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An extracellular vesicle-related gene expression signature 
identifies high-risk patients in medulloblastoma
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Abstract
Background.  Medulloblastoma (MB) is a malignant brain tumor in childhood. It comprises 4 subgroups with dif-
ferent clinical behaviors. The aim of this study was to characterize the transcriptomic landscape of MB, both at the 
level of individual tumors as well as in large patient cohorts.
Methods. We used a combination of single-cell transcriptomics, cell culture models and biophysical methods such as 
nanoparticle tracking analysis and electron microscopy to investigate intercellular communication in the MB tumor niche.
Results. Tumor cells of the sonic hedgehog (SHH)–MB subgroup show a differentiation blockade. These cells undergo 
extensive metabolic reprogramming. The gene expression profiles of individual tumor cells show a partial convergence 
with those of tumor-associated glial and immune cells. One possible cause is the transfer of extracellular vesicles (EVs) 
between cells in the tumor niche. We were able to detect EVs in co-culture models of MB tumor cells and oligodendro-
cytes. We also identified a gene expression signature, EVS, which shows overlap with the proteome profile of large 
oncosomes from prostate cancer cells. This signature is also present in MB patient samples. A high EVS expression is 
one common characteristic of tumors that occur in high-risk patients from different MB subgroups or subtypes.
Conclusions. With EVS, our study uncovered a novel gene expression signature that has a high prognostic signif-
icance across MB subgroups.

Key Points

1.  Single-cell transcriptomics reveal metabolic reshaping of SHH-MB tumor cells.

2.  EVS is identified as an EV-related gene expression signature in MB tumor cells.

3.  High EVS expression earmarks high-risk patients in all 4 MB subgroups.
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Medulloblastoma (MB) is the most frequent pediatric 
malignancy of the central nervous system and demon-
strates a wide spectrum of clinicopathological features. 
The current World Health Organization classification in-
tegrates the 4 consensus molecular subgroups of MB—
wingless (WNT), sonic hedgehog (SHH), Group  3, and 
Group  4—with previous histological variants.1,2 Several 
large-scale studies revealed additional layers of hetero-
geneity within these subgroups and proposed additional 
MB subtypes.3–5 However, this progressive division of 
MB does not provide an explanation for the occurrence of 
high-risk (HR) tumors in different subgroups or subtypes 
that show little to no overlap in their (epi)genotypes.3,5,6 
While DNA methylome and transcriptome patterns sep-
arate SHH and WNT from Group 3 and Group 4 tumors, 
proteome profiles of SHH and Group  3 tumor subsets 
are clustered together and converge into a MYC-like pro-
tein signaling pathway for which MYC amplification is 
dispensable.7–9

More recent single-cell studies have focused on 
the cellular origins, developmental programs, and 
intratumoral diversity at the cellular level in MB.10–14 The 
tumor microenvironment (TME) is of major importance 
for tumor progression and therapeutic response in dif-
ferent cancer types. Cellular communication in the TME 
is multidimensional. One main route involves the ex-
change of extracellular vesicles (EVs), which transfer bio-
active cargo molecules to recipient cells and can induce 
epigenetic alterations. Tumor-derived EVs include small 
EVs (sEV)/exosomes, microvesicles (MV), large vesicles 
(LV), and so-called large oncosomes (LO).15 Here we 
used single-cell RNA sequencing (scRNA-seq) to char-
acterize the cellular TME in murine SHH-MB. We identi-
fied a transcription signature called EVS, which indicates 
EV-based communication of cells in the MB tumor niche. 
This signature is found in gene expression data from 2 
independent, large MB patient cohorts. EVS can be used 
as a prognostic tool to identify HR cases, especially in 
Group 3 and Group 4, and EVS-high represents a new, 
independent risk factor in MB.

Materials and Methods

Animal Model

All animal work was performed in accordance with 
National Research Council recommendations and guide-
lines provided by the local regulatory authorities (City 
of Hamburg; 113/16). To generate the Atoh1-cre:SmoM2 

tumor model,16 Atoh1-cre mice were crossed with 
SmoM2flox/flox mice.

Sample Processing

Tumors from 4 Atoh1-cre:SmoM2 littermates were col-
lected independently of sex at postnatal day 20. Single cell 
suspensions of vital tumor cells were further processed as 
described.17

Cells and Cell Culture

The human MB cell lines Daoy and D341 were purchased 
from American Type Culture Collection via LGC Standards 
GmBH. Oli-neu cells were a kind gift of Tanja Kuhlmann 
(Institute of Neuropathology, University Münster). MB1 
cells were established from tumors of Atoh1-cre:SmoM2 
mice at P12 as described.18 Cells were maintained at 37°C 
and 5% CO2 in DMEM/F-12 medium containing B-27 and 
N-2 supplements (Gibco, Thermo Fisher Scientific), 20 ng/
mL of recombinant murine epidermal growth factor and 
basic fibroblast growth factor (PeproTech Germany), and 
1% penicillin/streptomycin (Gibco). For co-culture experi-
ments, 30 mm Millicell cell culture inserts with hydrophilic 
polytetrafluoroethylene membranes (0.4  µm pore size) 
were used (Millipore, Merck).

Single-Cell RNA Sequencing

Approximately 10 000 single cells per individual tumor 
were used as input for scRNA-seq. Single cell cap-
ture, barcoding, cDNA amplification, and cleanup were 
done using Chromium technology (10x Genomics) 
as described.17 Libraries were generated using the 
Library Bead Kit and i7 Multiplex Kit, and quality con-
trols were done with a Tapestation 2000 instrument 
(Agilent Technologies). Sequencing was performed on 
an Illumina NextSeq 500 instrument using High Output 
Kit v2 with 75 cycles at the Core Facility Genomics, 
University Hospital Münster.

Bulk mRNA Sequencing

Total RNA was isolated using RNeasy Mini Kit (Qiagen). 
Extraction of mRNA was done using the NEBNext 
Poly(A) mRNA Magnetic Isolation module; libraries were 
generated with the NEBNext Ultra II Directional RNA 
Library Prep Kit for Illumina (New England Biolabs), 
and sequencing was done using Illumina’s High Output 

Importance of the Study

High-risk tumors can occur in MB subgroups of different 
cellular origins and with divergent epigenetic profiles. 
With EVS, our study provides a molecular tool that can 
identify such high-risk tumors beyond the boundaries 

of the existing MB classification. EVS-high constitutes 
a novel, independent risk factor that has a particularly 
good prognostic power for Group  3 and Group  4 MB, 
where risk stratification poses a particular challenge.
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Kit v2.5 with 75 cycles on an NextSeq500 instrument 
at the Institute of Human Genetics, University Hospital 
Münster.

Isolation and Analysis of Extracellular Vesicles

EVs were isolated from cell culture supernatants by dif-
ferential ultracentrifugation. Supernatants were centri-
fuged at 500 g (5 min) to pellet residual cells, followed by 
a 15 min spin at 1500 g for LV, a 30 min spin at 17 000 g 
for MV and a 90 min spin at 140 000 g for sEV, respec-
tively. Size and concentration of EVs were determined by 
nanoparticle tracking analysis using a Zetaview PMX-120 
instrument (Particle Metrix). For western blot analysis, 
primary antibodies against the following proteins were 
used: ALIX (#sc-53540), alpha-actinin-4 (#sc-390205), 
Rgap1 (#sc-271110), CK18 (#sc-6259), Tsg101 (#sc-7964, 
all from Santa Cruz Biotechnology), Syntenin (#ab133267, 
Abcam), and GM130 (#12480, Cell Signaling). Signals 
were detected using the ECL ChemoStar Imager HR 9.0 
(Intas).

Transmission Electron Microscopy

For ultrastructural analyses by transmission electron mi-
croscopy (TEM) MB cells cells were grown on poly-L-lysin 
coated aclar film. All methodology and instrumentation 
were done as previously described in detail.19

Data Analyses

Bioinformatics data analyses were carried out in R ver-
sion 3.5.1 and Bioconductor version 3.7. The Seurat 
package20 was used for quality control, filtering, dimen-
sionality reduction, clustering, and differential expres-
sion analysis. Trajectory inference was performed using 
Monocle 2.21 Other analyses and packages are listed in the 
Supplementary Material. The scRNA-seq data of murine 
SHH-MB tumors have been deposited in Gene Expression 
Omnibus (GEO) under the accession number GSE127997, 
and bulk mRNA-seq data of co-cultured MB1, D341, and 
Oli-neu cells have been deposited in GEO under accession 
number GSE159763.

Results

Transcriptomic Landscape of Murine Sonic 
Hedgehog Medulloblastoma

Human MB can be modeled in mice by introducing muta-
tions in the transmembrane protein Smoothened (Smo). 
We used Atoh1-cre:SmoM2 mice, which develop SHH-MB 
from granule neuron precursors (GNPs) in the cerebellum 
(CB),16 to determine the transcriptional landscape of this 
tumor. ScRNA-seq provided a record of almost 4800 indi-
vidual transcriptomes from cells of 4 tumor-bearing mice 
at postnatal day 20 (P20). Nearest-neighbor clustering and 
visualization revealed 8 distinct cell clusters, which were 

subsequently characterized as tumor cells (clusters 1–6) 
and associated nontumor cells, namely glial cells (cluster 
7)  and immune cells (cluster 8)  (Fig.  1A; Supplementary 
Table 1). The CD24 glycoprotein has been established as a 
specific SHH-MB tumor cell marker.22 Embedding SHH-MB 
profiles into a single-cell transcriptome map of the devel-
oping mouse cerebellum23 revealed that high Cd24a ex-
pression was confined to cells of clusters 1–6, but largely 
absent in cluster 7/8 cells or normal CB cells (Fig. 1B). The 
tumor cells showed the closest positioning (ie, relation-
ship) to GNPs in relation to all cerebellar cell types (Fig. 1C, 
D). Lineage trajectory analysis was performed to link 
tumor cells with developmental stages by projecting their 
transcriptomes onto a pseudotime-ordered axis of granule 
cell development (Supplementary Figure 1). While prolifer-
ating GNPs from normal tissue split into 2 branches of ma-
ture granule cell populations, SHH-MB tumor cells showed 
a developmental block and did not reach a fully differenti-
ated stage (Fig. 1E).

We also used trajectory inference to illuminate 
transcriptomic heterogeneity within Cd24a-positive tumor 
cells. Two major subpopulations, consisting of states ABCD 
and EFG, were resolved (Fig. 1F, G). The former is charac-
terized by increased expression of postmitotic granular cell 
markers (eg, “GNP_mature” signature from10), the latter 
by increased expression of glial, oxidative phosphoryla-
tion (OxPhos) and ribosomal genes (Fig. 1H, I). This bisec-
tion is relevant at the therapeutic level. It is reflected by the 
VIS_down gene signature, which contains 65 differentially 
expressed genes from those SHH-MB tumor cells that re-
spond most sensitively to treatment with the Smo inhibitor 
vismodegib14 (Fig. 1I; see Supplementary Figure 2 for de-
tails on deriving VIS_down).

Gene functional classification identified the nontumor 
cells of clusters 7 and 8 as glial cells and immune cells, 
respectively (Fig. 2A). Based on the enrichment of typical 
marker genes, macrophages were revealed as the most 
prevalent cell type of cluster 8 (Fig.  2B, C). This is con-
sistent with a macrophage-dominated immunological 
landscape in SHH-MB.24–26 Immune cells accounted for 
only 1.4% of all cells within the SHH-MB tumors, which 
is in line with similarly low numbers of tumor-infiltrating 
immune cells in murine SHH-MB10 and human SHH-MB.27

Cluster 7 represents a mixture of astrocytes (AS) and 
oligodendrocytes (OL), as shown by comparison to AS and 
OL profiles from several independent datasets28–30 (Fig. 2D, 
E). OL cells of cluster 7 were most similar to oligodendro-
cyte progenitor cells (OPCs) (Fig. 2F), which is in agreement 
with SHH-MB scRNA-seq data from the Gershon group, 
which showed that in oligodendrocytes in murine, SHH-MB 
tumors predominantly show OPC characteristics.14

Transcriptome Reprogramming in SHH-MB 
Tumor Cells

To identify the molecular framework underlying the 
transformation of SHH-MB tumor cells, we compared 
their transcriptomes with those of non-transformed CB 
cells. In total 2620 differentially expressed genes (DEGs) 
were found, of which 75% are upregulated in tumor cells 
(Fig.  3A; Supplementary Table 2). Network analyses of 

http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noaa254#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noaa254#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noaa254#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noaa254#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noaa254#supplementary-data
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this gene set showed the concerted activation of function-
ally linked gene-regulatory circuits. Genes involved play 
important roles in the life cycle of RNA and proteins (ie, 
their synthesis, maturation, modification, transport, lo-
calization, and degradation), in cytoskeletal organization, 

or in G-protein signaling (Fig. 3B). In addition, the cellular 
metabolism is extensively reshaped in tumor cells, in-
cluding lipid, fatty acid. and nucleic acid metabolism or 
major energy pathways (Fig. 3C; Supplementary Figure 3; 
Supplementary Table 3).
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Selective Gene Expression Changes in the 
Tumor Niche

The comparison of SHH-MB cells with a scRNA-seq atlas 
of the developing, healthy mouse brain23 revealed unex-
pected gene expression changes in the TME. For example, 
cell type–specific genes such as Pdgfra (an OPC marker), 
Apoe (an AS marker), and Lgmn (an immune cell marker) 
are strongly expressed in their correct cell type, but also 
in SHH-MB tumor cells (Supplementary Figure 4A–C). 
Conversely, many upregulated DEGs from tumor cells be-
come activated in tumor glia (cluster 7) and immune cells 
(cluster 8), but not in the corresponding cell types from 
healthy tissue. These include genes involved in protein bi-
osynthesis (eg, Eef1a1, Rpl13a), in protein folding and traf-
ficking (eg, Dnaja1, Hspa8, Ppia; Supplementary Figure 4E), 
or in mitochondrial electron transport (eg, Cox6c, Ndufa4). 
Interestingly, we also found genes that are linked to extra-
cellular vesicles—eg, the tetraspanin genes Cd9, Cd81, and 
Cd63 (Supplementary Figure 4D), which encode EV mem-
brane proteins—or genes like Atp5b, Npm1, or Ran (Fig. 4A), 
whose products are enriched as cargo of large oncosome 
EVs.31 This affects 71 genes that are upregulated in tumor 
and glia cells (including 13 OxPhos genes; P = 7.6E-15), and 
104 genes that are upregulated in tumor and immune cells 
(Supplementary Figure 5; Supplementary Table 4).

Extracellular Vesicles and a Related Gene 
Expression Signature in MB

The mutual activation of EV-related genes could reflect 
an EV-based transfer of information between cells in the 
SHH-MB tumor niche. EVs have been recognized as impor-
tant mediators of metabolic adaptations in cancer cells. 
The oncogene MYC plays an important role in the meta-
bolic reprogramming of cancer cells, and activation of MYC 
in stromal cells is transmitted by tumor cell–derived large 
oncosomes.32 Upregulated DEGs from murine SHH-MB 
show overlaps with EV proteomes (eg, the top 100 EV pro-
teins from Vesiclepedia [http://microvesicles.org]), as well 
as with a MYC-like protein-signaling signature, which is as-
sociated with rapid death for subtypes of SHH and Group 3 
MB9 (Supplementary Figure 6). Strikingly, upregulated 
DEGs in SHH-MB show almost 90% overlap with the pro-
teome profile of large oncosomes from human prostate 
cancer cells32 (Fig.  4B; Supplementary Table 5). Many of 
these overlapping gene/protein pairs are involved in met-
abolic processes, for example Gapdh/GAPDH, Ldhb/LDHB, 
Mdh1/MDH1, and Tkt/TKT (Fig. 4C).

To test the hypothesis that gene expression changes 
in the TME of MB tumors can result from an EV-mediated 
process, we used a co-culture system of Oli-neu, a mu-
rine oligodendrocytic cell line, and 2 MB tumor cell lines. 
These were D341, a human cell line representing Group 3 
MB, and MB1, one of several murine SHH-MB short-term 
cell cultures that we established from tumors of Atoh1-
cre:SmoM2 mice at postnatal day P12. All cells were in-
cubated in a transwell system in serum-free conditions 
that allows the exchange of EVs (Fig. 4D). As a control, 
each cell line was kept as a monoculture in the same 
system. After an incubation period of 4 days, total RNA 

was isolated from mono- and co-cultivated cells and ana-
lyzed by sequencing bulk mRNAs (mRNA-seq) in order 
to determine changes in the respective gene expression 
patterns. In the D341/Oli-neu co-culture 3570 DEGs were 
identified in the former, and 457 DEGs in the latter cells, 
while in the MB1/Oli-neu co-culture 705 and 159 DEGs 
were identified in the former and latter cells, respectively 
(Supplementary Table 6). Furthermore, we were able to 
identify 79 genes that behave identically in Oli-neu cells 
when co-cultured with D341 and MB1 cells and form a 
tight network that is centered around the transcription 
factor AP-1 (Supplementary Figure 7). AP-1 is an ubiqui-
tous transcription factor encoded by Jun/Fos and plays 
an important role in glial cell proliferation and cell sur-
vival of oligodendrocytes.33,34 D341 cells showed almost 
2000 upregulated DEGs in response to Oli-neu co-culture 
(Supplementary Table 6). Further analysis of the affected 
gene networks revealed a striking correspondence with 
the metabolic reprogramming of SHH-MB cells in our 
mouse model (Fig.  4E; cf. Fig.  3B). A  Gene Ontology 
analysis of the 500 most significant upregulated genes 
in the co-culture revealed the following terms, among 
others: “eukaryotic translation elongation” (REACTOME; 
67 genes; P = 5.102E-80), “ribosome” (KEGG; 63 genes; 
P  =  2.805E-77), “metabolism of proteins” (REACTOME; 
133 gene; P  =  3.825E-29), “glucose metabolism” 
(REACTOME; 16 genes; P = 1.968E-9), or “unfolded pro-
tein binding” (GO_MF; 19 genes; P = 1.002E-9). As an ex-
ample of a mutually activated gene network in D341 and 
Oli-neu cells, the “ATF-2 transcription factor network” 
(BIOCARTA; 12 genes; P = 8.885E-8), which contains FOS, 
JUN and DUSP1, was also found among these top 500 
DEGs in D341 cells (cf. Supplementary Figure 7).

To directly prove EV release in these cells, we collected 
cell culture supernatants and purified EVs by differential 
ultracentrifugation. Size and concentration of EVs were 
determined for 3 subfractions, namely LV, MV, and sEV, by 
nanoparticle tracking analysis (Supplementary Figure 8A). 
While vesicle size was similar in the 3 cell lines, in relative 
terms about 3.3 times more LV were found in MB1 and 
about 1.5 times more sEV in Oli-neu cells. To confirm the 
nature of these EVs, we performed western blot analysis 
in whole cell lysates and purified EV subfractions of D341 
and MB1 cells (Supplementary Figure 8B). Specific marker 
proteins such as Rgap1, alpha-actinin-4 (LV), ALIX and 
Syntenin (sEV), or Tsg101 (LV and sEV) were enriched in 
the corresponding subfractions; yet there are pronounced 
differences in the proteomic profiles of distinct EV popu-
lations in the 2 MB cell lines. To validate the release of EVs 
by MB tumor cells, we performed transmission electron 
microscopy (TEM). Ultra-thin sections of cells grown on 
poly-L-lysin coated Aclar films showed LV/MV-type vesicles 
released by D341 cells (Fig. 4F; Supplementary Figure 9A), 
MB1 cells (not shown), or by Daoy, a human SHH-MB cell 
line (Supplementary Figure 9B).

Extracellular Vesicle Signatures in MB Patients

Based on the above observations, we developed a gene ex-
pression signature—termed EVS, or Extracellular Vesicle 
Signature—to examine human patient data. EVS contains 

http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noaa254#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noaa254#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noaa254#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noaa254#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noaa254#supplementary-data
http://microvesicles.org
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noaa254#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noaa254#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noaa254#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noaa254#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noaa254#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noaa254#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noaa254#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noaa254#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noaa254#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noaa254#supplementary-data
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38 genes, the selection criteria of which are explained in de-
tails in the Supplementary Methods section. In summary, 
EVS signature genes were selected according to the fol-
lowing criteria: (i) they were found in the top 20th percen-
tile of the most significantly activated genes in SHH-MB 
cells compared with healthy cerebellar cells; (ii) they con-
stituted exact matches or were functionally closely related 
to the proteome signature of large oncosome proteins of 
prostate cancer cells; (iii) they could be linked to other EVS 
members through stringent functional association net-
work analyzes (eg, Naca; see Fig. 4E) and/or had been pre-
viously linked to tumorigenic processes (eg, Tpt1, tumor 
protein, translationally controlled 1; Fig. 4E). It shows over-
laps with different gene sets from the Molecular Signatures 
Database MsigDB, such as metabolic process, secretome, 
MYC targets, stem cell annotations and a number of 
cancer signatures (Supplementary Figure 10A). EVS and 
a derived EVS score (0 to 1, or lowest to highest) was ap-
plied to bulk mRNA expression data from the International 
Cancer Genome Consortium (ICGC) cohort (148 patients) 
and MAGIC cohort (763 patients).3 These analyses revealed 
a pronounced intertumoral heterogeneity of EVS, both 
across all 4 and within individual MB subgroups. Patients 
with SHH-MB tumors showed the highest and patients with 
Group 4 tumors the lowest average EVS score, while EVS 
ranged from extremely low to high scores in Group 3 pa-
tients (Supplementary Figure 10B). Large differences in EVS 
expression levels were also observed within individual sub-
groups. In particular we found cases with significantly in-
creased EVS expression in the SHH and Group 3 subgroups 
of the ICGC cohort (Fig. 5A). We next expanded and refined 
this analysis to the 12 subtypes of the MAGIC cohort (Fig. 5B). 
Here the EVS score was highest in subtypes SHH-alpha and 
G3-gamma (Fig. 5C). This pronounced intertumoral hetero-
geneity of EVS led us to investigate whether heterogeneity 
also exists at the cellular level within single MB tumors. 
The analysis of human scRNA-seq data10 indeed revealed 
a comparable range of intertumoral EVS heterogeneity as 
found in the large MB cohorts (Supplementary Figure 11). 
More importantly, it also showed that even within indi-
vidual tumors there can be considerable differences in EVS 
levels between tumor cell subpopulations. We confirmed 
intratumoral heterogeneity of EVS in published scRNA-
seq data of the SmoM2 MB mouse model14 and in our own 
scRNA-seq data (Supplementary Figure 12). Interestingly, a 
clear anticorrelation between expression of EVS, the mat-
uration status and vismodegib-sensitivity of tumor cells is 
observed (Supplementary Figures 2, 12).

EVS as a Prognostic Tool in MB

We next investigated whether high EVS expression levels 
are a risk factor for the survival of MB patients, and com-
pared EVS with known other risk factors. Indeed, there 
was a positive correlation between MYC amplification 
with a high EVS score and increased mortality of the pa-
tients (ICGC cohort: Fig. 5D; MAGIC cohort: Supplementary 
Figure 13A). In addition, EVS-high correlated with a 
high incidence of metastases, especially in Group  3 and 
Group 4 tumors (Fig. 5E). In contrast, there were no clear 
links between EVS and other known risk factors, including 

chromosomal abnormalities such as isochromosome 17q, 
in the different MB subgroups/subtypes represented in the 
MAGIC cohort (Supplementary Figure 13A).

Finally, by correlating EVS with clinical data of both co-
horts we were able to demonstrate its suitability as a 
prognostic tool in MB. In both cohorts EVS represents an in-
dependent, strong risk factor (hazard ratio 12.2 in ICGC, and 
17.8 in MAGIC, respectively; Fig. 6A). Kaplan–Meier survival 
curves clearly illustrate the significant difference in clinical 
outcome of EVS-high versus EVS-low patients. This was true 
when considering all 4 subgroups (Fig. 6B), but especially 
pronounced for Group 3 and Group 4 patients (Fig. 6C).

Discussion

The results of our study are conceptually relevant in 2 
ways: on the one hand with regard to general aspects of 
tumor biology and intercellular communication within the 
tumor niche, and on the other hand with regard to prog-
nostics, and potentially diagnostics, of MB.

One lead observation is the marked similarity between 
the protein signature of large oncosomes generated by 
human prostate cancer cells and the EVS signature found 
in a murine CNS tumor. This implies a broader relevance of 
this shared signature, and one can easily anticipate its ex-
istence in additional, unrelated tumor entities. Indeed, pre-
liminary data from our group indicate that there are other, 
unrelated tumors in which EVS expression is linked to pa-
tient survival (data not shown).

Tumor-secreted EVs are known to be important medi-
ators of intercellular communication in both local and dis-
tant tumor microenvironments.35 A  novel aspect of our 
study is to uncover an epigenetically stable anchoring of 
“foreign” gene expression patterns in both cancer and 
noncancer cells within the tumor niche. This holds true for 
several genes of the tumor-derived EV signature, which are 
upregulated in tumor-associated glial and immune cells, as 
well as for canonical glial and immune cell–specific genes, 
which are activated in the tumor cells. There are several 
possible scenarios that can explain these mutual adapta-
tions of gene expression programs. On the one hand, these 
could occur as a result of EV-mediated communication. 
However, it remains largely speculative how such changes 
would be stably fixed in the recipient cells. Another ex-
planation is provided by an elegant study that was pub-
lished only recently, while our paper was being prepared. 
According to this study, so-called TuAstrocytes, or tumor-
associated astrocytes, arise through trans-differentiation 
of transformed GNPs in SHH-activated MB.36

Our study establishes EVS as a prognostic tool in MB 
with high predictive power, which achieves high levels of 
significance especially for tumors in Group 3 and Group 4. 
This is all the more important, since for the latter subgroup 
there are hardly any robust prognostic tools so far.37 This be-
comes clear in the analysis of the MAGIC cohort, in which 
the authors used their 12-subtype spectrum to determine 
the likelihood of survival of the affected patients.3 There 
was no statistically significant difference in overall survival 
(OS) between the Group  4 subtypes G4 alpha, beta, and 

http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noaa254#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noaa254#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noaa254#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noaa254#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noaa254#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noaa254#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noaa254#supplementary-data
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gamma (P-value 0.13). In striking contrast, the retrospec-
tive classification of the same patients using EVS revealed 
a highly significant difference in OS between EVS-high and 
EVS-low groups (P-value 0.00024; Fig.  6C). Similarly, the 
classification of Group  3 patients according to subtypes 
G3 alpha, beta, and gamma achieved a much lower signifi-
cance level (P-value 0.0362) than the stratification according 

to EVS-high versus EVS-low (P-value 0.00013; Fig. 6C). The 
prognosis for Group 3 patients belonging to the EVS-high 
group is even worse than that of patients in the same sub-
group with focal MYC amplification (P-value 0.0264).3 In 
this context it is interesting that key genes involved in gly-
colysis are upregulated in Group 3 tumors; of these genes, 
LDHA (encoding subunit A of lactate dehydrogenase/LDH) 
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MYC or MYCN, TP53 mutations, survival/death or gender. (E) Overlaid correlation plots of EVS score vs metastatic status in the 4 subgroups or for 
the whole cohort. Pearson correlation coefficients (r) and t-test p-values (p) are reported.
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Fig. 6  Prognostic value of EVS. (A) Forest plots showing hazard ratios and 95% confidence intervals associated with the indicated variables for 
the ICGC cohort (left) and MAGIC cohort (right). The hazard ratio HR was calculated using the EVS score as a continuous variable in a multivariate 
Cox regression model of overall survival. (B) Kaplan–Meier curves showing the overall survival probabilities of patients in EVS-high versus EVS-
low for the entire cohort, or (C) for the individual MB subgroups separately. The P-values were determined using a log-rank test, where P < 0.05 
was considered significant (*).
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expression positively correlated with MYC and is associated 
with poor prognosis of Group 3 patients.38 Our study estab-
lished Ldhb (encoding LDH subunit B) as one of the 38 EVS 
signature genes (Fig. 5C), which suggests that upregulation 
of LDH is common in Group 3 and SHH high-risk tumor sub-
types (Fig. 5D).7 Cell culture models and a limited number of 
preclinical studies show that various chemical compounds 
have the potential to block or at least partially limit the for-
mation and release of EVs. However, the specificity/selec-
tivity of many of these compounds is questionable, which is 
not surprising in view of the complex biogenesis pathways 
of different EV classes. More extensive studies are now re-
quired to examine the activities of these drugs, also in com-
bination with other inhibitor classes, in a broader range 
of in vitro and in vivo models. In this context, our study 
represents a promising starting point for such studies in 
medulloblastoma.

Taken together, the above results underline that patient 
classification according to EVS enables high-risk patients 
to be identified in each of the 4 molecular subgroups of 
MB. The identification of EVS as a novel clinicobiological 
trait broadens our understanding of MB and may be appli-
cable to future molecular diagnostics, clinical risk stratifi-
cation, and translational research.
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