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Purpose. ,e present study aimed to compare the accuracy of diabetic retinopathy (DR) staging with a deep convolutional neural
network (DCNN) using two different types of fundus cameras and composite images.Method. ,e study included 491 ultra-wide-
field fundus ophthalmoscopy and optical coherence tomography angiography (OCTA) images that passed an image-quality
review and were graded as no apparent DR (NDR; 169 images), mild nonproliferative DR (NPDR; 76 images), moderate NPDR
(54 images), severe NPDR (90 images), and proliferative DR (PDR; 102 images) by three retinal experts by the International
Clinical Diabetic Retinopathy Severity Scale. ,e findings of tests 1 and 2 to identify no apparent diabetic retinopathy (NDR) and
PDR, respectively, were then assessed. For each verification, Optos, OCTA, and Optos OCTA imaging scans with DCNN were
performed. Result. ,e Optos, OCTA, and Optos OCTA imaging test results for comparison between NDR and DR showed mean
areas under the curve (AUC) of 0.79, 0.883, and 0.847; sensitivity rates of 80.9%, 83.9%, and 78.6%; and specificity rates of 55%,
71.6%, and 69.8%, respectively. Meanwhile, the Optos, OCTA, and Optos OCTA imaging test results for comparison between
NDR and PDR showed mean AUC of 0.981, 0.928, and 0.964; sensitivity rates of 90.2%, 74.5%, and 80.4%; and specificity rates of
97%, 97%, and 96.4%, respectively. Conclusion. ,e combination of Optos and OCTA imaging with DCNN could detect DR at
desirable levels of accuracy and may be useful in clinical practice and retinal screening. Although the combination of multiple
imaging techniques might overcome their individual weaknesses and provide comprehensive imaging, artificial intelligence in
classifying multimodal images has not always produced accurate results.

1. Introduction

Diabetic retinopathy (DR) has been one of the major causes
of visual impairment and blindness. According to Saba-
nayagam et al., the annual incidence of DR ranges from 2.2%
to 12.7%, and the progression ranges from 3.4% to 12.3% [1].
Moreover, a systematic review that examined the

progression of DR to proliferative DR and severe vision loss
in high-income countries showed a downward trend since
the 1980s [2]. However, 80% of individuals with diabetes
reside in developing countries, of which China and India
comprise a large proportion [3]. Early diagnosis and prompt
treatment of DR have been shown to prevent blindness [4].
While diabetic eye care has been mainly reliant on the
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number of ophthalmologists and necessary healthcare in-
frastructure [5], performing fundus examination, which is
performed by ophthalmologists, for all patients with diabetes
is unrealistic and expensive. Furthermore, expenses asso-
ciated with DR have been substantial, whereas the financial
impact may be even more severe given that several patients
with this complication live in developing countries [6, 7],
many of which have an inadequate number of ophthal-
mologists [8].

In contrast, automated image processing has proven to
be a promising alternative for retinal fundus image analysis
and its future application in eye care. Several recent studies
have utilized state-of-the-art deep-learning (DL) algorithms
for the automated detection of DR from a large number of
fundus images [9–12]. In April 2018, the United States Food
and Drug Administration approved the world’s first artificial
intelligence (AI) medical device for detecting DR, the IDx-
DR. ,is AI system has allowed for specialty-level diag-
nostics to be applied in primary care settings [10, 13, 14],
with studies expecting image diagnosis using AI to be a
solution to the shortage of physicians and high medical
expenses for specialists [15].

Several studies that examined the efficacy of automated
detection have used standard fundus cameras that provide
30° or 50° images. In recent years, however, various fundus
cameras have been developed, such as the ultra-wide-field
(UWF) imaging fundus camera and optical coherence to-
mography angiography (OCTA).

UWF, otherwise known as Optos (Optos 200Tx; Optos
Plc, Dunfermline, United Kingdom), is a non-contact,
noninvasive imaging modality that can capture up to 200° of
visible fundus and has become essential for understanding
and managing the peripheral retinal pathologies of adult
diseases such as diabetes and retinal vein occlusions [16, 17].
Indeed, one report showed the accuracy of UWF-based AI in
the detection of DR [18].

OCTA has been devised to noninvasively detect moving
objects within the fundus, such as flowing red blood cells, as
a flow signal and visualize it as a blood vessel [19, 20]. In a
similar manner, studies have suggested the accuracy of
OCTA-based AI for detecting DR [21, 22].

However, manual analysis of multiple fundus images for
accurate screening in clinical practice requires a substantial
effort from ophthalmologists. As such, the objective of the
present study was to investigate the accuracy of AI using
different composite images.

2. Methods

2.1. Dataset. ,e study was approved by the Ethics Com-
mittee of Tsukazaki Hospital (Himeji, Japan) (no. 171001)
and Tokushima University Hospital (Tokushima, Japan) (no.
3079) and was conducted in accordance with the tenets of
the Declaration of Helsinki. Informed consent was obtained
from either the participants or their legal guardians after the
nature and possible consequences of the study (shown in
Supplemental Human Studies Consent File 1) were
explained to them.

,e study dataset comprised 491 images and data from
patients with diabetes. ,e data of those without fundus
diseases between 2016 and 2019 were extracted from the
clinical database of the ophthalmology departments of
Saneikai Tsukazaki Hospital and Tokushima University
Hospital. Images were reviewed by three retinal specialists to
assess the presence of DR or NDR and registered in an
analytical database. All patients underwent Optos (Optos
200Tx®, Nikon), OCTA (OCT Triton plus®, Topcon), andUWF fluorescein angiography. OCTA scans were acquired
over a 6× 6mm2 region.

En face images of the superficial plexus, deep plexus,
outer retina, and choriocapillaris and the density map were
extracted (Figure 1). DR levels were defined using the Early
Treatment Diabetic Retinopathy (ETDRS) Severity Scale on
the basis of the retinal images of the patients [4]. ,e 491
images that passed image-quality review were graded as
follows: no apparent DR (NDR) (169 images), mild non-
proliferative DR (NPDR) (76 images), moderate NPDR (54
images), severe NPDR (90 images), and proliferative DR
(PDR) (102 images). All participants underwent compre-
hensive ophthalmological examinations, including slit-lamp
biomicroscopy, dilated ophthalmoscopy, color fundus
photography, and SS-OCTA. Data on age, sex, and previous
hemoglobin A1c (National Glycohemoglobin Standardiza-
tion Program) levels were obtained. Diabetes was diagnosed
in accordance with the criteria of the 2016 Japanese Clinical
Practice Guideline for Diabetes [23].

,e present study examined the results of tests 1 and 2 to
identify NDR and PDR. For each verification, Optos, OCTA,
and Optos OCTA imaging were performed. We described
how Optos OCTA images are created in the Image Pro-
cessing Section.

,is study used K-fold cross-validation (k� 5), which
has been described in detail elsewhere [24, 25]. Briefly, image
data were divided into K groups, after which K− 1 groups
were used for training data, while one group was used for
validation data. ,is process was repeated K times until each
of the K groups became a validation dataset. ,e present
study divided the data into nine groups. Images of the
training dataset were augmented by adjusting for brightness,
gamma correction, histogram equalization, noise addition,
and inversion, which increased the amount of learning data
18 times. ,e deep convolutional neural network (DCNN)
model was created and trained using data from preprocessed
images, a method similar to those reported in previous
studies [26, 27].

2.2. Image Processing. ,e aspect ratio of the original Optos
images was 3900× 3072 pixels. For analysis, the aspect ratio
of all the images was changed and resized to 256×192 pixels.

,e size of the concatenated original OCTA images was
640× 320 pixels. ,e images of the four en face zones
(superficial plexus, deep plexus, outer retina, and chorio-
capillaris) were extracted. ,e images of the superficial
plexus, deep plexus, outer retina, and choriocapillaris were
placed on the upper left, upper right, lower left, and lower
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right (Figure 2(a)), with the original input images resized to
256×192 pixels as the analysis time was reduced.

,e Optos OCTA image (Figure 2(b)) was created by
combining Optos and the OCTA images vertically and
resizing them to 256×192 pixels. Representative images of
NDR, mild NPDR, and PDR are presented in Figure 3.

2.3. Deep Learning. In this study, a visual geometry group,
−16 DCNN (VGG16) (Figure 4) [28], was used as the an-
alytical model; the technical details of VGG16 will be de-
scribed in the original paper, and the setup values for the
present study will be described later. Before that, a brief
outline for better understanding is given to the
ophthalmologist.

2.4.OutlineofVGG16. VGG16 automatically learns the local
features of images and generates a classification model
[29, 30]. It scans the entire image as often as 13 times in a
small area (local receptive field) to see how many partial
features (e.g., a long nose for an elephant and a long neck for
a giraffe) the target image has. ,is scan is performed by
moving the area pixel by pixel to examine the entire image
comprehensively. It is called convolution because the
resulting values are convolved into a single pixel value
[29–31]. For example, if a whole image with 81 pixels (9× 9
pixels) is scanned by shifting one pixel at a time in a local
receptive field of 3× 3 pixels, the scan is performed seven
times in the horizontal direction and seven times in the
vertical direction; thus, the scan result is compressed into 49
pixels (7× 7). ,is means that the amount of information is
collapsed to 60% (49/81). Furthermore, this feature is called
a filter or channel. ReLU [32] was used as a function to
highlight the feature extraction for each layer. An automatic
adjustment called backpropagation is performed to
strengthen or weaken the features to increase accuracy

during the learning process of correct and incorrect answers.
In VGG16, this feature pattern is increased from 64 types
(called channels) to 128, 256, and 512 types as each block of
the convolution process progresses. In addition, VGG16 also
performs a process called max pooling five times, which
reduces the number of pixels in each block of the convo-
lution process by half for emphasizing features across the
entire image (e.g., red tones for a fire scene and bright tones
for a daytime photograph) [33]. ,e final combined layer
(fully connected layer) accepts all the information from the
previous layer without thinning it out and is responsible for
linking it to probability values by passing through the
Softmax function for binary classification, which is the
purpose of this study.

2.5.VGG16SettingsUsed in this Study. ,e aspect ratio of the
original Optos images was 3900× 3072 pixels, whereas that
of the OCTA images was 640× 320 pixels. For analysis, we
changed the aspect ratio of all the input images and resized
them to 256×192 pixels. Given that the RGB image input
ranged from 0 to 255, we normalized it to a range of 0−1 by
dividing it by 255. To increase the learning speed and im-
prove performance even with a small amount of data, the
initial weight values of the first four convolution blocks were
used as parameters learned by ImageNet using the transfer
learning method [34]. ,e Momentum Stochastic gradient
descent algorithm was used to update the parameters of the
model (learning ratio� 0.0005, inertial term� 0.9) [35, 36].
,e construction and verification of the neural network were
performed using a Python Keras (https://keras.io/ja/) with
the backend as the tensorflow.

2.6. Outcome. ,is study evaluated the performance of six
verifications, namely, tests 1 and 2 for Optos, OCTA, and
Optos OCTA images. Receiver-operating characteristic

Optos

OCTA

Optos OCTA

NDR or DR 

NDR or PDR

Figure 1: Identification of each image and stage. Test 1 (no apparent diabetic retinopathy [NDR] or diabetic retinopathy [DR]) and test 2
(NDR or proliferative diabetic retinopathy [PDR]) were performed using the Optos, optical coherence tomography angiography (OCTA),
and Optos OCTA images.
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(ROC) curves were created on the basis of the abilities of the
DL models to discriminate between NDR and DR images
(test 1), and between NDR and PDR images (test 2). ,ese
curves were evaluated using the area under the curve (AUC),
sensitivity, and specificity. Sensitivity and specificity were
considered positive (DR in test 1 and PDR in test 2) when the
probability of the neural network output was greater than
0.5. ,e ROC curve was derived using Python scikit-learn
(http://scikit-learn.org/stable/tutorial/index.html).

2.7. StatisticalAnalysis. To compare patient background, age
was analyzed using Student’s t-test, while the male-female
ratios were compared using Fisher’s exact test. In all cases, a
P value of <0.05 was considered significant. All statistical
processes were performed using Python Scipy (https://www.
scipy.org/) and Python Statsmodels (http://www.
statsmodels.org/stable/index.html).

For the AUC, the 95% confidential intervals (CIs) were
obtained using the following formula [37]:

A1 A2

A3 A4

(a)

B0

B1 B2

B3 B4

(b)

Figure 2: Test 1 (no apparent diabetic retinopathy [NDR] or diabetic retinopathy [DR]) and test 2 (NDR or proliferative diabetic ret-
inopathy [PDR]) were performed using the Optos (a), optical coherence tomography angiography (OCTA), Optos (b), Optos OCTA images
(A1–A4; B0–B4). A1, B1: Superficial OCTA image; A2, B2: deep OCTA image; A3, B3: other retinal layer of the OCTA image; A4, B4:
choriocapillaris layer of the OCTA image; B0: Optos image.
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95%CI � A ± 1.96SE(A). (1)

,e mean AUC and SE(A) are the standard error of the
AUC.

SE(A) was also obtained using the following formula
[37]:

SE(A) �

��������������������������������������������

A(1 − A) +(Np − 1) Q1 − A
2

􏼐 􏼑 +(Nn − 1) Q2 − A
2

􏼐 􏼑

Np · Nn
,

􏽶
􏽴

(2)

where Np is the number of blepharoptosis images, Nn is the
number of normal images, Q1 is the probability that two
randomly chosen abnormal images both ranked with greater

suspicion than a randomly chosen normal image, and Q2 is
the probability that one randomly chosen abnormal image
ranked with a greater suspicion than two randomly chosen
normal images.

Q1 and Q2 were obtained using the following formula:

Q1 �
A

2 − A
,

Q2 �
2A

2

1 + A
.

(3)

For sensitivity and specificity, 95% CIs were obtained
using the Clopper-Pearson method [38].

Clopper − pearsonCI(k, n) �
k

(n − k + 1)F0.025(2(n − k + 1), 2k) + k
∼

(k + 1)F0.025(2(k + 1), 2(n − k))

(k + 1)F0.025(2(k + 1), 2(n − k)) + n − k
, (4)

where F0.025(a, b) is the 0.025 quantile from an F-distri-
bution with a, b degrees of freedom, k is the number of
successes, and n is the number of trials.

3. Results

3.1. Background. ,e baseline characteristics of the devel-
opment and clinical validation datasets are described in
Table 1.

3.2. Evaluation of Model Performance. In test 1, Optos,
OCTA, and Optos OCTA images had an AUC of 0.790 (95%
CI: 0.751–0.830), 0.883 (95% CI: 0.854–0.912), and 0.847
(95% CI: 0.814–0.880), respectively.

,e ROC curves are shown in Figure 5.
In test 2, the Optos, OCTA, and Optos OCTA images

had AUC of 0.981 (95% CI: 0.962–1.064), 0.928 (95% CI:
0.892–0.964), and 0.964 (95% CI: 0.938–0.990), respectively.
,e ROC curves are shown in Figure 6. Table 2 shows the
sensitivity and specificity of the results of the analyses.

4. Discussion

,e present study investigated the efficacy of the DL method
in identifying the difference between NDR and DR on the
basis of 491 multimodal images. ,e better DL algorithm
showed appropriate sensitivity and specificity (AUC: 0.847;
sensitivity: 78.6%; specificity: 69.8%), as well as good results
with respect to differentiating NDR from PDR (AUC: 0.964;
sensitivity: 80.4%; specificity: 96.4%). ,e ability to dis-
criminate between NDR and PDR presented herein was
comparable with that reported in previous studies [9–15]. All
images in this study were obtained from patients with di-
abetes. Even patients with NDR showed significantly lower
blood vessel density than healthy individuals, especially in
the deep layer [39]. ,e multimodal imaging modality used
in this study did not provide accurate results. Moreover, the
multimodal images captured using AI were used in both

tests 1 and 2, with the discriminative ability of Optos and
OCTA being reversed in test 2.

First, OCTA with DL properly detected the difference
between NDR and DR (test 1). ,e current international
classification recommends diagnosis based on the presence
of superficial retinal lesions. ,erefore, the accuracy of
OCTA, whose imaging range is narrower than that of UWF
imaging, in determining the DR stage has generally been
poor. However, OCTA images showed significant differ-
ences between NDR and DR even with an unevenly enlarged
acicularity index and foveal avascular zone, indicating a
relatively satisfactory staging accuracy [40]. When com-
paring patients with early-stage DR, imaging methods that
show the local area are better than those that only show the
whole area. Given that DR-related microvasculature damage
may actually begin around themacula, narrow images can be
expected to have the best predictive sensitivity for DR [41].

Second, Optos showed more accurate results in dis-
tinguishing NDR from PDR (test 2). Once a patient has
developed DR, especially severe cases (e.g., PDR), a wider
range of images can increase the diagnosis rate. Retinopathy
lesions in DR that predominantly develop around the
standard field defined in ETDRS 7 [42] are considered
predominantly peripheral lesions, the extent of which is
associated with retinopathy progression [43, 44]. Further-
more, this cohort included eyes treated with and eyes treated
without a pan retinal photocoagulation (PRP) laser.

Progress in traditional technologies, such as digital
fundus photography, along with recent advancements in
various imaging modalities, has provided clinicians with
new information and improved efficiency. Tran and Pakzad-
Vaezi reported the benefits of multimodal imaging of DR
and the clinical applications of several imaging techniques in
DR including color photography, OCT, OCTA, and adaptive
optics [45].

Furthermore, the use of the combination of DCNN and
these multimodal images in diagnosing DR is expected to
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increase in the future, and the use of DCNN in the analysis of
retinal images is appealing given its suitability with the
current trend of teleophthalmology and telemedicine [46],
and cost-effectiveness [47]. Considering that an automated

DR grading software can potentially offer better efficiency,
reproducibility, and early detection of DR, the use of this
grading software in the screening of the even-increasing
number of individuals with diabetes should help reduce the

(a) (b) (c)

Figure 3: Representative images of no apparent diabetic retinopathy (a), mild nonproliferative diabetic retinopathy (b), and proliferative
diabetic retinopathy (c) obtained using ultra-wide-field (UWF) imaging and optical coherence tomography angiography (OCTA).,eUWF
image shows the hemorrhage (white triangle) and neovascularization (white arrow). ,e OCTA image shows microaneurysm (white long
arrow), microvascular tortuosity (white dotted arrow), and capillary non-perfusion (white short arrow).
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Figure 4: Visual geometry group (VGG) 16 model. ,e overall architecture of the VGG16 model is shown. ,e deep convolutional neural
network used ImageNet parameters; the weights of blocks 1−4 and 5 were fixed, while the fully connected layers were adjusted.

Table 1: Patients’ demographics.

NDR Mild Moderate Severe PDR
Number of images 169 76 54 90 102
Patients 95 52 40 58 71
Women (%) (42.6) (40.8) (38.9) (35.6) (34.3)
Mean age, years (SD) 66.8± 9.6 67.2± 9.7 67.4± 10.3 66.8± 8.6 59.0± 11.6
Left fundus (%) (49.1) (47.4) (50.0) (48.9) (52.0)
NDR, no apparent diabetic retinopathy; PDR, proliferative diabetic retinopathy.
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healthcare burden. ,e use of multimodal images with
DCNN would enable screening for referable DR in remote
areas where services of an ophthalmologist are unavailable.
However, understanding the indications and limitations of
each technology allows clinicians to gain the most infor-
mation from each modality and thereby optimize patient
care. In an actual human clinical setting, the combination of
multiple imaging techniques can overcome their individual
weaknesses and provide a more comprehensive represen-
tation. Such an approach helps in the accurate localization of
a lesion and understanding the pathology in posterior
segment. Considering that the major technological

advancements in imaging over the past decade have im-
proved our understanding and knowledge regarding DR, a
multimodal approach to imaging has become the standard of
care [48]. However, the present study revealed that multi-
modal diagnosis using AI did not always yield the best
results.

,e present study has several limitations. One of the
major issues of this study is the small number of images for
training. Many DL researchers agree that such a small
number of data in each category is insufficient to test the
effectiveness of the proposed method. Deep learning gen-
erally requires more than a million samples to train without
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Figure 5: Receiver-operating characteristic curve for test 1 (no apparent diabetic retinopathy [NDR] or diabetic retinopathy [DR]) for
Optos, optical coherence tomography angiography (OCTA), and Optos OCTA images. ,e order of imaging methods used based on the
accuracy of their results was as follows: OCTA, Optos OCTA, and Optos.
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Figure 6: Receiver-operating characteristic curve for test 2 (no apparent diabetic retinopathy [NDR] vs. proliferative diabetic retinopathy
[PDR]) for Optos, optical coherence tomography angiography (OCTA), and Optos OCTA images. ,e order of imaging methods used
based on the accuracy of their results was as follows: Optos, Optos OCTA, and OCTA.
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overfitting. Another limitation is that this cohort included
eyes treated with and eyes treated without a PRP laser, which
may have confounded our results.

In summary, our study suggests that the use of AI in
classifying multimodal images did not always produce ac-
curate results and showed advantages and disadvantages
depending on the stage. Although combination of DCNN
and multimodal images certainly provides better result, it is
not particularly superior to medical examination. Face-to-
face examinations by ophthalmologists are indispensable for
a definite diagnosis.

5. Conclusions

Although UWF fundus ophthalmoscopy and OCTA images
with a DCNN were effective in diagnosing DR, the use of AI
in diagnosing multimodal images did not always produce
accurate results.
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