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Abstract

The lateral hypothalamic area (LHA) is a heterogeneous brain structure extensively studied for its 

potent role in regulating energy balance. The anatomical and molecular diversity of the LHA 

permits the orchestration of responses to energy sensing cues from the brain and periphery. Two of 

the primary cell populations within the LHA associated with integration of this information are 

Orexin (ORX) and Melanin Concentrating Hormone (MCH). While both of these non-overlapping 

populations exhibit orexigenic properties, the activities of these two systems support feeding 

behavior through contrasting mechanisms. We describe the anatomical and functional properties as 

well as interaction with other neuropeptides and brain reward and hedonic systems. Specific 

outputs relating to arousal, food seeking, feeding, and metabolism are coordinated through these 

mechanisms. We then discuss how both the ORX and MCH systems harmonize in a divergent yet 

overall cooperative manner to orchestrate feeding behavior through transitions between various 

appetitive states, and thus offer novel insights into LHA allostatic control of appetite.

1. Introduction

The regulation of energy intake is critical to survival and requires coordination between the 

peripheral and central nervous system. As such, a complex interplay exists between 

regulatory mechanisms in order to mediate appropriate feeding-related behaviors. Typically, 

these regulatory mechanisms influence energy balance by coordinating feeding behaviors 

depending on perceived needs, which requires transitioning to relevant behavioral states 

while suppressing the performance of unnecessary inapposite actions. However, these 

mechanisms are susceptible to dysfunction as homeostatic regulation is vulnerable to 

biological and environmental factors that influence energy balance. For example, factors 

arising from an obesogenic environment (e.g., excess consumption of energy-dense hedonic 

foods) may dampen homeostatic regulation, such that regulatory pathways that normally 
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control energy intake are incapable of defending the body against excess energy storage [1–

3]. In the absence of increased expenditure, this leads to weight gain, obesity, and associated 

comorbidities. In this review, we discuss the role of the lateral hypothalamic area (LHA) as a 

critical site in the central nervous system (CNS) that integrates both internal homeostatic 

controls as well as input from environmental and motivational signals to mediate behavioral 

choices as they relate to the procurement, intake, and metabolism of food.

Early studies on the LHA demonstrated that electrical stimulation of this region profoundly 

increased food consumption, whereas LHA disruption resulted in dramatic under-

consumption of food [4, 5]. Therefore, the LHA was initially characterized as a “feeding 

hotspot”. However, in addition to influencing energy intake, stimulation to this region also 

invigorated other motivated behaviors such as drinking, physical activity, and copulation [6, 

7]. More recent studies have shown that the LHA expresses a wide variety of molecularly 

distinct cells that function to coordinate a vast array of motivated behaviors. Within the 

LHA, Orexin/hypocretin (ORX) and Melanin Concentrating Hormone (MCH) neurons play 

an important role in driving procurement and ingestion of food: In what follows, we describe 

the distribution and activity of these populations of LHA neurons and examine how they 

function to independently and cooperatively mediate the range of behavioral state transitions 

necessary for energy regulation.

2. Characterization of ORX and MCH neurons in LHA

The lateral hypothalamic area (LHA) is a large diencephalic structure that encompasses 

close to 50% of the hypothalamus and houses a complex interconnected circuit, in which 

each cell averages approximately >16,000 synapses [8]. While studies continue to elucidate 

the molecular diversity of the LHA, within this region, ORX and MCH expressing cells 

display a similar distribution and project to numerous analogous CNS targets; however, 

despite this, these two orexigens drive distinct appetitive behaviors.

2.1 Anatomy of LHA

The LHA spans the entire rostral-caudal extent of the hypothalamus—it is an extensive and 

heterogeneous area, complexly interconnected with mediobasal hypothalamic nuclei 

including the ventromedial (VMH), ventral premammillary (PMV) and arcuate nucleus 

(ARC). The LHA emerges anterior to the ventral mesencephalon and is positioned posterior 

to the preoptic area, though its demarcation is complicated by the lack of a discernable 

boundary. In the hypothalamus, the LHA borders lateral to the dorsomedial hypothalamus 

(DMH) and paraventricular nucleus (PVN) and dorsal to the PMV and VMH, and can be 

divided into rostral (tuberal) and posterior portions [13]. The LHA is ventral to the zona 

incerta (ZI) and lateral to the mediothalamic tract. The subregion that adjoins the fornix is 

known as the perifornical hypothalamic area and is located within the ventromedial extent of 

the LHA. The LHA is ideally located to integrate physiological, gastrointestinal, and 

sympathetic peripheral signals - such as those relayed from the ARC - with forebrain and 

mesencephalic motivation and reward signals (for reviews, see [14–16]). Within the LHA, 

two of the most well characterized neuronal populations are ORX and MCH (Figure 1), 

which have been shown to influence arousal, energy balance and goal-directed behavior.
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2.2 Distribution of ORX and MCH neurons within the LHA

MCH cells were the first population determined to be predominantly located within the ZI 

and LHA. MCH neurons are widely dispersed in the dorsolateral LHA extending in an 

anterior to posterior manner where they terminate medial to the subthalamic nucleus. 

Additionally, a more moderate number of MCH cells are located medial to the internal 

capsule, whereas a smaller proportion of neurons are located in the perifornical area [18, 

24]. ORX expressing cells are located in the DMH and also throughout the LHA, though 

they exhibit specifically dense concentrations in the perifornical area and the magnocellular 

nucleus [19, 20]. A small number of cells have been also been revealed in posterior regions 

of the hypothalamus and subincertal nucleus that demarcates the border between the 

hypothalamus and thalamus [47]. Thus, both MCH and ORX cells are located in many of the 

same subdivisions of the LHA, however while both types of cells equivalently populate the 

LHA [9] and can be intermingled within it, they are non-overlapping (Figure 1).

2.3 Connectivity of LHA ORX and MCH cells

MCH cells receive input from first order feeding neurons originating from the ARC. This 

includes projections from orexigenic Neuropeptide Y (NPY) as well as Agouti-related 

peptide (AGRP) neurons. The influence of these orexigenic first order neurons are complex. 

For example, NPY peptide exerts an inhibitory influence on MCH cells in LHA [21] while 

administration of MCH peptide increases NPY in hypothalamic section in vitro [22]. These 

findings suggest that NPY and MCH regulate one another’s activity to coordinate food 

intake. Unlike NPY, intracerebroventricular (ICV) administration of AGRP peptide enhances 

LHA MCH mRNA [23]. MCH neurons also receive projections from anorexigenic signals 

such as α-melanin-stimulating hormone (α-MSH) [17, 19]. Thus, LHA MCH neurons 

interact with first-order feeding signals in the ARC to coordinate food intake.

MCH has its actions by binding to its receptors, MCH-1R and MCH-2R. Notably however, 

MCH-2R is either absent or functionally inactive in rodents. MCH-1R is expressed 

throughout the brain, including cerebral cortex, striatum, hippocampus, amygdala and 

numerous mesencephalic and rhombencephalic regions [18, 24, 25] (Figure 2). In respect to 

the regulation of appetite control, MCH-1R expression in the ventral striatal nucleus 

accumbens shell (ACBs) has been demonstrated to be both necessary and sufficient for food 

intake [26, 27]. In addition, activation of LHA MCH cells increases dopamine turnover in 

the ventral striatum, which is thought to encode the nutrient and reward value of sugars [28]. 

The projection patterns of MCH cells can be distinguished based on co-expression of other 

molecules, such that the vast majority of efferents to forebrain targets also express both 

neurokinin 3 and CART [29]. MCH cells also project to other areas important for the 

regulation of food intake such as PVN [30] and parabrachial nucleus [31]. Furthermore, 

MCH neurons project to myelencephalic targets that coordinate orofacial movements and 

mastication, including dorsal motor vagus, facial and hypoglossal nuclei [32]. Additionally, 

through polysynaptic connections to the hindbrain and spinal cord, MCH neurons also 

regulate brown adipose tissue (BAT) and influence basal metabolic rate and thermogenesis 

[33–35]. Conversely, MCH LHA cells display few projections to areas on the CNS that 

regulate arousal such as the locus coeruleus (LC) and periaqueductal gray (PAG) [36–38].
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ORX cells also receive neuronal afferents from the ARC, including from NPY, AGRP and 

α-MSH cells [17, 19, 39]. In LHA slices NPY also inhibits ORX activity [40], which is 

unexpected considering both of these neuropeptides evoke feeding. ORX ligands are 

synthesized into two forms, ORX-A and ORX-B, of which ORX-A shows a tenfold higher 

affinity for the orexin receptor OxR1, whereas both ligands show similar affinity to the 

orexin receptor OxR2 [20, 41]. Both OxR1 and OxR2 are expressed in the amygdala, bed 

nucleus of the stria terminalis (BNST) and ventral tegmental area (VTA). However, only 

OxR1 is expressed in the medial prefrontal cortex (mPFC) and the hippocampus (HPC), 

while OxR2 is also expressed in hypothalamic regions such as the ARC and PVN. Orexin 

neurons drive feeding behavior through their hypothalamic innervations including to the 

ARC, PVN and DMH [42, 43], as well as the VTA [44] and mPFC [45] to attenuate post-

ingestive inhibitory feedback [46] and promote cue-evoked overeating behaviors [1], 

respectively. Moreover, ORX cells in LHA project to numerous regions that modulate 

arousal such as the LC, PAG and septal nuclei [47, 48]. Finally, through polysynaptic 

brainstem projections, LHA ORX cells can regulate BAT [49], and white adipose tissue 

(WAT), and also influence activity of the gastrointestinal system [50], pancreas and liver 

[51–53].

To date, it remains to be determined whether subpopulations of LHA MCH and ORX cells 

preferentially project to specific target regions to influence behavior mediated by the release 

of their respective peptides [10–12]. We suggest that a combination of influences over their 

projection targets together with the inherent properties of these LHA neuropeptide 

expressing cells endows them with the capacity to flexibly mediate a broad appetitive 

behavioral sequence (Figure 3). That is, we propose ORX plays a critical role in 

coordinating preparatory responses relevant to acquiring food, whereas MCH orchestrates 

consummatory behaviors more vital to prolonging food intake and the metabolism of food. 

This coordinated action is posited to take place via interactions with energetic signals (e.g., 

glucose), as well as reward and hedonic pathways in the brain (e.g., mesostriatal dopamine).

3. ORX and MCH cells display distinct electrophysiological, molecular and 

synaptic properties

Although both ORX and MCH exhibit orexigenic properties, in many situations the actions 

of these two populations of cells are different or even opposing. For instance, MCH cells fire 

under conditions of paradoxical sleep [54] and drive energy conservation [55–57], whereas 

ORX neurons have been attributed to invigorating wakefulness [42] and promoting energy 

expenditure [58]. Differences in the biomolecular properties of these classes of LHA cells 

may underlie their capacity to appropriately switch between vastly different motivational 

states.

3.1 Electrophysiological and molecular characteristics of ORX and MCH cells

On binding to OxR1, ORX activates Gs and Gq pathways, activity of which includes 

triggering intracellular IP3 and DAG cascades, resulting in activation of protein kinase C and 

Ca2+ signaling and culminating in membrane depolarization [43, 59, 60]. OxR2 signaling is 

also mediated through Gi/o signaling cascades, which opens K+ channels and inhibits 
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adenylyl cyclase activity to reduces synthesis of cAMP and corresponding cell activity [60–

63]. At the same time, both OxR1 and OxR2 are capable of suppressing G-protein regulated 

inward rectifier channel (GIRK) signaling that typically hyperpolarize and decrease neuronal 

excitability [64, 65]. Accordingly, the overall result of ORX activity reflects an attenuation 

of K+ conductance [66–68] and triggering of Na+/Ca2+ exchange currents [43, 59] leading 

to net excitatory effects of both OxR1 and OxR2 on neuronal activity [60]. MCH binds to 

MCH-1R activating Gi/o and Gq pathways, triggering a range of downstream effects. This 

includes enhanced intracellular Ca2+ through IP3 synthesis, reductions in forskolin-

mediated elevations in cAMP, and activation of MAPK [25, 69, 70]. Furthermore, in contrast 

to OxR2, MCH-1R activation has been shown to evoke strong GIRK current [71]. Due in 

part to this broad competitive intracellular action, cellular effects following MCH-1R 

activation can be either excitatory (e.g., through the increase in Ca2+), or inhibitory (e.g., by 

triggering GIRK currents) [37, 69].

Relative to MCH, ORX neurons demonstrate a slightly depolarized resting membrane 

potential [72]. ORX cells also exhibit spontaneous intrinsic activity by rhythmically 

generating action potential, whereas MCH containing neurons usually exhibit low activity 

with few to no spikes at rest [72,73]. Accordingly, MCH neurons are slightly more 

hyperpolarized than ORX cells recorded under similar physiological conditions and require 

activation or disinhibition from synapsing cells in order to fire. When stimulated, the vast 

majority of ORX cells co-release glutamate as well as other regulatory and neurotransmitter 

signals including Neuronal Pentraxin (NARP) and dynorphin [83]. The co-release of 

dynorphin in these cells may act in a negative feedback mechanism, dampening the 

activation of ORX neurons [84]. Conversely, ORX cells can also function in a positive 

feedback manner, whereby OxR2 activity can itself promote ORX signaling, which may 

maintain activity of these cells for a prolonged period of time. Transcriptional profiling 

studies further reveal that almost all ORX containing neurons co-express the protein coding 

gene implicated in metabolic regulation of nesfastin-1 (NUCB2), the endogenous opioid 

peptide proenkephalin (PENK) as well as the opioid polypeptide hormone, prodynorphin 

(PYDN) [85]. Furthermore, ORX neurons express receptors for GABA, glucocorticoids, 

NPY, melanocortins and leptin [86]. The vast majority of MCH cells also co-express 

glutamate [87] and vesicular glutamate transporters vGLUT1 and vGLUT2 [86]. A smaller 

proportion release GABA [88] and contain glutamate decarboxylases, GAD65 and GAD67 

[65], the rate limiting enzymes for synthesis of GABA from glutamate. However, MCH 

neurons do not overlap with vGAT-expressing cells in the LHA, nor do they produce the 

vesicular transporters vGAT or vMAT [87] that are typically necessary for the synthesis and 

release of GABA; therefore, the mechanism controlling GABA release via MCH is as yet 

unknown. MCH neurons also co-release other peptidergic signals including CART, galanin, 

and nesfatin, and express receptors for GABA glucocorticoids, NPY, melanocortins, and 

leptin [85,86,90]. In addition to synaptic communication, MCH neurons can influence 

volume transmission [91], a phenomenon in which peptide release into the extracellular fluid 

can broadly affect CNS activity via transmission through the ventricles [92].

Interestingly, ORX and MCH containing neurons reciprocally synapse in the LHA and thus 

can mediate the activity of each other [74]. In slice preparation, application of ORX peptide 

Lee et al. Page 5

Physiol Behav. Author manuscript; available in PMC 2022 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



evokes sustained membrane depolarization and increases spike frequency of MCH cells by 

elevating glutamate release [21]. However, this activation occurs only in a subpopulation 

(≈30%) of MCH cells, whereas the remainder are either unaffected or inhibited by ORX 

peptide administration [75]. The inhibitory influence of ORX over MCH cells reflects 

increased GABAergic tone, perhaps via local circuit control of GAD65 expressing cells. 

Additionally, MCH peptide can inhibit ORX neuronal activity, though this occurs only when 

ORX cells are highly active (i.e., via activity-dependent inhibition) [77]. An additional 

mechanism in which these signals could be controlled is through network electrical 

oscillations [76]. At lower oscillation frequencies (<10 Hz), ORX cells show a proclivity for 

stimulation [78]. Conversely, high frequency gamma oscillations (30–200 Hz) specifically 

silence ORX cells, while promoting activity in MCH neurons [78]. Thus, reciprocal 

inhibitory signaling [75, 77] and frequency-dependent modulation [78–80] could enable fast 

switching between different physiological and behavioral states that are respectively 

controlled by ORX and MCH cells.

3.2 ORX and MCH responses to energy status

The control of blood glucose is vital for regulating the energy status of an organism and is 

determined in part by glucose-sensing cells in the hypothalamus [93]. ORX cells are 

stimulated in response to hypoglycemia, including when evoked by insulin treatment [94–

97], and promote glucose utilization under fasted but not ad-libitum testing conditions [98]. 

Consistent with the reduced activity of the ORX system in response to energy surfeit, 

approximately 50% of ORX cells are hyperpolarized when glucose levels are high [94, 97, 

99]. On the other hand, MCH neurons are excited in response to glucose [99, 100] and are 

necessary for mediating the metabolic value of sugars [28]. However, this latter finding may 

reflect the co-release of other neurotransmitter or peptide signals as MCH-1R deletion does 

not influence glucose-conditioned flavor preferences [223].

In the periphery, the major pre-prandial signal controlling meal initiation is ghrelin, a 28-

amino acid peptide that is secreted from gastric mucosa cells in the stomach. Ghrelin works 

by binding to its receptor, growth hormone secretagogue receptor (GHSR). When binding to 

GHSR, ghrelin undergoes posttranslational octanoylation via the membrane bound enzyme, 

ghrelin O-acyltransferase (GOAT) [103, 104]. Two receptor subtypes have been identified – 

GHS-R type 1a, which is a G-protein coupled receptor, the activation of which leads to 

phosphorylation and N-linked glycosylation [105, 106]: and GHS-R type 1b, a 

pharmacologically inert and truncated form of the type 1a receptor [105, 107, 108]. Ghrelin 

is thought to influence hypothalamic activity either directly via the fenestrated capillaries of 

the median eminence [109], or indirectly through vagal afferents [110]. Bath application of 

ghrelin enhances ORX cell firing [97] and influences glucose sensitivity in ORX cells [94], 

whereas ICV ghrelin infusion leads to an increase in the marker for neuronal activity, FOS 

(protein product of c-fos gene), in ORX but not MCH cells [111, 112]. Moreover, ghrelin-

evoked feeding is dependent upon intact orexin signaling in the LHA [113, 114]. By 

contrast, ICV ghrelin is still able to evoke food intake in MCH-1R KO mice. Thus, ghrelin-

ORX but not MCH interactions appear critical for regulating appetite.
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Peripheral satiety signals also differentially influence the ORX and MCH systems. 

Cholecystokinin (CCK) is secreted in response to nutrients in the intestinal lumen [116, 117] 

where it delays gastric emptying and inhibits food intake. Vagal afferent neurons are targeted 

by peripheral signals for the modulatory control of food intake and ORX administration can 

inhibit the influence of CCK on these neurons [118]. CCK activates ORX cells via the CCK-

A receptor [119], whereas it has been shown to directly downregulate MCH-1R on vagal 

afferent neurons [118] and inhibit MCH release [120–123]. The pancreatic peptide amylin 

and its receptor salmon calcitonin (sCT) have an inhibitory influence over the LHA; 

however, while both amylin and sCT decrease mRNA expression of ORX, only sCT reduced 

expression of MCH mRNA [124]. Finally, the adipokine leptin is synthesized in response to 

the proportion of body fat and signals energy surfeit. In the LHA, leptin exerts its influence 

via the receptor, LepRb, which several studies suggest synapses with ORX but not MCH 

cells [16, 125, 126,127]. Pretreatment with leptin can partially block ORX-A and -B evoked 

feeding. However, findings are mixed with respect to the mechanism of action of LepRb on 

ORX cells. That is, while immunoreactivity for LepRb has been noted in ORX cells [128, 

129], the antisera used in these studies binds both to the long signaling form of LepRb, as 

well as its short non-signaling isoform. Furthermore, using genomic approaches that 

specifically label LepRb-expressing neurons, ORX cells appear not to express LepRb nor are 

they directly regulated via leptin [127, 130]. By contrast, LepRb is expressed in MCH 

neurons and may indirectly inhibit MCH activity via disrupting endocannabinoid signaling 

[86, 131]. Interestingly, the increased adiposity resulting from leptin depletion is rescued in 

mice deficient in MCH. However, while a drastic reduction in body weight relative to ob/ob 

mice was revealed, deletion of MCH did not attenuate hyperphagia, but rather reflected a 

striking increase in energy expenditure.

3.3 ORX and MCH interactions with mesostriatal reward circuitry

Reward circuitry in the brain plays a fundamental role underlying the motivational and 

hedonic components of food intake and under certain circumstances promoting excess 

energy intake independent of metabolic need. Dopamine (DA) cells in the VTA are believed 

to play a particularly important role in modulating reward learning and motivation. In the 

LHA, ORX cells project to the VTA [47, 132–134] and are known to facilitate DA signaling 

[135]. Application of ORX-A onto VTA DA cells leads to an increase in NMDAR-mediated 

synaptic transmission [136] and underlies projection-specific targeting to mesostriatal targets 

[137]. Moreover, 24 hr fast results in an increase in NMDAR current amplitude in VTA DA 

cells, which can be blocked by bath application of OxR1 antagonist [95]. Ghrelin can also 

promote DA signaling in VTA, however these effects are dependent on OxR1 signaling, 

which suggests a critical role for ORX cells in mediating interactions between ghrelin and 

DA signaling [114, 138]. When administered into VTA, ORX-A enhances meal size by 

suppressing post-ingestive negative feedback resulting from palatable food consumption 

[44]. While OxR1 and OxR2 receptors are expressed in VTA [139–141], the nature of ORX 

modulation remains debated as the vast majority of LHA ORX fibers project though the 

VTA with only a small proportion synapsing directly onto cells within this region [142]. 

This latter finding suggests that modulation via ORX may be volumetric in nature [143, 

144]. Interestingly, DA can also directly modulate ORX activity within the LHA in a 

bidirectional manner, such that low and high concentrations of DA, respectively increase and 
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decrease activity of LHA ORX cells [145]. The ACBs in the ventral striatum is a major 

target of mesencephalic DA and plays a critical role as an interface between feeding and 

reward [146]. OxR2 is densely expressed in ACBs [147] and administration of ORX into 

this region stimulates food intake [148, 149] in part via heightening the hedonic value of 

food [150].

MCH activity within the VTA is complex and not clearly defined. Earlier studies suggested 

cell projections from LHA to VTA displayed moderate expression of MCH-1R mRNA and 

immunoreactive fibers [32, 151]. However, in a transgenic knock-in mouse model, no 

detectable MCH-1R expression in VTA was noted [152]. Consistent with the latter findings, 

application of MCH to VTA neurons was shown to have no effect on their activity. With 

respect to the ACBs, dense LHA MCH innervations have been noted [18] and administration 

of MCH into this region drives feeding behaviors [26]. Moreover, MCH is required for 

ventral striatal DA release that typically proceeds sucrose ingestion and reflects the 

rewarding value of sucrose metabolism [28]. LHA MCH cells that project to ACBs co-

express CART [29], which is noteworthy as CART-immunoreactive neurons in ACBs 

encode drug-associated cues [222]. This may indicate that LHA MCH-CART projections to 

ACBs encode conditioning and environmental cues associated with reward. MCH-1R is 

expressed on both D1 and D2 medium spiny neurons (MSNs) where it acts in an inhibitory 

manner by increasing K+ conductance through Gi/o signaling [27]. Through this 

mechanism, MCH may inhibit ACBs MSNs to promote ingestive behavior. Moreover, MCH 

itself can display an antagonistic role on DA signaling in this region, by reducing 

DARRP-32 phosphorylation [27]. Conversely, it has also been reported that MCH and DA 

may collectively enhance ACBs firing [220]. While the nature of these discrepant findings 

requires further characterization, they may reflect different Gq or Gi proteins with which 

activation of MCH-1R is capable of triggering. Finally, a recent study [222] revealed that 

selective activation of LHA-MCH neuronal projections to ACBs promoted feeding in male 

but not female rats. In addition, ovariectomized females treated with vehicle (but not 

estradiol) displayed increases in food intake upon MCH administration into ACBs. These 

findings indicate that LHA MCH projections to ACBs may serve as a critical target site for 

mediating the sex differentiated effects of MCH-dependent feeding behavior [222].

4.0 ORX and MCH modulation of food-seeking and intake

The nuanced properties discussed above position ORX and MCH cells to support an array of 

orexigenic behaviors necessary for the consumption of food, many of which are functionally 

distinct. Food-seeking, for example, requires the active procurement of food and expends 

energy, whereas consumption requires an animal to appropriately terminate food-seeking in 

order to engage in the act of eating itself. Interactions between ORX and MCH may provide 

the LHA with the capacity to modulate arousal, food-seeking, and consumption to invigorate 

energy intake.

4.1 Arousal

Stimulation of the ORX system through either pharmacological or genetic means enhances 

wakefulness and arousal, whereas it decreases REM sleep [153–155]. Conversely, a loss of 
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ORX neurons greatly augments REM sleep [156] and hypoactivity is noted in response to 

ORX cell ablation [97]. ORX stimulation also enhances energy expenditure [58] and 

disruptions in ORX signaling leads to reduced energy expenditure due to decreased 

locomotor activity [157]. Recently, ORX cell activity has also been shown to predict self-

initiated movements [158]. In contrast to ORX, MCH promotes REM sleep [54] and much 

like MCH gene deletion in ob/ob mice, MCH cell inactivation results in hyperactivity [159, 

160] suggesting LHA MCH cells are typically involved in the suppression of locomotion. 

Moreover, the classical neurotransmitters of the arousal system—noradrenaline and 

acetylcholine—stimulate ORX but silence MCH activity [161].

4.2 Food anticipation and seeking

In order to survive an organism must successfully forage in their environment, which 

requires careful selection among a range of complex behaviors and the capacity to anticipate 

when food will be available. Typically, animals display an increase in locomotor activity in 

the period preceding predictable food availability [162]. This food-anticipatory activity 

(FAA) is under the control of a food-entrainable oscillator, a speculated molecular 

timekeeping mechanism which integrates information of predictable food [163–165]. ORX 

cells display enhanced FOS activity during FAA [166, 167], whereas neuronal ablation 

significantly impairs this phenomenon [166]. Although the brain systems underlying FAA 

remain to be elucidated, it is possible that interactions of ORX neurons with cholinergic and 

monoaminergic circuitry [168] and LHA ORX projections to the tuberomammillary nucleus 

[47] underlie ORX modulation of FAA. Conversely, although MCH-1R deletion generally 

increases locomotor activity during the dark cycle, the MCH system is not required for FAA 

[169].

In addition to anticipating its availability, animals must also successfully acquire food to 

assure that their needs for survival are met. In this regard, the effects of ORX can be 

dependent on the motivational status of the animal—a critical variable when considering 

whether to engage in food acquisition. Thus, under conditions of food restriction but not free 

feeding, peripheral treatment with an OxR1 antagonist in rats disrupted operant responding 

for sucrose under fixed ratio, progressive ratio, as well as cue-induced reinstatement testing 

conditions [170]. While these results are consistent with electrophysiological findings in 

which fasting enhances ORX expression [97, 171], food deprivation is not always necessary 

for ORX modulation of food-seeking. In rats, third ventricle infusion of ORX-A increased 

progressive ratio responding for sucrose pellets, whereas systemic blockade of OxR1 

disrupted performance in this task [172]. The projection targets from that underlie this 

influence over sucrose responding are unknown, but likely reflect broad interactions of LHA 

ORX cells with reward circuitry including basal forebrain circuitry and mesencephalic DA 

[170]. In addition, fourth ventricle infusions of ORX-A also enhanced progressive ratio 

responding, implicating a role for hindbrain ORX signaling in mediating food-seeking 

behavior [173]. Given that ORX-1R and immunoreactive ORX-A fibers are noted in the 

brain stem [47, 174], LHA ORX cell projections to these downstream targets may underlie 

the influence of ORX on motivated food-seeking [173]. MCH appears to play a less 

meaningful role in food-seeking as deletion of MCH-1R has no effect on operant responding 

for sucrose [175, 176]. Similarly, pharmacological blockade of MCH in dorsal hippocampus 

Lee et al. Page 9

Physiol Behav. Author manuscript; available in PMC 2022 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



was found to be without effect on food-seeking in a spatial working memory task [177]. 

Furthermore, deletion of MCH-1R or systemic treatment with an MCH-1R antagonist does 

not influence the capacity of a sucrose-paired conditioned stimulus (CS) to augment ongoing 

operant performance (i.e., Pavlovian-instrumental transfer) [175]. MCH-1R deletion has 

however been shown to enhance responding under progressive ratio testing conditions [176], 

suggesting that unlike ORX, the MCH system may generally serve to attenuate this form of 

incentive-based responding.

Further distinctions between ORX and MCH on their influence over food acquisition are 

revealed when one considers the nature of the reward being acquired. As mentioned above, 

ORX effects on sucrose self-administration are mostly observed when animals are tested in a 

food deprived state [170]. However, when the non-nutritive sweetener saccharin is used as a 

reinforcer, OxR1 antagonism disrupts operant responding and cue-induced reinstatement 

regardless of deprivation state [178]. This effect of operant responding for rewards 

independent of caloric value stands in direct contrast to treatment with the MCH1-R 

antagonist GW803430, which disrupted sucrose but not saccharin responding. This indicates 

that the caloric and colligative properties of a food are necessary to any limited role for 

MCH in acquiring food [179]. This latter finding is in contrast to the effects of targeted 

deletion of MCH-1R, which leaves intact glucose-conditioned flavor preferences [223]. The 

basis for this discrepancy might reflect the nature of the disruption in MCH-1R signaling 

(i.e., congenital ablations, pharmacological blockade), paradigm (i.e., Pavlovian flavor 

preference, operant responding) or species (mice, rats). Finally, additional differences 

between ORX and MCH on food seeking have been noted in tests of impulsivity and 

behavioral inhibition. While systemic antagonism of OxR1 leads to suppressed motivation to 

engage in a stop-signal reaction time task, it does not influence response inhibition, 

indicating the ORX system is not important for impulse control [180]. However, LHA MCH 

containing neurons may mediate response inhibition through descending projections to the 

ventral hippocampus (vHPC), a region implicated in behavioral impulsivity [181]. Indeed, 

both pharmacological administration of MCH peptide to the vHPC, as well as selective 

activation of LHA MCH neuronal projections to this region, increase behavioral impulsivity 

in a differential reinforcement of low rates of responding task. Interestingly, RNA 

interference of MCH expression in this pathway also increased behavioral impulsivity, 

indicating that both increases and decreases in MCH signaling affect impulsivity. Notably, 

stimulation of MCH signaling did not affect either progressive ratio responding nor interval 

timing, indicating a selective role for MCH neurons that project to the vHPC in regulating 

impulsivity [182].

4.3 Consumption of food

Given their labels as orexigens, it is not surprising that ICV administration of either ORX 

[183, 184] or MCH [185, 186] promotes food intake, whereas systemic pharmacological 

blockade of their respective receptors leads to intake inhibition [179, 187]. Chemogenetic 

stimulation of ORX also evokes feeding behavior, and conversely extensive (but not 

moderate) neuronal ablation attenuates intake of lab chow [188]. Fourth ventricular 

infusions of ORX-A enhances chow consumption by increasing meal size [189, 190] and 

this effect is dependent upon intact catecholamine signaling within the hindbrain [189, 191]. 

Lee et al. Page 10

Physiol Behav. Author manuscript; available in PMC 2022 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



In contrast, hindbrain infusions of MCH failed to evoke an orexigenic response for sucrose 

or saccharin [192] thus, unlike ORX, MCH evoked feeding appears to selectively require 

forebrain stimulation. Within the LHA, injections of ORX or MCH promotes food intake in 

a dose-dependent manner [183, 193, 194].

Both ORX and MCH have also been shown to play an important role in learned overeating 

behaviors, in which a CS can influence eating behavior independent of metabolic need (i.e. 

cue-potentiated feeding; CPF) [1]. Orexin signaling in the medial prefrontal cortex (mPFC) 

is implicated in the expression of CPF as systemic blockade of OxR1 prevents both CPF and 

the expected increase in FOS induction in the mPFC [195]. In addition, targeted mPFC 

blockade of OxR1 also prevented CPF in sated rats [45]. These findings indicate that 

projections from LHA ORX cells to mPFC underlie CS evoked feeding responses. Similarly, 

CPF also appears to require intact MCH-1R signaling [196]. However, when a CS that had 

been shown to invigorate CPF was presented in the absence of food, it selectively induced 

FOS activity in LHA ORX but not MCH cells [197].

While the above findings suggest that prolonged activation or long-term disruption of ORX 

and MCH can broadly influence food intake, when more subtle observations are carried out, 

the influence of these orexigens on feeding behavior can be readily distinguished from one 

another. Using in-vivo Ca2+ imaging, Gonzalez et al., recorded dynamic changes in ORX 

cell activity to reveal a surprising rapid attenuation in cell activity as mice engaged in eating 

behaviors. This silencing in ORX activity quickly rebound once mice discontinued food 

consumption [198]. Thus, when dynamic changes in ORX cell activity are tracked, the 

putative firing rate of these cells becomes weaker as animals engage in food intake. Similar 

findings were reported using juxtacellular labelling procedures, where ORX cells fired in 

response to the presentation of an auditory CS associated with subsequent delivery of a 

sucrose solution. This enhanced firing rate quickly dissipated upon the initiation of licking 

[199]. By contrast, if acute optogenetic stimulation of LHA MCH cells is timed to coincide 

with the consumption of food, increased intake is observed [200]. Furthermore, during the 

consumption of food the activity of MCH neurons communicates nutrient value to provide 

post-ingestive reward feedback, such that optogenetic stimulation of MCH neurons during 

consumption of non-caloric sucralose inverts an innate preference for sucrose [28]. This 

suggests that the pairing of MCH stimulation with sucralose consumption retrieves the 

positive post-ingestive values associated with nutritive sweeteners such as sucrose. In the 

same model, stimulation of MCH neurons increases striatal dopamine release in a manner 

that coincides with the type of post-ingestive reward signaling attributed to dopamine 

neurons [201]. Interestingly however, optogenetic stimulation of LHA MCH cells does not 

alone initiate food intake [200], further aligning with the idea that ORX and MCH play 

distinct roles in the procurement and consumption, respectively, of food.

5.0 Dynamic orchestration of appetitive behaviors via LHA ORX-MCH 

interactions

We suggest that the ORX system plays an integral role in setting the stage for searching, 

acquiring, and anticipating the delivery of food. Manipulations of this orexigen robustly 
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influence these preparatory behaviors, which indirectly impact the likelihood that an animal 

engages in the consumption of food. Alternatively, MCH plays a less prominent role in 

behaviors that are more distal to food delivery, though it has a direct and far-reaching 

influence on consummatory behaviors at later stages of the appetitive behavioral sequence 

(Figure 3).

5.1. From food-seeking to intake: Transitions from LHA ORX to MCH cell activity

Both ORX and MCH neurons in the LHA play a multifaceted role in a range of motivated 

behaviors including sleep, arousal, maternal caregiving and appetite control [14, 89, 202]. It 

is unlikely that the same population of cells underlie control of these distinct motivated 

behaviors. Thus, we suggest that glucose-sensing ORX and MCH cells in particular function 

to mediate behavioral transitions from seeking to consumption. In this regard, the low 

glucose levels that accompany hunger could serve to directly stimulate activity in LHA ORX 

glucose-sensing cells [94–97], which is mediated by activity of the peripheral hunger signal 

ghrelin [94]. Activity of LHA ORX cells would be expected to facilitate responding to 

environmental cues predictive of food via projections to mPFC [45]. Moreover, given that 

ghrelin facilitates phasic firing of DA cells in VTA, which requires OxR1 signaling 

[114,138], these ghrelin-ORX interactions could enhance DA synthesis and activation of the 

mesostriatal pathway that is critical for reward-based responding [47, 132–138, 172, 203]. 

When searching out food it is also advantageous that competing behaviors involved in direct 

consummatory acts be suppressed. With this in mind, optical activation of LHA ORX cells 

can inhibit MCH cells via ORX mediated increases in GABAergic signaling [21]. Moreover, 

ghrelin does not influence MCH [111, 112] and unlike ORX, MCH signaling is not 

necessary for ghrelin-initiated feeding [115]. Additionally, the DA release resulting directly 

from ghrelin [204] and/or ORX [47, 132] might also serve to dampen MCH activity [205].

Once food has been acquired, we suggest that a rapid flexible transition from ORX to MCH 

activity is required, which could be driven by several potential mechanisms (Figure 4). First, 

MCH can exert an inhibitory influence over ORX in an activity-dependent manner [77]. 

Thus, when ORX activity is elevated, inhibition via MCH could be critical in allowing for 

fine-tuning between these two classes of cells. It is also perhaps worthwhile considering that 

ORX cell activity is greatest immediately prior to contact with food [199]; therefore, MCH 

would be expected to have its strongest inhibitory influence over ORX at the time when 

behavioral state transitions (i.e., seeking → feeding) are imminent. Second, descending high 

frequency gamma oscillations originating in the lateral septum may also have the capacity to 

flexibly modulate transitions from ORX to MCH activity [78]. Third, it is well known that 

the endocannabinoid system functions as a pre-synaptic mediator for the release of 

neuropeptides and neurotransmitters [206]. Activation of the cannabinoid type-1 receptor 

(CB1) induces a rapid transient though significant suppression of ORX activity. At the same 

time, CB1-activation also depolarizes MCH cells via presynaptic attenuation of locally 

synapsing GABAergic neurons [207]. It would be interesting to examine if these are the 

same population of cells that are proposed to mediate increased ORX-dependent GABAergic 

drive onto MCH [75]. These effects may underlie the well-documented role of the 

endocannabinoid system on food intake in general [208], and influence rapid ORX to MCH 

transitions in particular. Forth, the rising levels of glucose that accompany the metabolism of 
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food serve to inhibit ORX and stimulate MCH cells [99, 100]. Finally, any inhibition to 

ORX cell activity could disrupt ORX-dependent GABAergic drive onto LHA MCH cells; 

thus, further disinhibiting them [75]. Collectively, as animals engage in the consumption of 

food, this ORX to MCH transition in neuronal activity would promote the rewarding post-

ingestive [28] and hedonic value of sugars [196, 209] resulting in the maintenance and 

prolonging of food intake [200].

5.2 Disruptions to LHA ORX and MCH activity in dietary obesity

Dietary obesity leads to profound changes in physiology with both ORX and MCH 

displaying many divergent structural and functional alterations. On initial exposure to a 

high-fat diet, ORX cells displays an increase in spontaneous miniature excitatory post-

synaptic current (mEPSC) amplitude immediately upon the animal gaining access to a high-

fat diet [210]. This would be expected to augment ORX-dependent appetitive behaviors, 

including an increase in food anticipatory behaviors [166] and cue-potentiated feeding [45]. 

Food cues in the environment can promote eating independent of metabolic need, which is 

thought to contribute to weight gain and obesity [211]. Thus, under this early period of high 

fat diet exposure, the heightened activity of the ORX system would be expected to enhance 

vulnerability to food-cues in the environment. Indeed, fMRI studies in humans suggest that 

enhanced activity of amygdale-hypothalamic CPF circuitry in response to food cue 

presentation is predictive of susceptibility to weight gain [212]. The increase in ORX cell 

activity during the initial stages of high fat diet consumption is transient in nature, such that 

following more prolonged periods of exposure to a high-fat diet ORX cell activity 

normalizes [210], whereas mRNA levels of prepro-orexin gene and OxR2 decrease [213]. 

By contrast, limited access to a high-fat diet does not influence MCH cell firing. However, 

prolonged access leads to an increase in mEPSCs frequency likely driven by an increase in 

excitatory drive onto MCH cells [210]. In addition, elevated MCH and MCH-1R mRNA in 

LHA results from prolonged access to a high fat diet [214] consistent with a ramping up of 

MCH system activity. On the other side of the spectrum, chronic administration of ORX and 

MCH peptide also differentially impact the onset of dietary obesity. Long-term exposure to 

ORX has no effect on feeding or body weight [215], whereas chronic administration of 

MCH enhances food intake and obesity in rodents [185, 216]. Taken together, these results 

indicate that LHA ORX cells may influence weight gain during the early “dynamic” phase, 

whereas the increase in excitatory drive and activity of LHA MCH cells would set the 

conditions for further development and maintenance of weight gain during the “static phase” 

[5], due to the promotion of energy storage through overconsumption, increased sedentary 

behaviors and reduced metabolism [159, 160, 216, 217].

6.0 Summary

As we navigate our daily lives, each of us frequently experience some degree of hunger. The 

severity of this drive is dependent on our ongoing energy needs, with the interoceptive 

feelings generated differing greatly based on the physiological composition of the 

individual. Nevertheless, mechanisms underlying the generation of hunger uniformly serve 

to inform the organism that they should engage in behaviors that drive energy intake. From 

an evolutionary perspective, mechanisms that maintain homoeostatic balance underwent 
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substantial pressures—after all, if energy needs are not met then the survival of an individual 

and by consequence the species may be at risk. Accordingly, this suggests conservation 

across species in the physiological mechanisms underlying body weight control. Interactions 

between ORX and MCH form a critical physiological allostatic circuit ensuring that these 

needs for survival can be met. This is achieved in part by flexible and rapid changes in 

behavioral output that favor relevant and suppress competing appetitive actions.
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Highlights

• The lateral hypothalamic area (LHA) plays a critical role in integrating 

energetic and reward signaling to regulate food intake

• Orexin/hypocretin (ORX) and Melanin Concentrating Hormone (MCH) cells 

are localized in the LHA and play a critical role in appetite regulation

• Based on their distribution and functionality, we propose ORX and MCH 

cells cooperate to respectively mediate flexible transitions from preparatory to 

consummatory behaviors

• A hypothalamic-striatal circuit underlying control of these behavioral state 

transitions is described
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Figure 1: LHA MCH and ORX expressing neurons in the LHA.
Fluorescent labelling of MCH (red) and ORX (green) expressing cells indicates that these 

neurons form discrete but commingled populations in the LHA. Representative image taken 

at approximately ~1.7m posterior to bregma from a pMCH-cre mouse crossed with a 

tdTomato reporter line. Immunohistochemistry was employed to label ORX protein 

(AlexaFlour 488/ green) and amplify the tdTomato signal (AlexaFluor 568/ red). DMH = 

dorsomedial hypothalamus; fx = fornix; PeF = perifornical area; VMH = ventromedial 

hypothalamus; ZI = zona incerta.
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Figure 2: LHA ORX and MCH neuronal projections.
(a) ORX cells project within hypothalamic regions including the arcuate nucleus of the 

hypothalamus. LHA ORX cells innervate hindbrain regions both through direct connections 

(solid arrows) to the brainstem as well as indirect ventral tegmental area innervation (dashed 

arrow). These cells also project to forebrain and limbic regions such as the cortex, amygdala, 

hippocampus, and thalamus. ORX1 and ORX2 specific projection patterns to specific brain 

regions are denoted with associated labels. (b) MCH cells project within hypothalamic 

regions including the arcuate nucleus of the hypothalamus. LHA MCH cells project to the 

brainstem, cortex, bed nucleus of stria terminalis, lateral septum, nucleus accumbens, and 

limbic structures such as the thalamus and hippocampus (solid arrows) and debated 

projection to VTA (dashed arrow). Abbreviations: ACB = nucleus accumbens; AMY= 

amygdala; ARC = arcuate nucleus of the hypothalamus; BNST = bed nucleus of stria 

terminalis; HIPP = hippocampus; LS= lateral septum; MCH = melanin concentrating 

hormone; ORX = orexin; ORX1 = orexin1 receptor; ORX2= orexin 2 receptor; THAL = 

thalamus VTA = ventral tegmental area.
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Figure 3. ORX to MCH transitions mediating the appetitive behavioral sequence from food-
seeking to consumption.
ICV infusion of MCH [185, 186] increases feeding, as does stimulation of MCH neurons 

during consumption. Likewise, infusion [183, 184] or chemogenetic stimulation [188] of 

ORX increases feeding. Knockout of MCH1-R in mice disrupts overeating in cue-

potentiated feeding [196] Similarly, antagonism of the OX1R receptor in rats also disrupts 

cue-potentiated feeding. High frequency gamma oscillations from the lateral septum have 

the potential to provide input to both ORX and MCH neurons in the LHA; these high 

frequency oscillations stimulate MCH neurons while silencing ORX neurons [78]. Low 

blood glucose stimulates orexin neurons [94, 95, 97, 171]. (5) Orexin neurons display 

increased activation that coincides with food anticipatory activity [166]. MCH neurons are 

primarily either unaffected or inhibited by ORX [75], although a small (≈ 30%) 

subpopulation is excited by ORX [21]. MCH neurons are more active during periods of low 

activity and their activation supports REM sleep [218]. Stimulation of orexin neurons 

increases overall arousal, as well as feeding-specific behaviors like foraging and food 

anticipatory activity [112]. Ghrelin, a hunger signal produced in the gut, excites ORX 

neurons, but appears to have no effect on MCH neurons [111, 112]. MCH neurons can 

inhibit orexin neurons and appear to do so especially effectively under increased activation 

of orexin neurons [77]. MCH may support the continued ingestion of food by enhancing its 

reward value [200]. ICV infusion of ORX-A increased responding for food reward in a 

progressive ratio task [172], whereas disruption of ORX signaling through ORX antagonism 

disrupts operant responding under fasted [170] and free-feeding [172]. Orexin neuron 

activity peaks in anticipation of food consumption but decreases rapidly once consumption 

is initiated [199]. MCH neurons are excited by glucose [99, 100]. In the absence of food 
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availability, presentation of a food-paired cue results in ORX, but not MCH, neuron 

excitation [197]. MCH1-R antagonism disrupts operant responding for a sucrose, but not 

saccharin reward [219]. Fry and dinner plate illustrations were modified from Smart Servier 

Medical Art on May 20th, 2020, available online at https://smart.servier.com/category/

general-items/food/

Lee et al. Page 30

Physiol Behav. Author manuscript; available in PMC 2022 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://smart.servier.com/category/general-items/food/
https://smart.servier.com/category/general-items/food/


Figure 4. Potential physiological mechanisms underlying ORX to MCH rapid behavioral state 
transitions for food-seeking and consumption.
(a) Under conditions of hunger, the accompanying low glucose levels stimulates ORX and 

inhibits MCH. Further, the gastric peptide ghrelin stimulates LHA ORX either indirectly via 

stimulation of first-order NPY-AGRP neurons in ARC and inhibition of α-MSH and CART 

signals, or directly via GHSRs in LHA. Increased ghrelin and stimulation of ORX enhances 

VTA DA, facilitating signaling to ventral striatal ACB MSNs. MCH firing may be inhibited 

by ORX-dependent increases in GABAergic inhibition and potentially via DA. Finally, 

lower oscillation frequencies (<10 Hz), ORX cells show a proclivity for stimulation, which 

could be mediated via LS input. (b) As ORX activity increases, MCH can inhibit LHA ORX 

in an activity-dependent manner. Increased glucose levels following food consumption 

further attenuate ORX signaling while heightening activity in LHA MCH cells. The CB1 

receptor can also respectively inhibit and excite ORX and MCH cells. This general decrease 

in ORX activity has the potential to disinhibit MCH cell firing. Activity of MCH leads to 

increases in reward and hedonic pathways in the brain, such as ACB. Abbreviations: ACB = 

nucleus accumbens; ARC = arcuate nucleus of the hypothalamus; AGRP = agouti-related 

peptide; α-MSH = α-melanin-stimulating hormone; CART = cocaine and amphetamine 

related transcript; CB1 = cannabinoid receptor type 1; DA = dopamine; D1/D2 = dopamine 

D1-like, D2-like receptors; LS = lateral septum; MCH = melanin concentrating hormone; 

MSNs = medium spiny neurons; NPY = neuropeptide Y. Solid arrows indicate known 

excitatory (red) and inhibitory (blue) interactions; dashed red arrows = assumed excitatory 

(red) and inhibitory (blue) interactions that require further pathway characterization.
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