Bühler SM-30, setting: 26°C, 75 rpm,
12 h:12 h light:dark) until sampling. For our experiment, we chose a
dense sampling design probing increasing concentrations and con-
secutive sampling times. Such a design allows decreasing the number
of replicates (Sefer et al. 2016). Embryos were exposed to a range of
five different concentrations of the mixture (C1= 43:1 lmol=L,
C2= 61:06 lmol=L, C3=86:49 lmol=L, C4= 102:93 lmol=L,
and C5=122:52 lmol=L), and RNA was extracted at 3, 6, 12, 24,
48, and 72 hpe.

RNA Extraction and Microarray Analysis
Two vials of ZFE (20 ZFE in total) were harvested per replicate.
We took two replicates for treatments and three for controls at each
observation time point. ZFE were transferred into Eppendorf tubes
and stored at −80�C after the addition of Trizol and homogeniza-
tion using a T10 basic Ultra-Turrax (IKA, Werke GmbH & Co.)
for 20 s at maximum speed. RNA isolation was performed using a
pipetting robot (Microlab Star, Hamilton Life Science Robotics)
following the manual provided for Total RNA Extraction Kit
MagMAX 96 for microarrays and conducted in a 96-well plate.
The quality of isolated RNA was assessed using a Bioanalyzer
(Agilent 2100 Technologies) and the Agilent RNA 6000 Nano Kit.
RNA samples were used for further processing if RIN values
derived from ribosomal RNA absorption adopted values >7 and
calculated concentrations exceeded 25 ng=lL. We selected two
replicates for all controls, and for the highest exposure concentra-
tion (C5=122:52 lmol=L) at all time points, as well as for the lon-
gest exposure duration (72 h) and all concentrations, respectively.
For all other time points and concentrations, the microarray was
measured for one replicate. All RNA samples were diluted to a
concentration level of 25 ng=lL (10 lL in total) by the addition of
RNAse free water. 2:3 lL (57 ng RNA) were used as the starting
amount of RNA for the spikemix preparation.

Transcript abundance was measured with microarray analysis
using Oaklabs ArrayXS Zebrafish microarray slides (XS-200,104,
Oaklabs; National Center for Biotechnology Information Gene
Expression Omnibus platform accession: GPL19785). Microarray
experiments were performed using the Agilent Low Input Quick
Amp WT Labeling Kit according to the Agilent One-Color
Microarray-Based Exon Analysis Protocol (version 2.0; August
2015). This protocol included the introduction of spike-in RNA,
RNA transcription, and amplification into complementary DNA
(cDNA), and cDNA transcription and amplification into cRNA
with simultaneous incorporation of Cy3 (fluorescently labeled cyt-
idine nucleotide). The cRNA was fragmented and hybridized to
Oaklabs ArrayXS Zebrafish microarray slides using the Agilent
hybridization kit and protocol as well as Agilent hybridization
oven and chambers. Subsequently, microarray slides were washed
and scannedwith the Agilent High-ResolutionMicroarray Scanner
according to the Agilent protocol. Intensity values were extracted
from captured images using Agilent Feature Extraction software
(version 11.5.1.1).

Dynamic Toxicogenomic Fingerprints of the Components
and the Mixture
Dynamic toxicogenomic fingerprints from the compounds diuron,
diclofenac, and naproxen were taken from Schüttler et al. (2019)
(Excel Table S1). Measured transcriptome data from the mixture
exposure experiment were mapped on the toxicogenomic uni-
verse. This included quality control, normalization using the
cyclic loess method (Bolstad et al. 2003), log2-transformation,
and normalization of expression level against the control of the
respective time point controls. Finally, all transcripts were

clustered into 3,600 nodes of a previously trained SOM. Details
of this process are described by Schüttler et al. (2019). Next, the
CTR-model was fitted to the obtained responses under mixture
exposure to retrieve model parameter values and a dynamic toxi-
cogenomic fingerprint of the mixture as follows:

log2FCðcÞ ¼ log2FCmax

1þ e−slope× ðlogðcÞ− logðEC50ÞÞ ,

Sensitivity ¼ SðtÞ ¼ 1
EC50ðtÞ Smax × e

−0:5×
logðtÞ− logðtmaxÞ

Sdur

� �2

,

log2FCðc,tÞ

¼ log2FCmax

1þ exp −slope× logðcÞ− log
1

Smax × exp −0:5×
logðtÞ− logðtmaxÞ

Sdur

� �2
 ! !0

BB@
1
CCA

0
BB@

1
CCA

0
BB@

1
CCA

2
664

3
775

þ 2, 2 ∼ Nð0,r2Þ, ð3Þ
where log2FCmax corresponds to the maximum fold-change of
the respective node across all conditions, Smax is the maximum
sensitivity (1=EC50) of the node, tmax is the point in time with
maximum sensitivity, and Sdur represents a measure of the dura-
tion of the sensitivity interval. For parameter estimation, the R
implementation of the algorithm shuffled complex evolution
(described by Duan et al. 1993) in the R package hydromad
(Andrews et al. 2011) was applied. Further details regarding pa-
rameter estimation can be found in the paper by Schüttler et al.
(2019). To check for the quality of model fits the AIC-weights
were calculated in comparison with a null-model and a spline
(see also the “Results” section and Figure S9).

Determination of Significantly Affected Nodes
Significantly affected nodes were determined by comparing the
95% confidence interval (CI) for the regression model fits with
the 2.5% and 97.5% quantiles of control measurements. Nodes
showing a sum of differences between these confidence bands
above or below zero were identified as significantly affected
(Schüttler et al. 2019).

Mixture Effect Prediction—Concentration Addition
Mixture effects were predicted for each node in the toxicoge-
nomic universe applying the mixture concept of CA. The maxi-
mum log2FCs per node obtained in the experiments with the
individual chemicals (Excel Table S1) were summed to deter-
mine the expected direction of regulation under mixture exposure
for each node. A positive sum was taken as an indication for up-
regulation, a negative sum for down-regulation. The highest (for
up-regulation) or lowest (for down-regulation) measured log2FC
in the single-substance exposures was set as maximum log2FC
for the CTR-model. Subsequently, the CTR-model parameters
were retrieved for each node and compound for the expected
mixture direction. If an effect induced by a single substance was
<20% of the maximum effect or an AIC-weight for the fitted
model was <0:7, we assumed no effect for this substance on the
respective node. For mixture prediction, a bootstrap approach
was employed and errors were sampled from an error distribution
fitted for the single substances (n=100). For each sampled error
combination, the CA was calculated based on the formula for
multicomponent mixtures as described by Faust et al. (2001):
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ECXðmixtureÞ ¼
Xn

i¼1

pi
ECX,i

� �−1
, (4)

where ECXðmixtureÞ represents the effect concentration for effect
X of the mixture, ECX,i the effect concentration of substance i
inducing the same effect as the mixture on its own, and pi the pro-
portion of substance i in the mixture. After calculating the concen-
tration–response for the complete range of effect concentrations
for 100 bootstrap samples, the CTR-model was fitted to the
sampled predictions. By defining a threshold for a significant effect
based on the control variation, we could derive qualitative state-
ments about significantly affected nodes (see also section
“Prediction of SignificantlyAffectedNodes” for more details).

Mixture Effect Prediction—Independent Action
Given that the prediction of independent action (IA) generally
allows incorporating up- and down-regulation, model parameters
for each node for the best-fitting direction were retrieved from
the data of single-compound exposures (Excel Table S4). As for
CA, IA mixture predictions were calculated using a bootstrap
approach by sampling errors from the substance error distribu-
tions (n=100). If an effect was <20% of the maximum effect or
an AIC-weight for the fitted model was <0:7, we assumed no
effect for this substance on the respective node. Mixture expecta-
tions were calculated for up- and down-regulation separately,
using the basic version of IA found in the paper by Bliss (1939),
afterward, the effects for up- and down-regulation were summed,
resulting in the following equation:

log2FCmixðcmixÞ ¼ 1−
Ynup

i¼0
1−

log2FCðciupÞ
maxlog2FCup

 !" #
×maxlog2FCup

þ 1−
Yndown

i¼0
1−

log2FCðcidownÞ
maxlog2FCdown

� �� �
×maxlog2FCdown,

(5)

where log2FCmixðcmixÞ is the effect at a given mixture concentra-
tion, log2FCðciÞ is the log2FC induced by compound i,
maxlog2FCup is the maximum up-regulation log2FC across all
conditions, and maxlog2FCdown is the maximum down-regulation
log2FC across all conditions. Finally, the CTR-model was fitted
to the sampled predictions.

Mixture Effect Prediction—Effect Addition
The prediction applying the concept of effect addition (EA),
which is based on the assumption of linear dependence of effect
size on concentration (Equation 6), was conducted as for IA, only
that effects were added instead of multiplying fractional effects:

log2FCmixðcmixÞ=
Xn

i=1

�
log2FCiðcmix × piÞ

�
, (6)

where log2FCðcmixÞ is the log2FC induced by the mixture, cmix is
the concentration of the mixture, and pi the proportion of compo-
nent i in the mixture.

Mixture Effect Prediction—Boolean Assumption
A concept that assumes that each node that is affected by one of
the components (in any concentration or at any point in time),
will be affected in the mixture, we call the Boolean assumption
(BA) concept. It is based on a qualitative prediction on which
nodes in the toxicogenomic universe will be affected by the mix-
ture exposure according to the following equation:

Emix =EijEi+1jEi+2j . . . jEn, (7)

where Emix is a Boolean variable describing whether a node is
affected by the mixture exposure or not; En is a Boolean variable
describing whether a node is affected by the nth mixture compo-
nent (irrespective of exposure conditions).

In addition, in this study, dose-scaling of the Boolean assump-
tion was possible. For this, we extrapolated the single-substance
effects to the concentrations and time points applied in the mix-
ture experiment using the CTR-model. This allowed us to formu-
late dose-scaled Boolean assumptions for the experiment
performed in this study.

Prediction of Significantly Affected Nodes
To arrive at qualitative expectations about which and how many
nodes are significantly affected based on our predictions, we identi-
fied the 2.5%/97.5% quantile of control measurements from the
individual compound experiments for each node and point in time.
We compared these with the respective 95% CI of CA, IA, or EA
predictions retrieved from a bootstrapping approach and summed
the differences between the confidence bands for each concentra-
tion, calling the result sum(CI) (Figure S1). If the sum(CI) was dif-
ferent than 0, we defined this node as being predicted to be
significantly affected under the respectivemixture exposure.

Evaluation of Mixture Predictions
Mixture predictions were evaluated using different metrics. First,
the prediction deviation ratios (PDR) of the fitted parameter val-
ues for Smax and tmax were analyzed. The PDR was retrieved
according to the following equation:

PDRSmax ¼
SmaxðpredictedÞ
SmaxðobservedÞ

; PDRtmax ¼
tmaxðpredictedÞ
tmaxðobservedÞ

: (8)

CTR-model fits were, furthermore, visually inspected for all
nodes either predicted (with CA) or observed as significantly
affected with the mixture exposure. Based on this, we defined 10
categories for reasons for deviations between measurements and
predictions (plus one category for matching mixture predictions;
Excel Table S5) and assigned each node to these categories.

In addition, the areas under the curve (AUC) of the predicted
and observed sensitivity functions S(t) (cf. Equation 1), were
retrieved. The overlap between the predicted and observed AUCs
served as a measure for predictivity (see also the “Results” sec-
tion and Figure S17A).

To estimate the accuracy of the qualitative mixture predic-
tions obtained with the different mixture concepts, we calculated
the F1-score, which is the harmonic mean of precision and recall
of a model (Zhang and Zhang 2009). The equation for calculating
the F1-score is summarized below:

Precision=
True Positives

True Positives+False Positivesð Þ ,

Recall=
True Positives

True Positives+False Negativesð Þ ,

F1 Score=2
Precision×Recallð Þ
Precision+Recallð Þ : (9)

Calculation of Components Contributions
The expected contributions of the individual mixture components
to the effect of the mixture can be derived based on the known
effects of the individual substances. The expected component
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contributions depend on the applied mixture concept and were
calculated for each node of the toxicogenomic universe. For the
concept of CA, we calculated effect units (EUs) analog to toxic
units (Sprague 1970). Because component contributions are de-
pendent on the effect concentration and the point in time in our
study, we took the integral over time of the EUs for EC50. This is
analogous to the integral of the (scaled) sensitivity over time:

EUi ¼

ð t¼96hpe

t¼0hpe

SiðtÞ× pidtð t¼96hpe

t¼0hpe

SCAðtÞdt

SiðtÞ ¼ 1
EC50,iðtÞ ¼

Smax,i × exp −0:5×
logðtÞ− logðtmax,iÞ

tdur,i

 !2
0
@

1
A

SCAðtÞ ¼
Xn

i¼1
SiðtÞ× pi, (10)

where EUi represents the relative EU for component i, SiðtÞ the
sensitivity function for component i, and SCAðtÞ the expected sen-
sitivity function for the mixture based on CA. The corresponding
equations for the IA concept (Equation 11) and EA concept
(Equation 12) are shown below.

EUi ¼

ðcmax
cmin

ðt¼96hpe

t¼0hpe
logðfractionunaffectedÞiðcmix × pi,tÞdtdcðcmax

cmin

ð96hpe
0hpe

logðfractionunaffectedÞmixðtÞdtdc
,

ð11Þ

EUi ¼

ðcmax
cmin

ð t¼96hpe

t¼0hpe

log2FCiðcmix × pi,tÞdtdc
ðcmax
cmin

ð96hpe
0hpe

log2FCmixðtÞdtdc
: ð12Þ

Mixture Design
The general setup of our study should have worked with any
selected mixture proportion. Therefore, we only briefly elaborate
on the mixture design and the chosen mixture proportions as this is
not trivial and not an essential key point for this study. The three-
component mixture in this study was designed in a way that com-
bined effects were expected. This means that more than one com-
pound should contribute to the response of a node under the
mixture exposure for as many nodes as possible. To determine the
ratio at which we could expect distinct combined effects, we first
predicted the expected effects for an array of different mixture
ratios. For this, we set up a matrix of different mixture proportions
(Excel Table S6), roughly aligned along the concentration ranges
between LC25 and LC0:5 of each component to ensure contribu-
tions of each compound to the mixture exposure. Then, for each
proportion in the matrix, we predicted mixture effects for lethality.
This was based on the observed lethal effects for the single com-
pounds (Excel Tables S7 and S8) and a CA-assumption (Equation
4). Based on the predicted lethal mixture effects, we derived design
concentrations for the hypothetical mixture exposure. This

included five dilutions from LC25 to LC0:5 according to Equations
1 and 2. For these hypothetical concentrations and the exposure
durations 3, 6, 12, 24, 48, and 72 h, we predicted the toxicogenomic
effects across the whole toxicogenomic universe (using the CA
concept; Equation 4). Next, for each node, we calculated and
summed the difference between the effect predicted with CA and
the effect of themost effectivemixture component for each concen-
tration and point in time. Each node with a sum larger than 1.5 was
counted as a node showing a combined effect. This information
helped us to select a mixture ratio with a high expected combined
effect (cf. Excel Table S6 and Figure S2).

Finally, the mixture composition selected for this study was
diuron 11%, diclofenac 2.6%, and naproxen 86.4%. For meas-
uring the toxicogenomic fingerprint of the mixture, we chose a di-
agonal mixture design (Berenbaum 1981), that is, a mixture of
constant ratio was applied in several dilutions. For this mixture,
we determined the concentration–response relationship for lethal-
ity and derived exposure concentrations for the microarray
experiment from LC25 to LC0:5 as described above and by
Schüttler et al. (2019). The final mixture concentrations were
43.1, 61.01, 86.49, 102.93, and 122:51 lmol=L for C1 (LC0:5) to
C5 (LC25), respectively.

Results
Applying the CA concept, we predicted the concentration- and
time-resolved effect of a mixture based on the previously pub-
lished fingerprints of the three mixture components: diuron,
diclofenac, and naproxen (Schüttler et al. 2019). This was per-
formed for all nodes in the toxicogenomic universe, which con-
tains all genes of the zebrafish transcriptome (Schüttler et al.
2019). We experimentally measured the effects of the mixture
and compared expected and observed mixture responses and
evaluated hypotheses on similar and dissimilar joint actions of
the mixture components.

Using the CA concept requires extrapolation and scaling of the
concentration–effect relationships for responses obtained with
individual compound exposures (Berenbaum 1985). It allows pre-
dictions for a multitude of potential mixture exposure scenarios
regarding compound concentrations and proportions in the mix-
ture. The mixture proportions selected for this study were opti-
mized in a way that effects were expected for all three substances in
the mixture and a high total combined effect in terms of gene
expression (Excel Table S6 and Figure S2). This means that more
than one compound should contribute to the response of a node
under the mixture exposure. Furthermore, the expected effect
should be substantially stronger than the effect induced by themost
effective single compound (Figure S2A). Only effects on gene
expression were considered for optimizing the mixture propor-
tions; lethal effects were not taken into account. This led to the
design of the mixture containing 11% diuron, 2.6% diclofenac, and
86.4% naproxen. For exposure experiments, we applied dilutions
of this mixture while keeping the mixture proportions constant [di-
agonal mixture design, cf. Berenbaum (1981)]. To define the dilu-
tion range for exposure in the toxicogenomic experiments, lethal
concentrations of the designed mixture were determined (Figure
S3). The toxicity of the mixture increased with exposure duration
and the LC25 determined after 72 hpe was 122:51 lmol=L (meas-
ured compound concentrations in the mixture exposure solution
are provided in Excel Table S2). Themixturewas then investigated
in five dilutions between LC25 and LC0:5 (Equations 1 and 2) in the
toxicogenomic experiment. This design allowed us to compare the
CA predictions to corresponding measurements for the whole ZFE
transcriptome.

The result of calculating mixture predictions with the CA con-
cept for the nodes in the toxicogenomic universe is exemplarily
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shown for Node #1061 (Figure 1). The figure is structured in a
way that it also illustrates our approach. The example node con-
tains four genes coding for small proteins related to guanosine tri-
phosphate (GTP)-binding or GTPase activity. The logarithmic
fold-change, relative to control conditions (log2FC) after single-
compound exposure, was described by a CTR-model (Figure 1A
and Equation 3) (Schüttler et al. 2019). The CTR-model provided
compound-specific sensitivity curves (Figure 1B) with sensitivity
denominating the inverse value of a time-dependent EC50 value,
that is, the concentration at half-maximum log2FC. The node-
specific maximum log2FC was approximated by the maximum
log2FC across all concentrations and durations of the single-
substance exposures. The sensitivity curves for each of the three
substances were scaled (i.e., multiplied) by the compound pro-
portion in the mixture (Figure 1C) and then added up to arrive at
the mixture effect prediction (Figure 1E). Subsequently, the
CTR-model was fitted to the mixture predictions (of the full
range of effects concentrations) to retrieve predicted parameter
values for each node (Figure 1E). While Smax provides informa-
tion about the concentration dependence of the node response,
tmax provides information about time dependence by indicating
the point in time when the sensitivity reaches Smax. For the exam-
ple node, we predicted an Smax value of 0.009 and a tmax value of
73.8 hpe for the mixture response. The calculations, illustrated
here for Node #1061, were performed individually for all nodes
in the toxicogenomic universe. Eventually, the fitted Smax values
for those nodes, which were predicted to be significantly affected
(n=122, see also Figure S1), were mapped on the toxicogenomic
universe (Figure 1D and Excel Table S9).

The relative contributions of the individual substances to the
effect of the mixture (i.e., the EU) were derived from the area
under the scaled sensitivity curves for each component (Equation
10). They were mapped on the toxicogenomic universe for all
nodes predicted to be affected under mixture exposure with CA
(Figure 1E,F). For the example Node #1061, we expected that all
three compounds would contribute to the effect (EUDiuron = 0:19,
EUDiclofenac = 0:29, EUNaproxen = 0:52). Here, we therefore expected
a combined effect due to the mixture exposure.

Similar to Figure 1 and the CA concept, the results for the
predictions based on the other concepts are provided in the
Supplemental Material [number of nodes predicted to be signifi-
cantly affected due to the mixture exposure: IA concept: 20 nodes
(Figure S4); EA concept: 13 nodes (Figure S5); BA concept: 432
nodes (Figure S6); all data in Excel Table S9].

Finally, we experimentally measured the concentration- and
time-resolved toxicogenomic fingerprint of the mixture exposure,
for which the effects were predicted before. We mapped the
responses on the toxicogenomic universe and fitted the CTR-
model (Equation 3) to each node as described by Schüttler et al.
(2019). The results are again exemplarily shown for Node #1061
(Figure S7A,B). Model parameters, such as Smax, were calculated
and mapped for all significantly affected nodes (n=160; Excel
Table S9) on the toxicogenomic universe (Figure S7C,D). For the
example node, we received an Smax value of 0.009 and a tmax
value of 75 hpe. The whole toxicogenomic fingerprint of the mix-
ture can be accessed using our previously published toxicoge-
nomic fingerprint browser (http://webapp.ufz.de/itox/tfpbrowser).
The results of the measurement and the different predictions are
provided in Excel Table S9.

Prediction of Whole-Transcriptome Mixture Response
Using the CA Concept
Based on the results from the CA predictions and measurements,
we compared the expected and observed mixture effects. The pro-
jections of predicted (Figure 2A,C) and observed (Figure 2B,D)

parameter values for Smax and tmax on the toxicogenomic universe
demonstrate a striking similarity, though some differences also
become apparent. The distributions of Smax and tmax values as
well as results on the model fits are shown in Figures S8 and S9,
respectively.

Having applied the CA concept allowed us to analyze these
similarities and differences in detail from different perspectives.
In the following, we summarize which nodes in the toxicoge-
nomic universe were affected. With this, we took a qualitative
perspective by looking at the lists of nodes that were either pre-
dicted or observed to be significantly affected due to the mixture
exposure. Next, we will report how the affected nodes responded
in a concentration- and time-dependent manner, that is, we took a
quantitative perspective on deviations between measured and pre-
dicted effects.

Qualitative perspective. The common perspective on toxico-
genomic effects is of a qualitative nature, for example, by provid-
ing and interpreting lists of differentially expressed genes. Here
we compared lists of nodes that were predicted and measured to
be significantly affected under the mixture exposure with CA.
Applying a bootstrapping approach on the CA predictions, we
expected 122 nodes to be significantly affected under the mixture
exposure, and we observed 160 nodes to be significantly affected
in the experiment (Excel Table S9). The overlap between
expected and observed nodes was 78 (true-positives) (Figure 3).
Eighty-two nodes were deemed false-negatives, meaning that
they were not predicted to be affected due to the mixture expo-
sure (according to the CA concept) but were observed experi-
mentally to be significantly affected. Forty-four nodes were
deemed to be false-positives, meaning that they were predicted to
be affected according to the CA concept but not judged as signifi-
cantly affected in the experiment. In total, 204 nodes were either
observed or predicted to be affected due to the mixture exposure,
whereas 3,396 nodes, the majority of the transcriptome, were not
affected by the mixture as predicted (true-negatives). We further
looked into quantitative comparisons and deviations from predic-
tions for these 204 nodes.

Quantitative perspective. Detailed quantitative analysis and
comparison of predicted and measured effects were possible due
to the applied concentration- and time-resolved approach and the
CTR-regression model that describes the respective responses
using uniform parameters. We exemplarily show the results of
predicted and observed effects for the top three affected nodes
[according to sum(CI), Excel Table S9] under the mixture expo-
sure determined in the experiment (Figure 4A–I).

The observed log2FCs (Figure 4A, black dots, with the black
line as model fit) were underestimated for Node #1179 by the CA
prediction (Figure 4A, red line) whereas measurements were
closer to the predictions in the other two nodes (#3119, #1061;
Figure 4B,C). For all three nodes individual log2FCs, for exam-
ple, at 48 hpe and the highest exposure concentration of
122:51 lmol=L (Figure 4D–F), indicate a slight underestimation
of the combined effect predicted using CA. Concentration- and
time-dependent deviations from predictions become obvious
when comparing the sensitivity curves (Figure 4G–I). To quan-
tify this systematically, first, we calculated the percent overlap
between areas under the predicted and observed sensitivity curves
(Figure S8 A,B). These were 47%, 40%, and 78% for the top three
Nodes #1179, #3119, #1061, respectively (Figure 4 and Excel
Table S9). Second, we considered the distance between the
observed and predicted model parameter values Smax and tmax
(PDR) (Figure 4H). The PDRs for the model parameters for these
three nodes were 0.44, 0.31, and 1.0 for Smax and 0.97, 1.0, and
0.98 for tmax, respectively. The Smax PDR values of all 204 nodes
(Excel Table S9), were mapped on the toxicogenomic universe
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Figure 1.Mixture effect prediction (CA concept and results for Node #1061). (A) Effect concentrations for the half-maximum response (EC50) were derived
from the log2fold changes (log2FC) compared with the controls for each node and time point (exemplarily shown for three of six time points) based on previ-
ous data from individual compound exposures; (B) sensitivity curves over time derived from EC50 values; (C) sensitivities were scaled according to mixture
proportions; and (E) predicted sensitivity (S) for the mixture exposure resulted from the sum of scaled sensitivities obtained for the individual mixture compo-
nents according to the CA concept. The maximum sensitivity value (Smax) and the time point [tmax; hour postexposure (hpe)], where Smax is reached, were
derived by fitting a concentration- and time-dependent response model (CTR-model) on the mixture prediction data. (D) The Smax map shows the predicted val-
ues for all nodes predicted to be significantly affected under mixture exposure. (D) Effect of mixture and (F) Component contributions to the predicted total
effect [relative effect units (EUs)] were derived from the ratios of the areas under the sensitivity curves. EU values are presented in CMYK-colors and subtrac-
tive color theory (e.g., the sum of yellow and magenta gives red, the sum of yellow and cyan gives green). The EU-map contains EU values for all nodes pre-
dicted to be significantly affected under mixture exposure. Axis numbers in (D) and (F) give the x and y coordinates of nodes in the toxicogenomic universe.
All data are provided in Excel Table S9. Note: CA, concentration addition; CMYK, cyan, magenta, yellow, and black; CTR, concentration- and time-dependent
response.
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(Figure 4J). The distribution of these values shows two peaks
(Figure 4K). One peak represents a group of 104 nodes for which
the prediction matched the observation within the range of
0:5<PDR<2. A second peak indicates a group of 69 nodes for
which sensitivity was underestimated within the range of
0:1<PDR<0:5. The sensitivity was underestimated with a
PDR of <0:1 for 6 nodes, whereas it was overestimated for 25
nodes with PDRs of >2. This analysis was also performed for the
tmax values that were well predicted for 162 of 204 nodes show-
ing a PDR between 0.5 and 2 (cf. Figure S10B,D).

Deviations from predictions may have different reasons. To
systematically consider these reasons, we classified the 204 nodes
into different deviation categories (Excel Tables S5 and S10). Of

the 100 nodes that showed a PDR for Smax outside the range of
0:5<PDR<2, we could identify potential technical reasons for
the deviations. These comprise, for example, that nodes were
affected in two different directions, for example, over time or for
different compounds (40 nodes; Excel Table S10, exemplarily
shown for Node #876 in Figure S11). Deviations from predic-
tions also occurred when the CTR-model could not correctly fit
the calculated mixture expectation data (25 nodes). This was the
case, for example, if a node showed sensitivity peaks at more
than one point in time (15 nodes). Deviations from qualitative
predictions occurred, for example, because of undue control vari-
ation in single-substance exposures (exemplarily shown for Node
#34 in Figure S12) or when individual genes within a node were

A B

C D

Figure 2. Predicted and observed toxicogenomic fingerprints. (A,C) Predicted with the concept of concentration addition (CA), and (B,D) observed values for
maximum sensitivity (Smax) and time point of maximum sensitivity (tmax) (both parameters of the CTR-model), respectively, mapped for mixture-affected sig-
nificant nodes on the toxicogenomic universe. Dot size represents significant effect size given by the sum of confidence interval differences between treatment
and control [sum(CI)]. Data are available in Excel Table S9. Note: CTR, concentration- and time-dependent response.
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not coexpressed or showed very different effect amplitudes (18
nodes, exemplarily shown for Node #818 in Figure S13). Next to
these deviations, explainable by technical limitations of the
approach, we also found effects of the mixture for 18 of the 204
analyzed nodes that clearly did not resemble the effect that was
previously observed for the single substances (Excel Table S10,
exemplarily shown for Node #20 in Figure S14).

Evaluation of Other Mixture Concepts
Qualitative perspective. A comparison of the list of the 160
observed nodes, affected due to the mixture exposure in our
experiment, with those predicted with the other three above-
described concepts (IA, EA, and BA) showed, that the Boolean
assumption led to a large number of false-positive predictions
(294 nodes, Figure S15A). In contrast, the concepts of effect
addition and IA resulted in large numbers of falsely negative pre-
dicted nodes (148 and 147, respectively) because the overall num-
bers of predicted affected nodes were quite small with these two
concepts, with 13 and 20 nodes, respectively (Figure S15B,C).
Similar qualitative comparisons between numbers of observed and
expected nodes could be performed for each time point andmixture
concentration separately, based on the Boolean assumption,
adapted for each concentration and time point tested. These com-
parisons showed differing qualities of predictions dependent on the
concentration and time point (Figure S16A). We calculated the
F1-score, an indicator balancing false-positive and false-negative
predictions, for all concepts. Comparing these results revealed that
overall the CA concept showed the highest F1-score (Figures
S15D and S16B).

Quantitative perspective. CTR-model parameters, such as
Smax and tmax, could not only be calculated for the CA concept
but also for the EA and IA concepts, respectively. The distribu-
tions of concept-dependent PDRs for Smax and tmax are shown in
Figure S10C and S10D, respectively. All concepts showed simi-
lar distributions and high prediction accuracy for tmax with PDRs
of ∼ 1 (Figure S10D). In comparison with the CA concept, for
which we found 104 nodes with Smax-value PDRs between 0.5

and 2, we found 97 nodes with the EA concept and 95 nodes with
the IA concept with 0:5<PDR<2 (Figure S10C).

Contributions of the Three Mixture Components to the
Effects of the Mixture on the Transcriptome
Exposures to chemical mixtures can cause combined effects
when more than one of the mixture components contribute to the
overall effect. This is the case in the three examples in Figure 4
where naproxen (yellow) and diclofenac (magenta) were pre-
dicted to contribute to an effect under mixture exposure in Node
#1179 (Figure 4G), and all three compounds were expected to
contribute in Nodes #3119 (Figure 4H) and #1061 (Figure 4I),
for example. In all of these cases, the predicted effect of the mix-
ture in terms of log2FC or sensitivity was higher or longer than
would have been expected by looking at any of the mixture com-
ponents alone.

In some cases, combined effects may lead to situations where
there is no measurable effect observed or expected for the single-
compound exposure, but a significant effect is observed under
mixture exposure. This was the case for some selected concentra-
tions and points in time in our study. For example, based on the
small or not observed effects for any single-compound exposure,
no strong effect would have been expected at 48 hpe and the
highest mixture exposure concentration for the Nodes #3119
(Figure 4E) and #1061 (Figure 4F), whereas a substantial effect
was predicted with CA, which was even stronger in the experi-
ment. The occurrence of such combined effects is called the
something-from-nothing effect, referring to an effect under mix-
ture exposure when the mixture components alone do not show a
measurable effect (Silva et al. 2002; Walter et al. 2002).

To quantify to what extent each compound was expected to
contribute to the effect of the mixture, relative EUs were derived
from the areas under the sensitivity curves for each node (cf.
Figure 1F). The EUs were color coded with the help of the cyan,
magenta, yellow, and black (CMYK)–color model and subtractive
color theory (e.g., the sum of yellow and magenta gives red, the
sum of yellow and cyan gives green), and all nodes predicted to be
affected sorted in a triangle plot according to the expected compo-
nent contribution (Figure 5A). For some nodes, we predicted only
one of the three mixture components to contribute to the effect of
the mixture (single-origin effect). In this case, the relative EU
(EUi) was larger than 0.9 for one of the components and the node
was plotted in one of the three corners of the triangle. This was the
case for 17 nodes driven by naproxen, 15 nodes driven by diuron,
and no node driven by diclofenac. The other 90 nodes were pre-
dicted to be jointly affected by two or all three components
(EUi <0:9 for each component). Thus, we predicted the effect of
the mixture on the whole transcriptome to emerge as a blend
of single-origin and combined-affected nodes, with the majority of
nodes (90 of 122) expected to show combined effects (Figure 5A).

The prediction of compound contributions could not be easily
experimentally validated, given that the observed effects under mix-
ture exposure did not come with a name tag. However, we could plot
the experimentally observed mixture-affected nodes on the triangle
too and color them according to the compound contributions calcu-
lated with CA, whereas the overall prediction accuracy for each node
(i.e., the overlap between prediction and observation, cf. Figure
S17A) is indicated by the opacity (Figure 5B). We found, for exam-
ple, that experimentally determined effects on some nodes are poten-
tially driven by diclofenac but were not predicted by CA. In addition,
we analyzed whether the expected fraction and type of compound
contribution influenced the quality of predictions, but we did not find
a clear association or correlation between both (Figure S17C). The
calculated EUs for all 204 nodes predicted or observed to be affected
are provided in Excel Table S9.

78

82

44

3396not affected

affected

affected not affected
Observation

P
re

di
ct

io
n 

(C
A

)

Figure 3. Qualitative comparison of prediction and observation: Confusion
matrix for qualitative expectation regarding affected nodes in the zebrafish
embryo toxicogenomic universe due to exposure to a mixture of diuron,
diclofenac, and naproxen between 24 and 96 h postfertilization. Predictions
were based on the concept of concentration addition. Significantly affected
nodes were determined by comparing the 95% CI for the regression model
fits with the 2.5% and 97.5% quantiles of control measurements. Nodes
showing a sum of differences between these curves above or below zero
were identified as significantly affected. For the prediction of affected nodes
due to the mixture exposure the 2.5–97.5% quantile of control measurements
from the individual compound experiments was compared with the 95% CI
of CA predictions (see also the “Materials and Methods” section and Excel
Table S9). Note: CI, confidence interval; CA, concentration addition.
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By mapping calculated compound contributions on the toxi-
cogenomic universe, it can be illustrated how the previously
obtained single-compound fingerprints are expected to reoccur
under mixture exposure (cf. Figures 1F and 5C), and how the
observed effects resemble these expectations (Figure 5D). For
example, certain nodes predicted to be affected under mixture

exposure mainly due to naproxen (Figure 5C, top middle, yellow
nodes) reoccurred in Figure 5D, whereas other nodes, predicted
to be affected by the mixture but solely driven by diuron (Figure
5C, top left area, cyan nodes) did not reoccur in Figure 5D, that
is, these nodes were not significantly affected in the mixture
experiment. Furthermore, evaluating the effects of the mixture

A B C

D E F

G H I

J

K

Figure 4. Quantitative comparison of prediction and observation. (A–C) Observed (black) and predicted mixture effects [red= concentration addition (CA)],
and component contributions (cyan= diuron, magenta= diclofenac, yellow=naproxen) as log2FCs for three of six observed time points for the three nodes
with largest difference to control [largest sum(CI)] in the mixture exposure experiment; (D–F) individual log2FC values obtained and predicted for 48 h postex-
posure (hpe) with highest concentration (C5= 122:51 lmol=L); (G–I) sensitivity curves; (J) prediction deviation ratios (PDRs) for Smax mapped on the toxico-
genomic universe for all 204 nodes either predicted or observed to be affected; (K) distribution of PDRs for Smax. As discussed in more detail below, under-
and overestimation of Smax cannot be treated as equivalent to observed synergisms or antagonisms because such assessments would require distinct criteria and
discrimination from technical reasons for variation. Data are available in Excel Table S9.
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Figure 5. Component contributions and functional comparisons: Relative effect units (EUs) as representations for component contributions to the effect of the mixture for
each of the (A,C) 122CA-predicted nodes, and (B,D) 160 observed nodes; all nodes are colored according to the CMYK subtractive color code (e.g., the sum of yellow and
magenta gives red, the sum of yellow and cyan gives green); opacity indicates prediction accuracy according to the overlap between predicted and observed sensitivity
curves in (B) and (D). Summed effect size for (E) 122 predicted nodes, and (F) 160 observed nodes with the top 10 affected clusters and their summarized function,
blue= down-regulation, red= up-regulation (values clipped above 5 and below –5). Data on EUs are provided in Excel Table S9. Cluster names and functional enrichment
of clusters are according to Schüttler et al. 2019. Note: AA, arachidonic acid; BTF I/II, biotransformation phase I/II; CA, concentration addition; CMYK, cyan, magenta,
yellow, and black; energymetab., energymetabolism; ncRNA, noncodingRNA;ROSdetox, detoxification of reactive oxygen species; stress resp., stress response.

Environmental Health Perspectives 047006-12 129(4) April 2021



can provide information on the potential individual contributions
of each of the individual chemicals to unexpected mixture effects.
For example, there are four nodes in the middle of the fingerprint
that were observed but not predicted to be affected by the mixture
(Figure 5C,D). These nodes might potentially be affected by the
different mixture components respectively, as indicated by the
different colors (Figure 5D).

Analysis of Joint Action for Compounds with Similar and
Dissimilar Modes of Action
The 3,600 nodes of the ZFE toxicogenomic universe were assigned
to 118 clusters (Schüttler et al. 2019). Each cluster was assigned to
a random name and analyzed for enriched functional terms [con-
tained in the databases GO, Reactome, ZFIN, and Interpro
(Schüttler et al. 2019), cf. also Excel Table S11] in our previous
study to support the functional interpretation of obtained toxicoge-
nomic fingerprints due to chemical exposures. Here, we compared
the predicted and observed effects of the mixture exposure based
on the predefined clusters in the toxicogenomic universe (Figure
5E,F). Almost all clusters expected to bemost prominently affected
(based on the highest proportion of nodes predicted to be signifi-
cantly affected with CA) could be found among those top clusters
where the observed affected nodes were assigned to (Figure 5E,F
and Excel Table S11). For example, 12 nodes that were predicted
to show an effect due to the mixture exposure are assigned to clus-
ter Pauline. This cluster contained 13 nodes in total, comprising 56
genes, and was functionally enriched among others for Phase II–
compound conjugation, glutathione, and detoxification of reactive
oxygen species (Excel Table S11) (Schüttler et al. 2019). All 13
nodes were observed as significantly affected in our mixture
experiment. Other clusters with strong overlap between prediction
and observation were Deisy, Farajallah, Karan, Taamira, Talon,
Nikkii, and Raashid. These clusters were functionally enriched for
different terms related to immune and stress reactions (Deisy,
Farajallah, and Karan), different metabolic processes (Taamira,
Talon, and Raashid), and the retina (Nikkii) (Figure 5E,F and
Excel Table S11). Differences among the lists of predicted and
observed nodes were found for the clusters Trae and Dakota
(enriched for crystallin and vitellogenin genes, respectively),
which were expected but not observed to be significantly affected.
Meanwhile, the cluster Tu was affected by the mixture exposure
but was not predicted to be. It contains a set of noncoding RNAs
with mostly unknown functions. Furthermore, cluster John, func-
tionally enriched for pancreas genes, was much more affected than
expected (Figure 5E,F and Excel Table S11).

The projection of the observed nodes with their respective cal-
culated component contributions on the toxicogenomic universe
showed that certain clusters were dominated by certain compo-
nents (Figure 5C,D). Although a majority of effects observed in
John and Talon were potentially caused by the joint action of nap-
roxen and diuron, indicated by green-colored nodes (Figure 5C,D),
the clusters Deisy, Taamira, and Karan were rather affected by the
joint action of diclofenac and naproxen, indicated by orange or red
nodes (Figure 5C,D). Furthermore, a remarkable number of nodes
in clusters Pauline and Deisy seem to be mainly affected by nap-
roxen alone, indicated by the yellow color. Naproxen and diclofe-
nac are known COX inhibitors and certain functional terms of the
mentioned clusters could be related to an organismic reaction to
COX inhibition (cf. Schüttler et al. 2019). The affected nodes of
these clusters were all up-regulated due to the mixture exposure
(red in Figure 5F). Although some of those nodes were induced
more strongly than predicted, the majority was observed as pre-
dicted (cf. Figure 5E,F). This supports the hypothesis of concentra-
tion additivity for toxicogenomic effects induced by compounds
with a similar mode of action.

The affected nodes of the clusters John and Talon were all
down-regulated due to the mixture exposure (blue in Figure 5F).
Down-regulation of these clusters was previously observed with
diuron and naproxen (Schüttler et al. 2019). The joint action of
the compounds in the mixture and down-regulation of 11 nodes
in the two clusters was, therefore, predicted with CA. Eight of
those nodes were observed to be down-regulated by the mixture
exposure in the experiment, most of them more strongly than pre-
dicted (PDR for Smax < 1 for 7 of 8 nodes). Another 11 nodes
were observed to be down-regulated in these clusters. Those
were not predicted (Tables S9 and S11). Although no common
mode of action is known for diuron and naproxen, a more-than-
additive combined effect was found on the transcriptome.

These results show that combined effects in a whole organism
can occur on the molecular level not only with mixtures of
similar-acting compounds but also with compounds expected to
have dissimilar modes of action. The results also show that
effects induced by different individual compounds can combine
under mixture exposure and cause a multitude of responses at the
whole transcriptome that can be predicted with the CA concept.

Discussion
Understanding the effects of intended or unintended exposure of
organisms to chemical mixtures is key in designing combination
therapies in pharmacy (Kuhn-Nentwig et al. 2019; Menden et al.
2019) and understanding potential exposure outcomes, such as
carcinogenesis (Goodson et al. 2015) and toxic mechanisms
threatening environmental and human health (Cedergreen 2014).
Furthermore, it can facilitate chemical risk assessment and man-
agement (Bopp et al. 2019; Rotter et al. 2018). Predictions and
interpretations of mixture effects on the whole-transcriptome
scale were believed to be challenging due to expected interde-
pendences between expressed transcripts and emergent effects
based on interconnected processes in gene regulatory networks
(Bluhm et al. 2014; Gong et al. 2008; Zhang et al. 2017). In the
present study, we showed that the prediction and interpretation of
whole-transcriptome mixture responses are possible and that pre-
dictable combined effects on the molecular level are not only
caused by compounds with an anticipated similar mode of action.

Quantitative Modeling to Predict Combined Effects
Interpreting observable combined effects from mixture exposures
requires the identification of differences between expectations
and observations. Such expectations could be of qualitative and/
or quantitative nature. Quantitative predictions of effects of
chemical mixtures, based on their components, require knowl-
edge about the concentration dependence of the same effect
caused by the individual mixture components (Altenburger et al.
2013). This has been established in toxicology and pharmacology
for single apical effects or selected receptor responses, for exam-
ple, lethality or receptor activation (Kortenkamp et al. 2009).
Meanwhile, it has been an unresolved challenge when simultane-
ously considering multiple effects, such as changes in transcript
abundance across the whole transcriptome. This is not least
because the specific dynamics of each signal depend on com-
pound concentration and exposure time (Altenburger et al. 2012;
Schüttler et al. 2019). Employing quantitative information on the
effect dynamics and their variability provoked by individual mix-
ture components, aggregating signals of a transcriptome into
nodes, modeling these in their concentration and time depend-
ence, and recruiting existing mixture concepts, we were able to
formulate quantitative and qualitative expectations about mixture
effects.
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Using the developed workflow for modeling transcriptomic
mixture responses, we were able to predict the occurrence of so-
called something-from-nothing effects (Silva et al. 2002) that
have previously been described for apical effects in unicellular
organisms and cell cultures (Faust et al. 2001; Silva et al. 2002;
Walter et al. 2002). Something-from-nothing effects designate
responses that are observed only under mixture exposure, but not
for any of the mixture components individually. The occurrence
of this type of combined effect is coherent with the dilution prin-
ciple underlying the concept of CA whereby any low concentra-
tion of a mixture component contributes to a combined effect
(Faust et al. 2001). If this type of combination effect occurs for
multiple mixture exposures, it implies a major challenge for
chemical risk assessment, which currently focuses on assessing
risks compound by compound (Drakvik et al. 2020; Escher et al.
2020).

CA Compared with Other Mixture Concepts
The availability of curated chemical–gene/protein–pathway inter-
action data, such as through the comparative toxicogenomics
database (CTD) (Davis et al. 2021), have led to the idea to derive
toxicogenomic mixture response expectations from such informa-
tion (Berninger et al. 2019; Bradley et al. 2017; Schroeder et al.
2016). This concept, which we call BA, assumes that all signals
detected in any of the single-compound exposures—regardless of
exposure concentration or duration—reoccur under mixture expo-
sure. This concept is applied in cases where only qualitative in-
formation about the effects of mixture components is available
(e.g., lists of affected genes). Applying this concept, we found,
not surprisingly, the highest number of false-positive and the
lowest number of false-negative responses compared with the
other concept-based predictions. This stresses our hypothesis that
interpreting mixture responses at the transcriptome level requires
a dose-scaled point of reference.

When quantitatively evaluating toxicogenomicmixture effects,
one approach could be to add up the effect sizes (e.g., log2FCs)
observed for single-compound exposures to arrive at an effect ex-
pectation for the mixture exposure, which we called EA. EA builds
on the assumption of a linear relationship between concentration
and effects. This notion has been challenged on theoretical grounds
(Berenbaum 1981). In addition, combined effects from very low-
effect concentrations are not to be expected but have been demon-
strated in experimental mixture studies for various compounds
using cells and unicellular organisms (Faust et al. 2001; Silva et al.
2002; Walter et al. 2002) and also for higher organisms, such as
rats, for example, for endocrine disruptors (Hass et al. 2007). In
line with this, the results of our study also demonstrate examples of
evident nonlinear transcriptomic and low-dose responses and a
substantial underestimation of the number of observed mixture
responses with EA (cf. Excel Table S9 and Figures S5 and S15).

From a probability perspective, one may assume that multiple
transcript responses under mixture exposure follow the principle
of independence, which is labeled as IA in the mixture toxicology
arena (Altenburger et al. 2012). IA accommodates for nonlinear
dose–response relationships. In a whole-transcriptome study,
Labib et al. (2017) exposed mice lung tissues to eight different
PAHs and their mixtures. For six cancer-related pathways, the
concept of IA was judged to most accurately predict pathway per-
turbations. Earlier, Dardenne et al. (2008) reported a good predic-
tivity from the IA concept for binary mixture effects on stress
gene reporter assays. In both studies, however, the component
contributions were not explicitly evaluated; therefore, the extent
of actual combined effects compared with effects that could be
explained by single components remains unclear. In our study,
we also found quantitative reasonable predictivity, whereas the

number of responding nodes was substantially underestimated,
similar as with EA (cf. Figures S4 and S15). When considering
the effects from mixtures at low-effect concentrations, a challeng-
ing requirement for IA lies in the need to estimate low-effect lev-
els accurately (Kortenkamp et al. 2007).

In mixture pharmacology, the concept of CA has been formu-
lated as yet another reasonable concept to anticipate combined
effects (Altenburger et al. 2012; Greco et al. 1995). It follows the
dilution rule by assuming that one compound can be replaced by
another compound in proportion to its individual effect concen-
tration to achieve the same effect. In the present study, we found
the concept of CA to be the most accurate for predicting mixture
effects in comparison with the aforementioned concepts. For
example, for this concept we found the prediction deviation ratio
to fall within a 2-fold deviation for 50% of the nodes concerning
the maximum sensitivity (Smax) and for 79% for the time of maxi-
mum response (tmax). We see these findings as a proof of concept
for the usefulness of our prediction approach. A reanalysis of api-
cal responses in aquatic organisms found a 2-fold deviation range
for EC50 and LC50 values describing 88% of all observed binary
mixture effects in 207 experiments (Belden et al. 2007). This pro-
portion is higher than what we detected in our experiment, yet
one would need more evidence from different mixture studies to
decide on the suitability of a 2-fold deviation range as a heuristic
criterion for discrimination between expected and unexpected
combined effects. After all, apical and transcriptomic responses
might not be directly comparable.

Using the concept of CA in comparison with the other con-
cepts discussed above, we also achieved a larger portion of false-
negative but far fewer false-positive predictions of signal occur-
rence. Overall, a better balance between false-negative and false-
positive predictions, indicated by a higher F1-score (Figure
S15D), was achieved. The similarity between the predicted and
observed mixture effects on the whole-transcriptome scale was
found to be striking, as described above (cf. Figure 2).

The predictive power of the different mixture concepts has
rarely been comparatively evaluated on a whole-transcriptome
basis. In this study, the highest overall predictivity scores and the
quantitatively least deviations between prediction and observa-
tion were obtained for CA in comparison with EA, IA, and BA.
This finding showed up, despite the hypothesis that underlying
complex networks of gene regulation would lead to ill-defined
interactions (Rodea-Palomares et al. 2016; Zimmer et al. 2016).
Here we show that the effect induced by the mixture exposure
could be quantitatively and qualitatively well predicted by
describing the signals individually, without taking interactions
into account for the majority of cases. Moreover, only by formu-
lating explicit expectations about noninteractive combined
effects, the identification of interactions became unambiguous.

Distinguishing Combined Effects on the Transcriptome
A notion commonly held in the regulation of chemicals presumes
that chemicals with dissimilar action will not have any joint impact
on an organism (EC 2012), that is, there is implicitly an expectation
of no combined effect for dissimilarly acting compounds. In our
study, we predicted and detected combined effects of chemicals
irrespective of their individual mode of action. For example, we
predicted some nodes to be jointly affected by naproxen and
diuron, two chemicals known to act through different modes of
action. Down-regulation of these nodes and the assigned clusters
was previously observed with diuron and naproxen and interpreted
to indicate an unspecific disturbance of the pancreas development
in the ZFE (Schüttler et al. 2019). Indeed, all pancreas-develop-
ment–related nodes, expected to be affected in themixture, were ei-
ther correctly predicted or showed a more-than-additive combined
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effect. No underestimation was observed for any of these nodes.
This indicates that, although known modes of action may differ
and thus suggest a dissimilar joint action, compounds may indeed
act together and may also cause combined effects that are predict-
able by CA. This is a novel and exciting finding because the simi-
larity criterion is used, for example, to identify common exposure
assessment groups for mixture risk assessment (EC 2012; EFSA
Scientific Committee et al. 2019).

For some nodes, observations clearly deviated from the pre-
diction of no observable effects. If we can exclude technical rea-
sons, these deviations may hint at interactive mechanisms. For
example, there is a group of nodes that showed a clear down-
regulation in the mixture fingerprint. This would not have been
expected from the single-substance observations (cluster Tu;
Figure 5F and Figure S10). These nodes mostly contain different
noncoding RNAs (ncRNAs), with some of them connected to
RNA-polymerase III, which points to a change in transcriptional
activity. Given that the effect is partly concentration dependent, it
is rather unlikely that we observed an artifact here. However, we
did not come up with an explanation for this truly unexpected
effect. Given the provided means to inspect experimental find-
ings, the example demonstrates how to identify qualitatively
unexpected mixture effects with greater confidence by separating
them from noninteractive additive combined effects.

Furthermore, we identified 15 nodes where measured effects
emerged stronger than predicted with the CA concept (cf. Excel
Table S9). Of these, 7 nodes were down-regulated, showing a
similar pattern as Node #3119 depicted in Figure 4B. For these
nodes we mainly expected contributions from diuron and nap-
roxen, neither of which is known to share the same molecular
target nor to have a similar mode of action. Still, both were
found to down-regulate genes related to pancreas development,
probably through an unspecific mechanism of disturbance
(Schüttler et al. 2019). On the other hand, we found 8 nodes
that were more strongly up-regulated than predicted by CA.
Three of these nodes (#34, #1179, and #2925) appeared to be
specifically targeted by the two COX inhibitors in our experi-
ment and mainly comprise genes coding for different metabolic
enzymes that are presumably involved in the biotransformation
of diclofenac and naproxen. The more-than-additive up-regula-
tion is most pronounced in Node #1179 (cf. Figure 4A). This
node contains the gene cyp2k18, which has previously been
shown to be induced in zebrafish by COX inhibitors (Poon et al.
2017).

With the help of kinetic modeling, Fitzgerald et al. (2006)
showed that such more-than-additive or, if one likes, synergistic,
effects may occur due to the topology of the affected pathway.
For example, they simulated that two compounds directly target-
ing the same receptor may, in a mixture, induce a more-than-
additive effect if the compounds act in a mutually nonexclusive
manner on the receptor. Furthermore, if different elements of one
pathway are affected simultaneously, the resulting effect may
also be more than additive. However, they could also show in
their exemplary calculations that tight regulation in pathway
loops, such as feedback inhibition, may nevertheless neutralize
such synergisms, leading to effects as predicted by CA. These
different simulation outcomes may help to explain the observa-
tion of this study finding a majority of apparently nonadditive
effects, despite the notion that combined effects at a molecular
level may show various deviations on theoretical grounds.

The discussed examples demonstrate that our approach fos-
ters unambiguous identification of unexpected mixture effects
by separating them from simple noninteractive, yet additive,
effects. Furthermore, the assessment that the occurrence of non-
additive effects was rather the exception than the rule suggests

that CA can be seen as a useful reference concept for defining
synergy (Greco et al. 1995) at the level of whole-transcriptome
responses.

Methodological Limitations
By analyzing the nodes, for which predicted Smax values deviated
by more than a factor of two from the experimentally determined
values, we found that these deviations could be explained in most
cases with methodological limitations due to experimental uncer-
tainty, the approach of data reduction via the SOM approach, as
well as the CTR regression model.

The accuracy of a mixture effect prediction depends to a large
extent on the accuracy of the effect estimations for the mixture com-
ponents. Thus, uncertainty in single-compound CTR-model parame-
ter values propagates to uncertainty and accuracy in the mixture
predictions. In addition, it was shown previously that the Hill model
(being part of the CTR regression model used in this study) might not
capture low-dose effects very well, which may result in biased mix-
ture predictions (Scholze et al. 2014). An approach that uses an array
of different models and selects the one fitting best could be a way for-
ward (e.g., (Scholze et al. 2001; Smetanová et al. 2015). In theory, it
would be feasible to include different models into our fitting strategy.
Yet,we assume that for toxicogenomic data, issues like high variabili-
ty and nonmonotonic regulation (see below) have a more significant
influence on prediction quality. In addition, undue control variation in
single-substance exposures can introduce bias into the qualitative pre-
dictions. Because controls are used as references for normalization,
control outliers may inadequately shift obtained log2FCs. Although
this would show up in a high significance threshold for effect assess-
ment in the qualitative analysis, it could also lead to false-negative
predictions for themixture exposure (cf. Figure S12).

In our approach, we tried to increase robustness in transcript
responses by using the SOM approach and performing predic-
tions for nodes instead of individual transcripts. However,
although the SOM approach provides the intended data reduction,
functional grouping, and noise reduction, this clustering may in
some cases lead to the masking of relevant single-gene effects by
nonresponding genes aggregated into the same node. For exam-
ple, in Node #818 the gene for cyp1c1 was evidently affected
under mixture exposure. However, it was induced with a higher
log2FC than the remaining genes in the node. This resulted in a
rather high uncertainty estimate in the CTR-model fit for the ob-
servation (cf. Figure S13). Consequently, no exceedance of a sig-
nificance threshold could be found and this resulted in an
assessment as a deviation from the qualitative prediction. The
quantitative prediction for the average sensitivity of this node,
was, however, quite accurate using the CA concept (cf. Figure
S13), which underlines the joint induction of expression of cyp1
genes by naproxen and diuron, but not diclofenac. This example
shows the tradeoff between noise reduction and specificity.

The CTR-model is limited in capturing more complex pat-
terns of differential node regulation. For example, if a node is
affected in different directions at different points in time or shows
a biphasic behavior across different concentrations, this behavior
cannot be captured by the CTR-model. Advancing the CTR-
model and allowing more flexibility, for example, by including
the time dependence as a differential equation instead of a regres-
sion model, might further improve the predictivity for mixture
effects. In addition, this would simplify the inclusion of toxicoki-
netic parameters into the model. It would come at the cost of
extended experimental efforts. One may also think about an
extended heuristic approach to capture more of the time depend-
ence by using the information on the internal concentrations of
the components.
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Furthermore, it is not covered by the assumptions of the CA
concept and can, hence, not be calculated correctly if a node is
regulated in two directions under different substance exposures (cf.
Figure S11). Such cases could in principle be captured by applying
an extended IA concept that, again, would require a more flexible
CTR-model. Capturing such more complex cases of responses of
genes or nodes should be the topic of further research.

Mixture Assessment with Omics Technologies
Short-term molecular effects as retrieved by omics measurements
have been shown to indicate long-term effects, such as carcinoge-
nicity (Li et al. 2019) or reduced fitness and reproduction in
Xenopus caused by endocrine metabolic disruption (Regnault
et al. 2018). Nevertheless, appropriate study designs are required
to tap the potential of omics technologies for providing proxies
for sublethal and potentially long-term mixture effects. This can
only be achieved with experimental designs that vary treatments
systematically for concentration and time (Diaz et al. 2020;
Schüttler et al. 2017) as it allows extrapolation to expected con-
centration–response patterns of mixtures. These extrapolations
also allow predictions for mixtures that do not occur in designed
ratios as in this proof-of-concept study. Mixture modeling and
the identification of effect driving components, as shown for
chemically characterized environmental mixtures (Altenburger
et al. 2004, 2018), could thus become possible also on the level
of the whole transcriptome.

Earlier, we proposed a novel analysis pipeline of response
aggregation using the toxicogenomic universe and concentration
and time regression modeling (Schüttler et al. 2019). We
extended this pipeline now to mixture-concept-based combined
effect prediction. On this route, we believe it is now possible to
distinguish unexpected synergism from predictable noninterac-
tive additive combined effects. This should be helpful to disen-
tangle the multistep nature of long-term adverse outcomes and
renders omics data applicable for establishing and validating net-
works of adverse outcome pathways. Respective evidence could
then be based on qualitative information about potential key
events jointly affected in mixtures. Jointly affected key events
could in turn be identified via quantitative comparisons of mix-
ture effects to single-compound effects. Examples for this are the
joint induction of Cyp2k18 and the repression of pancreas-related
nodes due to mixture exposure, as shown in the present study.

Furthermore, the results of our study show, that toxicogenomic
effect patterns of single compounds, which indicate distinct biolog-
ical effects, reappear in the toxicogenomic fingerprints under mix-
ture exposure. This promises progress in using omics observations
on the road to nontarget biological effect assessments of mixtures.

In the light of the innovation rate and increase in chemical
uses, advancing our understanding of intended as well as unin-
tended effects of chemical mixtures in organisms is critical for
future assessment and management of chemical impacts on
humans and the environment. Adapting our analytical tools for
this challenge requires advancement in conceptual thinking, ex-
perimental design, and data evaluation.
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