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Efficient hybrid de novo assembly of human
genomes with WENGAN
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Generating accurate genome assemblies of large, repeat-rich human genomes has proved difficult using only long, error-prone
reads, and most human genomes assembled from long reads add accurate short reads to polish the consensus sequence. Here
we report an algorithm for hybrid assembly, WENGAN, that provides very high quality at low computational cost. We dem-
onstrate de novo assembly of four human genomes using a combination of sequencing data generated on ONT PromethlON,
PacBio Sequel, lllumina and MGI technology. WENGAN implements efficient algorithms to improve assembly contiguity as well
as consensus quality. The resulting genome assemblies have high contiguity (contig NG50: 17.24-80.64 Mb), few assembly
errors (contig NGA50: 11.8-59.59 Mb), good consensus quality (QV: 27.84-42.88) and high gene completeness (BUSCO com-
plete: 94.6-95.2%), while consuming low computational resources (CPU hours: 187-1,200). In particular, the WENGAN assem-
bly of the haploid CHM13 sample achieved a contig NG50 of 80.64 Mb (NGA50: 59.59 Mb), which surpasses the contiguity of

the current human reference genome (GRCh38 contig NG50: 57.88 Mb).

genome sequence is constructed by detecting overlaps

between a set of redundant genomic reads. Most genome
assemblers represent the overlap information using different kinds
of assembly graph"’. The main idea behind these algorithms is to
reduce the genome assembly problem to a path problem where the
genome is reconstructed by finding the true genome path in a tan-
gled assembly graph'”. The entanglement comes from the complex-
ity that repetitive genomic regions induce in the assembly graphs'~.
The first graph-based genome assemblers used overlaps of variable
length to construct an overlap graph®. The main goal of the overlap
graph approach and of its subsequent evolution, namely the string
graph’, is to preserve the read information™’. However, read-level
graph construction requires an expensive all-versus-all read com-
parison’. The read-level nature implies that a path in such a graph
represents a read layout, and a subsequent consensus step must be
performed to improve the quality of bases called along the path’.
These graph properties are the foundation of the overlap-layout—
consensus (OLC) paradigm’~.

A seemingly counterintuitive idea is to fix the overlap length
to a given size (k) to build a de Bruijn graph'. However, de Bruijn
graphs have several favorable properties making them the method
of choice in many modern short-read assemblers®. In this
approach, the fixed-length exact overlaps are detected by break-
ing the reads into consecutive k-mers'. The k-mers are usually
stored in hash tables (constant query time), thus avoiding entirely
the costly all-versus-all read comparison®®. Unlike a string
graph, the de Bruijn graph is a base-level graph'¢; thus, a path
(contig) represents a consensus sequence derived from a pileup
of the reads generating the k-mers (k-mer frequency). Moreover,
the de Bruijn graph is useful for characterizing repeated as well as
unique sequences of a genome (repeat graph’). However, by split-
ting the reads into k-mers, valuable information from the reads may
be lost, especially when these are much longer than the selected
k-mer size’.

( i enome assembly is the process by which an unknown

The type of overlap detected, and therefore the type of assembly
graph constructed, is related to the sequencing technology used to
generate the reads. One class of modern high-throughput sequenc-
ing machines produces short (100-300base pairs (bp)) and accu-
rate (base error <0.1%) reads'”", and a second class produces long
(>10kilobases (kb)) but error-prone (base error<15%) reads'>".
Despite the high per-base error rate of long reads, these are the bet-
ter choice for genome reconstruction', as longer overlaps reduce
the complexity of the assembly graph'®, and therefore more contigu-
ous genome reconstructions are achievable'".

Regardless of the sequencing technology, the goals of a genome
assembler are to reconstruct the complete genome in (1) the few-
est possible consecutive pieces (ideally chromosomes) with (2)
the highest base accuracy while (3) minimizing the computational
resources (the 1-2-3 goals). Short-read de Bruijn graph assemblers
are good for accomplishing goals 2 and 3 (refs. ), while long-read
assemblers excel at achieving goal 1 (refs.*’).

Modern long-read assemblers widely adopted the OLC para-
digm*>'**” and new algorithms have substantially accelerated the
all-versus-all read comparison'®"’. Such progress has been possible
by avoiding entirely the long-read error-correction step'*", and by
representing the long reads as fingerprints derived from a subset
of special k-mers (that is, minimizers®, minhash'’ and so on). The
reduced long-read representation is appropriate for detecting over-
laps >2kb in a fast way'®'®". The newest long-read assemblers are
therefore starting to be good also at goal 3 (refs.'*'*'?). However,
assembling uncorrected long reads has the undesirable effect of giv-
ing more work to the consensus polisher'”'*****. Genome assem-
bly polishing is the process of improving the base accuracy of the
assembled contig sequences'”'**'-*. Usually, long-read assemblers
perform a single round of long-read polishing'®'®", which is fol-
lowed by several rounds of polishing with long'”'**"** and short'”*>**
reads using third-party tools'”'*?'=*,

Currently, polishing large genomes, such as the human genome,
can take much more computational time than thelong-read assembly
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itself''®". Even after several rounds of polishing, a substantial
fraction of consensus errors remains, hampering the subsequent
genome analyses such as gene and protein prediction®. Lastly,
PacBio recently introduced high-fidelity reads (HiFi reads), sub-
stantially increasing the base accuracy of long reads*. This technol-
ogy moves the polishing bottleneck up front by generating multiple
error-prone reads (10 passes) of circularized fragments (10-20kb in
size)**. Each fragment is then computationally corrected to generate
a single consensus long read (>10kb) with high base accuracy (base
error < 1%). To fully exploit HiFi reads, new assemblers have been
developed”* that do not require a final polishing phase®.

When this assembly approach employs short-read polishing'”***
then it corresponds to a long-read-first hybrid assembly strategy*>*°.
Another hybrid assembly strategy consists of starting the assembly
process with short reads’. However, none of the described hybrid
strategies employs the short reads to tackle the problem of assembly
contiguity; that is, they do not aim at joining two long reads by a
short-read contig, and therefore exploit only partially the short-read
sequence information.

In this Article we introduce WENGAN, a hybrid genome assem-
bler that, unlike most long-read assemblers, entirely avoids the
all-versus-all read comparison, does not follow the OLC paradigm
and integrates short reads in the early phases of the assembly process
(short-read-first). We validated WENGAN with standard assembly
benchmarks. Our results demonstrate that WENGAN optimizes
the 1-2-3 goals and is particularly effective at low long-read cov-
erage (15%). Furthermore, we show that the WENGAN assemblies
performed by combining ultralong Nanopore reads with short or
HiFi reads surpass the contiguity of the current human reference
genome.

Results
The WENGAN algorithm. WENGAN starts by building short-read
contigs using a de Bruijn graph assembler®® (1 in Fig. 1). Then, the
pair-end reads are pseudo-aligned® back to detect and error-correct
chimeric contigs as well as to classify them as repeats or unique
sequences (2 in Fig. 1). Repeated sequences induce complex de
Bruijn graph topologies in their neighborhood, and short-read
assemblers can choose wrong paths while traversing such complex
regions, thus leading to chimeric contigs (Supplementary Fig. 1).
Chimeric short-read contigs limit the accuracy and contiguity of
the assembly when left uncorrected (Supplementary Fig. 2). Each
short-read contig is therefore scanned base-by-base and split at
sub-regions lacking pair-end read support (Supplementary Fig. 1).
Following short-read contig correction, we generate synthetic
paired reads of different insert sizes from long-read sequences,
which are mapped to the corrected short-read contigs (3 in Fig.
1). The spectrum of synthetic libraries is used to span the genomic
repeats. For instance, with ultralong Nanopore reads, we can cre-
ate a spectrum composed of 24 synthetic libraries with insert sizes
ranging from 0.5kb to 200 kb (Supplementary Fig. 3). Matched pairs
are stored with a reference to the long read from which they were
extracted (colors appearing in pairs; 3 in Fig. 1). Using the mapped
pairs and the corrected short-read contigs, we then build the syn-
thetic scaffolding graph (SSG). The SSG is an extension of the scaf-
folding graph®, where there is an additional edge-labeling function
that labels (colors) the SSG edges with the long reads (3 and 4 in
Fig. 1). After the SSG construction (4 in Fig. 1) and subsequent
repeat masking (5 in Fig. 1), we employ the SSG to compute implicit
approximate long-read multiple alignments by searching for transi-
tive long-read-coherent paths (6 in Fig. 1). The aim of this graph
operation (called transitive reduction) is to restore the full long-read
information in the SSG. Each successful reduction modifies the
weight as well as the shape of the SSG (6 in Fig. 1). After restor-
ing the long-read information, we order and orient the short-read
contigs by applying an approximation algorithm? that uses all of the
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connectivity information at once to produce an optimal assembly
backbone (7 in Fig. 1). The solution is validated by checking the dis-
tance constraints that the reduced long-read-coherent paths impose
on the assembly backbone (8 in Fig. 1).

A property of the SSG is that all edges connecting two short-read
contigs (called mate edges) are spanned by at least one long read.
We therefore use the inner long-read sequence of the synthetic mate
pairs that span the mate edge to build along-read consensus sequence
using a partial order alignment graph'”*> (9 in Fig. 1). The corre-
sponding short-read contig ends are then aligned™ to the mate-edge
consensus sequence to determine the correct boundaries, thus fill-
ing the gap between the two short-read contigs. We computed the
Pearson correlation of the mate-edge length before and after filling
the gap for a total of 283,727 mate edges. The correlation is very high
(R*>0.99) even for large gaps (>100kb; Supplementary Fig. 4).

The final steps use the SSG to polish the mate-edge consensus
sequences by finding long-read-coherent paths that traverse the
repeated regions (that is, P4 and P6 for R;; 10 in Fig. 1) or pair-
wise alignments® between the repetitive short-read contigs and the
mate-edge consensus sequences (10 in Fig. 1). Finally, the hybrid
contigs are reported in FASTA format (Fig. 1).

WENGAN surpasses the contiguity of GRCh38. To explore the con-
tiguity limit of WENGAN, we assembled the human haploid cell line
CHM.13, which has been sequenced with a plethora of technologies
including accurate short Illumina reads, long and accurate PacBio/
HiFi reads” and ultralong Nanopore reads®. In particular, the HiFi
reads were generated using a large-insert-size (20kb) library at 30x
genome coverage, with half of the HiFi data (N50) contained in
accurate reads larger than 17kb (Supplementary Table 1). Similarly,
the Nanopore reads were generated using an ultralong-read protocol
optimized for MinION? resulting in 30X genome coverage by reads
of at least 100kb (Supplementary Table 1).

We generated two WENGAN assemblies, one that combines 60X
Mlumina reads (2x250bp; Supplementary Table 2) with ultralong
Nanopore reads, termed WENGAN (ILL+UL), and a second one
that combines both long-read technologies, termed WENGAN
(HiFi+ UL). The WENGAN (ILL + UL) assembly has a total length
of 2.84 Gb with half of the genome contained in contig sequences
larger than 71.25Mb (NG50; Fig. 2a). Similarly, the WENGAN
(HiFi+UL) assembly has a total length of 2.84Gb with a con-
tig NG50 of 80.64Mb (Fig. 2a). The contig NG50 values of both
WENGAN assemblies exceed the contiguity of the human reference
genomes GRCh37 and GRCh38 (Fig. 2a and Supplementary Fig. 5).

We compared WENGAN to state-of-the-art non-hybrid
long-read assemblers (Fig. 2) using public assemblies generated
from ultralong Nanopore>'®'** or PacBio/HiFi reads>** (see
Supplementary Table 3 and the Assembly validation section in the
Methods). These genome assemblies of CHM13 represent the qual-
ity that can be achieved using the two long-read technologies inde-
pendently. In terms of assembly contiguity, the NG50 of WENGAN
(ILL+UL) is almost twice as long compared to PEREGRINE
(HiFi)” (NG50: 38.11 Mb) and CANU (HiFi)® (NG50: 46.82 Mb), is
substantially longer than the assembly generated by SHASTA (UL)"
(NG50: 58.09 Mb) and has a similar NG50 to the assemblies gener-
ated by FLYE (UL)" (NG50: 70.32Mb) and CANU (UL)’ (NG50:
77.96 Mb). The WENGAN (HiFi+ UL) assembly reaches an NG50
of 80.64Mb, which outperforms all aforementioned assemblers,
except for the recently developed HiCANU (HiFi) assembler®
(NG50: 82.40 Mb; Fig. 2a). An assessment of the assembly quality
with QUAST* based on a whole-genome alignment to the GRCh38
reference and subsequent masking of complex genomic regions (see
Methods) reveals that both WENGAN assemblies have a low rate
of assembly errors (average: 107.5; Fig. 2b), which is comparable or
lower than its peers, except for SHASTA (78 errors). Replacing the
GRCh38 reference by the curated CHM13 assembly generated by
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Fig. 1| The WENGAN algorithm. The WENGAN workflow consists of first
assembling and error-correcting the short-read contigs (1and 2), creating
a spectrum of synthetic mate-pair libraries from long reads (3) and
building of the SSG (4). The SSG is used to compute approximate long-read
overlaps by building long-read-coherent paths (5 and 6). The long-read
overlaps restore the long-read information and facilitate the construction
and validation of the assembly backbone (7 and 8). The SSG is used to

fill the gaps by building for each mate edge a consensus sequence using
the partial order alignment graph (9). In the final step, the SSG is used to
polish the consensus sequences (10). The repeat contigs (2-10) are drawn
uncollapsed to explain the WENGAN steps.

the T2T consortium (v.0.7)* confirms the low error rate achieved
by WENGAN (Supplementary Table 4).

We evaluated the consensus quality of the assemblies using an
independent set of bacterial artificial chromosome (BAC) sequences
of CHM13 located in unique genomic regions” (Supplementary
Table 5). Our analysis shows that WENGAN (ILL+UL) and
WENGAN (HiFi+UL) assemblies achieved median consensus
qualities (median QV >36.06 and QV >42.88) that exceed the base
quality of Nanopore assemblers, and are comparable to the base
qualities of HiFi assemblers (Fig. 2c). Moreover, the WENGAN and
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HiFi assemblies excel at BUSCO completeness with a recovery of at
least 94.5% of the BUSCO genes (Fig. 2d). In terms of computational
resources, WENGAN (ILL + UL) took 1,198 CPU hours (maximum
RAM 646 Gb, 38 h real time). The run time of WENGAN was at least
183 times faster than that of CANU (UL) (~219,000 CPU hours)",
while at the same time using less memory than other assemblers
such as FLYE and SHASTA. Interestingly, generating HiFi consen-
sus reads for 30X human genome coverage requires ~40,000 CPU
hours (ref.?), which is ~40 times more computationally intensive
than the WENGAN (ILL 4+ UL) de novo assembly. Disregarding the
excessive generation time for HiFi reads, WENGAN (HiFi+ UL)
took 981 CPU hours (maximum RAM 125Gb, 85h real time),
which is more efficient than HICANU (5,000 CPU hours)*, but less
efficient than PEREGRINE (58 CPU hours)*.

We assessed the performance of the assemblers in hard-to-
assemble regions such as the repeat sequences annotated in the
curated CHM13 T2T-X chromosome®, the major histocompat-
ibility complex (MHC) and segmental duplications (SDs). The
T2T-X chromosome (154 Mb, v.0.7) is the first human chromo-
some completely assembled®, and thus is useful to assess the per-
formance of assemblers across all of the repeat families. The MHC
region is repetitive and highly polymorphic®, while SDs are the
most complex repeats annotated in the human genome* with more
than 100 Mb of the SD sequence composed of repeats larger than
100kb (Supplementary Fig. 6a). The T2T-X chromosome is cov-
ered by 2 and 4 contigs with a total size of 150.9 Mb and 150.56 Mb
in WENGAN (HiFi+UL) and WENGAN (ILL+UL), respec-
tively (Supplementary Fig. 7). Both WENGAN assemblies solve
more than 99.6% of the total interspersed repeats annotated in the
curated T2T-X chromosome, which is better than or comparable to
its peers (Supplementary Table 6). All evaluated CHM13 assemblies
span the 4.97Mb MHC region in a single contig (Supplementary
Fig. 8), with the WENGAN assemblies reaching an NGA50 of
2.8Mb (Supplementary Fig. 8). The WENGAN assemblies resolve
between 168 and 176 BAC sequences (Supplementary Table 5),
which is better than PEREGRINE (136), comparable to SHASTA
(176) and lower than FLYE (253), CANU (314) and HICANU (326).
While the BAC library is enriched in SDs™, it does not represent the
full range of SDs annotated in GRCh38 (175Mb). The WENGAN
assemblies resolve between 60.9 and 65.9Mb (Fig. 2e) of the SDs
annotated in GRCh38 (ref.*), which is better than PEREGRINE,
comparable to HICANU and lower than FLYE, SHASTA and
CANU (Supplementary Fig. 6). However, none of the assemblers
resolved more than 42% of such hard-to-assemble regions, with the
best performer assembling just 22% (CANU (UL): 23.4 Mb) of the
SDs >100kb (104.7 Mb; Supplementary Fig. 6). Even with ultralong
reads or accurate HiFi reads, a further improvement of the algorith-
mic approaches will be necessary to complete the assembly of SDs*.

Overall, we demonstrated that WENGAN achieved a genome
assembly quality that rivals the curated CHM13 assembly (v.0.7)
generated by the T2T consortium®. Furthermore, replacing the
PacBio/HiFi reads for short reads produced a highly competitive
assembly contiguity and quality.

Evaluation of assembly accuracy and contiguity using BIONANO
optical mapping. We observed that the distance between the
NG50 and NGA50 values increases at greater assembly contigu-
ity (x = 39.6Mb; Fig. 2a), which is likely caused by real sequence
variation between the sequenced CHM13 sample and the GRCh38
reference genome. Given this limitation of the reference-based vali-
dation, we additionally used an independent de novo BIONANO
genome map of CHM13 (ref.”) to assess the correctness of the
WENGAN assemblies. The BIONANO map is 2.97Gb in size
with 255 contigs and an N50 of 59.6 Mbp. The BIONANO map is
integrated with the sequence assembly by identifying in silico the
nicking endonuclease-specific sites on the contig sequences (in
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Fig. 2 | WENGAN assemblies of the haploid CHM13 genome. a, A bar plot showing the contig NG50/NGA50 of WENGAN and other state-of-the-art
long-read assemblers, as well as of the current human reference genomes. NG50 is the contig length such that using longer contigs produces half (50%)
of the bases of the reference genome. NGA50 is NG50 corrected of assembly errors. NG50 and NGA50 were computed using as genome size the total
contig lengths of GRCh38 (2.94 Gb). b, Assembly errors predicted by QUAST using the GRCh38 reference (autosomes plus X and Y). Assembly errors
overlapping centromeric regions or SDs were excluded from the analysis. €, Consensus quality assessment by alignment of 30 unique BAC sequences

to the assembled contigs using the BACVALIDATION tool. d, Gene completeness was determined using the BUSCO tool. e, SDs resolved by the genome
assemblies. An SD is considered resolved if the aligned contig extends the SD flanking sequences by at least 50 kb (see Methods). Different CHM13

assemblers are represented using the same color across a-e.

silico map) followed by alignment of both maps (Fig. 3). Conflicts
between the two maps are identified and resolved, and hybrid scaf-
folds are generated by using the BIONANO maps to join the contig
sequences and vice versa (Fig. 3). A total of 72 cuts at conflicting
sites were made in 32 contig sequences of the WENGAN (ILL+ UL)
assembly, leading to a corrected contig NGA50 of 50.73 Mb. The
WENGAN (HiFi+ UL) assembly after BIONANO conflict correc-
tion has an NGAS50 of 59.59 Mb (52 cuts in 24 contigs). Both cor-
rected WENGAN assemblies are more contiguous than the GRCh37
reference genome (Fig. 2a). Notably, the contiguity of the corrected
WENGAN (HiFi+ UL) assembly surpasses the one of the GRCh38
reference genome (59.59 versus 57.88 Mb; Fig. 2a). The hybrid scaf-
folding produced a maximum of 102 super-scaffold sequences with
a total size of 2.83 Gb and an N50 of at least 80 Mb (Fig. 3) for both
WENGAN assemblies. Only 0.8% (maximum: 22.42Mb) of the
WENGAN sequence was not integrated into the hybrid scaffolds
(short contigs). The BIONANO scaffolding of CHM13 demon-
strates that both unpolished WENGAN assemblies are functional
and appropriate for subsequent genome analyses.

WENGAN optimizes the 1-2-3 denovo assembly goals. To validate
WENGAN on diploid human genomes, we assembled three human
samples, HG00733, NA24385 and NA12878, which were sequenced
with very long reads (Supplementary Table 1). All sequencing data
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were obtained from public repositories (Supplementary Tables 1
and 2). HG00733 was sequenced using the PacBio Sequel I to 90X
genome coverage with N50>33.2kb. NA24385 and NA12878 were
sequenced using the Oxford Nanopore Technology (ONT) at 60x
and 35X genome coverage and N50s of 54kb and 72kb, respec-
tively. The sequence data of NA24385 and NA12878 were gener-
ated using an ultralong-read protocol” for ONT MinION and
contain at least 3.3X genome coverage in reads larger than 100kb
(Supplementary Table 1). The long-read data were combined with
at least 50 short-read coverage (pair ends: 2 X 150bp or 2 X 250 bp;
Supplementary Table 2).

WENGAN was benchmarked in its three assembly modes,
namely WENGAN-M (MINIA3)°, WENGAN-A (ABYSS2)” and
WENGAN-D (DISCOVARdenovo)®. We compared WENGAN
to six state-of-the-art assemblers (Table 1). The list is composed
of five long-read-only assemblers*>'*'*!* and a hybrid assem-
bler’ (MaSuRCA; Table 1). All benchmarked genome assem-
blies were generated by the developer of the respective assembler
(Supplementary Table 3). In particular, the SHASTA assemblies
were generated using an independent Nanopore dataset’, with a
genome coverage of ~60X, and including at least 6X coverage of
ultralong reads (>100kb).

For NA12878 (Table 1), WENGAN produced the most contiguous
assemblies, with contig NG50 values of 17.24,25.99 and 35.31 Mb for
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Fig. 3 | BIONANO scaffolding of the WENGAN assemblies of CHM13. We show the largest super-scaffold produced by merging the BIONANO map
(BNG) and the WENGAN (WG) contigs generated by combining ultralong Nanopore reads (rel3) with PacBio/HiFi (20 kb) or lllumina (2 x 250 bp) reads.
The name of the scaffolded WENGAN (WSC) contigs is displayed. The square brackets in the contig name indicate that the contig was corrected by the
BIONANO map, and the numbers are the start-stop coordinates of the error-free contig region. In round brackets, we show the contig orientation in the
super-scaffold. The white text in the alignments displays the number of matching nicking sites, the total number of nicking sites in the BNG contig and the
length in megabases of the alignment. The blue bar in the BNG contigs shows examples of joins guided by the WENGAN contigs.

WENGAN-M, WENGAN-A and WENGAN-D, respectively. The
best long-read assembler among the four evaluated, namely FLYE
(NG50 22.91 Mb), is comparable to WENGAN-A (NG50 25.9 Mb),
but is surpassed by WENGAN-D (NG50 35.3 Mb). All of the other
evaluated assemblers are outperformed by any WENGAN mode
(NG50>17.24 Mb; Table 1 and Supplementary Fig. 9). Moreover,
WENGAN increased the contiguity of the short-read-only assem-
blies by a factor of 1,833x, 2,014x and 388X, for MINIA3 (NG50
9.6kb), ABYSS2 (NG50 12.9kb) and DISCOVARdenovo (NG50
91kb), respectively (Supplementary Table 7). The WENGAN-D
assembly of HG00733 has the fewest gaps of any PacBio continu-
ous long-read (CLR) assembly of a human genome, with more than
half of the genome contained in contig sequences at least 32.3 Mb
long (Table 1 and Supplementary Fig. 9), a substantial improvement
in contiguity over the FALCON (NG50 22,3Mb) and SHASTA
(NG50 21.7 Mb) assemblies (Table 1). The WENGAN-D assembly
of NA24385 (NG50 50.59 Mb) more than doubles the contiguity of
SHASTA (NG50 20.35 Mb, Table 1), surpasses the contiguity of the
GRCh37 reference (NG50 38.5Mb) and matches the contiguity of
the GRCh38 reference (Supplementary Fig. 9).

The structural quality was determined using QUAST*. The
WENGAN assemblies cover up to 96.3% of the reference genome
with few assembled sequences (<0.4%) unmapped to GRCh38
(Table 1, Reference covered (%) and Unaligned length), and the
contigs have fewer duplicates than the contigs of its peers (except
SHASTA; Table 1, Duplication ratio). The NGA50 (which corre-
sponds to the NG50 corrected of assembly errors) of WENGAN-D
(16.41-24.52 Mb) is the highest across the three assembled genomes
(Table 1 and Supplementary Fig. 9). For NA12878, the NGA50
of WENGAN (11.8Mb-16.41 Mb) almost doubles the ones of
MaSuRCA (5.69Mb), WIDBG2 (7.38 Mb) and CANU (7.12 Mbj;
Table 1). Moreover, WENGAN consistently showed a lower num-
ber of assembly errors than its peers (Table 1 and Supplementary
Table 8). The only exception is SHASTA, a conservative assembler",
which has a lower number of assembly errors than WENGAN-D
on the HG00733 (107 versus 119) and NA24385 (126 versus 156)
genomes. However, WENGAN-D reaches higher NGA50 val-
ues than SHASTA and almost doubles the NGA50 achieved by
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SHASTA on the NA24385 genome (24.5 versus 14.3 Mb; Table 1 and
Supplementary Fig. 9).

The consensus accuracy of genome assemblies was determined
using different sequence analyses (Table 1 and Supplementary
Table 9). The level of polishing of the assemblies goes from none to
complete (Table 1), including examples of long-read-only (SHASTA
and FALCON) and hybrid (short+long reads, CANU and FLYE)
polishing (Table 1). For all three genomes, WENGAN reaches a
higher consensus accuracy than unpolished or long-read-only pol-
ished assemblies (Table 1). In the NA12878 genome, the hybrid pol-
ished assemblies of CANU and MaSuRCA have better short-indel
rates than the WENGAN assemblies, but WENGAN has bet-
ter than or comparable medium- and long-indel rates (Table 1).
Moreover, unlike long-read assemblers, the majority (>73%) of
the WENGAN consensus errors are located in the mate-edge con-
sensus sequences (Supplementary Fig. 10), representing at most
10% of the WENGAN assembled sequence. The 100-mer analysis
reveals that the WENGAN assemblies contain at least 84.5% of the
100-mers of the reference (Table 1). The BUSCO gene complete-
ness of the WENGAN assemblies ranges from 94.62% to 95.20%,
which is higher than the result of any other evaluated assembler and
reflects the high consensus quality and contiguity of the WENGAN
assemblies (Table 1). Hybrid polishing of the FLYE assembly
consumed 755CPU hours (Supplementary Table 10). While the
hybrid polishing removed millions of consensus errors (Table 1
and Supplementary Table 10), and increased the median quality
value and the BUSCO gene completeness (to 23.39 and 89.7%), the
hybrid-polished FLYE assembly still has a lower quality than any of
the unpolished WENGAN assemblies (Table 1).

We analyzed how hard-to-assemble regions are resolved on
these diploid human genomes (Supplementary Figs. 11a and 12).
WENGAN with ultralong reads spans the MHC region with fewer
than four contigs (Supplementary Fig. 11b). The top performers,
namely CANU (NA12878), FALCON (HG00733) and WENGAN-D
(NA243875), solve the MHC region in a single contig achieving
NGAS50 values >3.5Mb (Supplementary Fig. 11b). However, all of
the evaluated assemblers produce a mix of haplotypes, and there-
fore subsequent phasing must be performed to fully solve the MHC
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Fig. 4 | De novo genome assemblies of NA12878 when varying the long-read coverage and the short-read technology. a, The de novo assemblies were
sorted by NG50 at each long-read coverage (lolliplot). We computed the NGA50 (which corresponds to the NG50 corrected of assembly errors) of each
assembly using QUAST (see Methods). b, The consensus quality (see Methods) of each genome assembly and the CPU hours required for the assembly.

¢, The WENGAN (W-X) and FLYE assemblies of the complex MHC region located in Chr6: 28,477,797-33,448,354 (4.97 Mb). The MHC sequence was
aligned to the genome assemblies and the aligned blocks >30 kb with a minimum identity of 95% were kept. The alignment breakpoints (vertical black
lines) indicate a contig switch, an alignment error or a gap in the assembly. The assemblies of the MHC region are displayed in tracks by long-read coverage.

region”. Regarding SDs (Supplementary Fig. 12), WENGAN-M
and WENGAN-A resolve over 41 Mb (~6Mb of SDs >100kb),
which is better than WTDBG2 (17 Mb) and comparable to SHASTA
(x = 42Mb; Supplementary Fig. 12). WENGAN-D resolves more
SD sequences with ultralong Nanopore reads (56.09-60.12Mb)
and matches the top performer CANU on NA12878 (56.09 versus
56.98 Mb). With PacBio reads, the FALCON assembler resolves
6.4Mb more SD sequences than WENGAN-D (Supplementary
Fig. 12). The SD analysis of these three diploid samples shows
that WENGAN-A and WENGAN-M are more conservative than
WENGAN-D for SD assembly, and that WENGAN-D is compa-
rable to the top performers (FLYE and CANU), while achieving a
lower rate of assembly errors (Table 1, Fig. 2b and Supplementary
Fig. 12).
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In terms of computational resources, the WENGAN assemblies
consumed less than 1,000 CPU hours (Table 1 and Supplementary
Table 8, maximum elapsed time of 45h). WENGAN-M, the fast-
est WENGAN mode based on MINIA3, consumed ~738 times less
CPU hours than CANU (203 versus ~150,000 CPUh; Table 1) and
required only 53 Gb of RAM to complete the assembly (Table 1).

Collectively, the benchmark results demonstrate that WENGAN
is the only genome assembler evaluated that optimizes all of the
1-2-3 de novo assembly goals, namely, contiguity, consensus accu-
racy and computational resources.

WENGAN is effective at low long-read coverage. We investigated
the required long-read coverage to produce de novo assemblies with
an NG50 of at least 10 Mb. Moreover, we assessed the suitability of
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the MGI sequencing technology" (MGISEQ-2000) as an alterna-
tive to Illumina SBS' for hybrid assembly using matched short-read
genomic data. We sequenced the NA12878 human cell line using
the short-read sequencers NovaSeq 6000 (ref. ') and MGISEQ-2000
(ref.'') as well as the long-read sequencer ONT PromethION"
(Methods). We generated a total of 548.2 million pair-end reads
(2x150bp) of sequence (53.06%) from both short-read sequenc-
ers (Supplementary Table 2). Furthermore, three flow cells of
PromethION produced a total of 10.4 million reads (40x) with a
N50 of 17.18 kb (Supplementary Table 1). We randomly subsampled
the long-read data from 10X to 30X genome coverage in increasing
batches of 5x. The N50 was nearly identical for all of the long-read
subsamples (N50=19.6kb; Supplementary Table 11). WENGAN
and the best long-read assembler among those evaluated, namely
FLYE (v.2.5), were used to build hybrid and long-read assemblies for
each subsample (Fig. 4 and Supplementary Table 12).

A major increase in contiguity for WENGAN was observed when
going from 10X to 15x long-read coverage (Fig. 4a and Supplementary
Table 12). In particular, we observed an NG50 increase from 2.5, 2.9
and 6.9Mb to 7.4, 8.2 and 15.5Mb for WENGAN-M, WENGAN-A
and WENGAN-D, respectively. At shallow long-read coverage
(10-15x%), FLYE is outperformed by all WENGAN modes. Over
20x coverage, FLYE outperforms WENGAN-M and is comparable
in contiguity to WENGAN-A (Fig. 4). Notably, WENGAN-D using
15x long-read coverage leads to an NG50 of 15 Mb, which FLYE can
reach only at 30X long-read coverage (Fig. 4a).

All assemblies generated by WENGAN cover more than 93.8%
of the reference genome at any long-read coverage (Fig. 4b). As
expected, FLYE achieves its highest consensus quality at 30X
long-read coverage (maximum QV = 21.08; Supplementary Table 13).
Polishing FLYE with long and short (NovaSeq) reads increased its
median consensus quality to QV =27.21 (Supplementary Table 14).
Almost all WENGAN assemblies achieve a higher consensus quality
than the polished FLYE assembly (minimum WENGAN QV =27.67
excluding WENGAN-A-MGI-10x; Fig. 4b and Supplementary
Tables 12 and 13).

The contiguity and consensus quality of the WENGAN assemblies
vary more as a function of WENGAN’s mode than with the type of
short-read data used (Fig. 4a,b). Indeed, under the same WENGAN
mode, the largest difference in contiguity between the short-read
technologies of Illumina and MGI is NG50 =2.8 Mb (WENGAN-D
at 30X, Fig. 4a) and their consensus quality is almost identical
(Fig. 4b). WENGAN-M required a maximum of 187 CPU hours
(maximum elapsed time < 18.1h on 20 CPUs) and 44 Gb of RAM
to complete the assemblies (Fig. 4b and Supplementary Table 12).
To our knowledge, this is the first time that a genome assembler
reaches a contiguity of 10 Mb and consensus quality of QV 29.4 on
such minimal and accessible sequencing and computing resources.

We checked the assemblies of FLYE and WENGAN to deter-
mine whether they solved the 4.97Mb MHC region (Fig. 4c).
The WENGAN assemblies at low coverage (<20x) reach higher
NGAS50 than the FLYE assemblies (Fig. 4c and Supplementary
Fig. 13). However, FLYE over 25X coverage assembles the MHC
region in fewer than two contigs with a NGA50 of 4 Mb (Fig. 4c and
Supplementary Fig. 13).

In summary, we demonstrated that WENGAN reduces the
computational resources and the long-read coverage required for
assembling a human genome. WENGAN produced a high-quality
assembly with NG50>10Mb (QV>29) by combining 20X
long-read coverage with 50X short-read coverage using less than
one day of computing time on a low-end server (20 cores, <50 Gb
RAM).

Discussion
We have demonstrated that WENGAN is the only genome assem-
bler that optimizes the three main goals of de novo assembly
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algorithms, namely, contiguity, consensus accuracy and computa-
tional resources. Furthermore, WENGAN is effective at shallow
long-read coverage (>15X), and in combination with ultralong
reads generated de novo assemblies that surpass the contiguity of
the human reference genome GRCh38. We introduced a hybrid
assembly combining accurate PacBio/HiFi reads with ultralong
Nanopore reads and achieved an assembly quality that rivals the
quality of the assembly generated by the T2T consortium (v.0.7).
Additionally, we observed no notable difference in assembly qual-
ity between using the short-read platforms Illumina NovaSeq
6000 (ref."”) or MGISEQ-2000 (ref.'") for hybrid assembly with
WENGAN. Moreover, WENGAN produces high-quality assemblies
with any combination of short-read (NovaSeq or MGISEQ-2000)
and long-read (ONT MinION/PromethION or PacBio Sequel I)
technologies.

Unlike current long-read assemblers, WENGAN generates
functional and ready-to-use genome reconstructions. The con-
sensus quality benchmark demonstrated that short-read polishing
remains mandatory for assemblies generated from Nanopore and
PacBio CLR reads (Table 1 and Supplementary Tables 3, 9 and 13).
Although PacBio's HiFi reads represent an option that mitigates
the post-assembly polishing and, in combination with ultralong
Nanopore reads, generates assemblies with the highest contiguity,
this comes at a reduced throughput (~10 CLR reads to generate 1
HiFi read) and substantially increased computational resources***.
We found that hybrid WENGAN assemblies provide a computa-
tionally efficient solution for human genome assembly, produc-
ing, at the same time, highly competitive assembly contiguity and
quality.

Previous genome assemblers cannot cope with the high
throughput of a long-read and a short-read sequencer. Although
other long-read-only assemblers may have a similar real-time
execution'’ (one day), they require less accessible computational
resources and more long-read coverage, and process half the data
compared with WENGAN. Still, our analyses of hard-to-assemble
regions demonstrated that further algorithmic improvements are
necessary for all examined assemblers. Even though we have cen-
tered our analysis on human genomes, WENGAN also achieves
high assembly quality of non-human genomes (complete BUSCO
genes >95%; Supplementary Table 15). Moreover, the WENGAN
approach also provides a natural framework to combine long-read
with linked-read data, and/or Sanger-size short reads”, and/
or optical maps (BIONANO), which may lead to the assembly of
‘telomere-to-telomere’ scaffolds without the need for extra polish-
ing and finishing methods. Therefore, WENGAN should facili-
tate the democratization of de novo assembly of human genomes,
enabling high-quality genome assembly for many applications. The
WENGAN assembler is available at GitHub (https://github.com/
adigenova/wengan) and Code Ocean (https://doi.org/10.24433/
C0.9469612.v1).
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Methods

The WENGAN algorithm. Short-read assembly. WENGAN can employ MINIA3
(ref.©), ABYSS2 (ref.”) or DISCOVARdenovo® as the de Bruijn graph-based
short-read assembler. All three short-read assemblers are able to assemble a human
genome in less than a day. MINIA3 and ABYSS2 were intended for low-memory
assembly of large genomes. They are able to assemble human genomes using

less than 40 Gb of RAM®". MINIA3 is the fastest method, consuming less than

77 CPU hours to complete a human genome assembly (Supplementary Table 7).
Its speed comes from the novel unipath algorithm BCALM2 (ref. *’) that uses
minimizers” to compress quickly and with low memory the de Bruijn graph™.
MINIA3 can be used iteratively to implement a multi-k-mer assembly approach.
We used k-mer sizes of 41, 81 and 121 in all of the WENGAN-M assemblies
described (Supplementary Table 7). ABYSS2 uses a Bloom filter and rolling

hash functions as the main techniques to implement the de Bruijn graph-based
assembly’. After filling the Bloom filter, ABYSS2 selects solid reads (that is, reads
composed only of solid k-mers, namely those for which frequency(k) > 2) as
seeds to create the unipaths. These are extended left and right by navigating in
the de Bruijn graph until a branching vertex or a dead end is encountered. In

our benchmark tests, ABYSS2 required on average 481 CPU hours to assemble a
human genome (Supplementary Table 7). All of the ABYSS2 assemblies were run
using a Bloom filter size of 40 Gb (B=40G), four hash functions (H=4), solid
k-mers with a minimum frequency of 3 (kc=3), k-mer size 96, and only until

the contig step. DISCOVARdenovo is a more specialized algorithm designed to
assemble a single PCR-free paired-end Illumina library containing >150-bp reads.
DISCOVARdenovo is greedier in terms of memory than MINIA3 and ABYSS2.
We observed a memory peak of 650 Gb in our human assemblies (Supplementary
Table 7). However, DISCOVARdenovo better leverages the pair-end information
and therefore produces the most contiguous short-read assemblies of all three
tested assemblers (average contig NG50 69 kb; Supplementary Table 7). All of

the selected short-read assemblers refine the constructed de Bruijn graph by
removing sequencing errors and collapsing the genomic variants (single-nucleotide
polymorphisms and indels) to produce accurate consensus contigs®.

Pair-end pseudo-alignment as a building block for genome assembly. In the same
way as k-mers are the elemental building blocks of de Bruijn graph assemblers,
WENGAN relies on pair-end pseudo-alignments as the elemental building blocks
for the de novo assembly. We recently introduced an alignment-free method called
FAST-SG* that uses unique k-mers to compute a pseudo-alignment of pair-end
reads from long- or short-read technologies. Here, we present its successor, which
we called FASTMIN-SG, which implements the same ideas as FAST-SG but

using minimizers® and chaining with the MINIMAP2 application programming
interface’. The uniqueness of the pseudo-alignment is now determined using the
MINIMAP2 mapping quality score, which gives a higher score to a primary chain
when its best secondary chain has a weak pseudo-alignment.

To perform a pseudo-alignment of pair ends from short-read sequencing
technologies, we use (10,21)-minimizers for querying and indexing. We discard
pair-end pseudo-alignments when one of the mates has a mapping quality score
<30 or covers <50% of the read bases. For mapping synthetic pair ends extracted
from long-read technologies, we use (5,20)-minimizers and a read length of
250bp. A synthetic pair end is a fragment of length d for which we have access
to the long read of origin, the position of the fragment in the long read and the
inner long-read sequence between both mates of the synthetic fragment. All of
the synthetic fragments are extracted from the long reads using a moving window
of 150 bp in forward-reverse orientation. We create a spectrum of synthetic
mate-pair libraries (Supplementary Fig. 3) by extracting pair ends at different
distances. The range of distances depends on the long-read lengths but go from
0.5kb to a maximum of 500kb with ultralong Nanopore reads. For noisy PacBio
reads, we use homopolymer-compressed k-mers*' for indexing and querying
the synthetic pair ends. We discard synthetic pair-end alignments when one of
the mates has a mapping quality score <40 or covers <65% of the synthetic read
bases. The information associated with the long read of each synthetic pair is
stored in the read names for computing approximate long-read alignments later.
FASTMIN-SG, like MINIMAP2, uses presets to modify multiple parameters, thus
simplifying its usability. Currently, it has presets for raw PacBio reads (pacraw),
HiFi reads (pacccs), raw (ontraw) and ultralong (ontlon) Nanopore reads, and pair
ends (shortr) from short-read technologies (supporting Illumina or MGI). The
pseudo-alignments are reported in SAM format.

Detection and splitting of chimeric short-read contigs. The de Bruijn graph is
complex around repeat sequences, and short-read assemblers can choose wrong
paths while traversing such complex regions, thus leading to chimeric contigs
(Supplementary Fig. 1). To detect potential chimeric contigs not supported by the
short reads, we map the pair-end reads back to the assembled short-read contigs
using FASTMIN-SG (preset shortr). From the pair-end pseudo-alignments, we
infer the average x and standard deviation o of the insert-size distribution of the
genomic library. Then, pair ends mapped within contigs at the expected orientation
and distance ([x — 2.56, % + 2.50]) are transformed into physical fragments. For
each contig, we create an array of length equal to the contig length, and the contig
fragments are used to increase the physical coverage of the contig bases. We then
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scan the physical coverage array base-by-base to detect low-quality intervals (LQIs)
that have a fragment coverage below a minimum depth threshold (def: 7). LQIs are
classified according to their contig location as internal, start, end or whole. Finally,
contigs are trimmed/split at the boundaries of the LQIs.

The SSG. We build on the work of Huson et al.” to extend the scaffolding graph
formulation and create the SSG. In brief, the contig scaffolding problem was
defined by Huson et al.” as the determination of an order and orientation of a set
of contigs that maximize the amount of satisfied mate-pair links. The scaffolding
graph G=(V, E), with vertex set V and edge set E, is a weighted, undirected
multi-graph, without self-loops™. Each contig C, is modeled by two vertices (v,

w) and an undirected contig edge (e). The length of e is set to the contig length
I(C,). The contig orientation is represented by associating each of the contig ends
to one of the two vertices (that is, tail(C;) =v and head(C;) =w). Then traversing
from tail(C;)—head(C,) or head(C)—tail(C,) implies forward or reverse contig
orientation, respectively. Now, consider a pair of mate reads fand r originated
from a synthetic mate-pair library with mean insert size x, standard deviation

o and orientation forward-reverse that uniquely matches two different contigs

C; and C;. The uniquely mapped mate pair induces a relative orientation and
approximate distance between the two contigs. Such information is represented
by adding a mate edge e into the graph. The length of the mate edge e is computed
by subtracting from the expected mate-pair distance (X) the amount of overlap
that each contig has with the mate pair considering the read mapping orientations:

I(e) =% — (l(C,-) — posg, (f)) - (I(CJ) - poscy(r)>. Moreover, the standard
deviation o(e) of each mate edge e is set equal to the standard deviation of the
synthetic mate-pair library. If there is more than one mate edge e between the same
ends of two contigs C;and C, we can bundle” the mate edge e by computing from
the set of mate edges e,, e,,...e, the length of e as I(e) := p/q and its deviation as

o(e) = \/1/g, where p=>" l(””';z and q = Zﬁ)z (ref.”). Additionally, the weight

o(e;

w(e) of a bundled mate edge e is set to ZLI w(e;), and otherwise to 1.

The SSG is an edge-bundled scaffolding graph G=(V, E), built from a spectrum
of synthetic mate-pair libraries, where there is an edge-labeling function (F) that
maps the long reads to the edges through the synthetic mate-pair pseudo-alignments.

Computing approximate long-read overlaps with the SSG. As the SSG is built from
a spectrum of synthetic mate-pair libraries (that is, 1kb to 10kb; 3 in Fig. 1), it
contains mate edges from the short (1kb) to the long (10kb) range of connectivity
(that is, el, e4; 5 in Fig. 1). Now, consider a mate edge e from v to w that are also
connected by a transitive path P=(m,, ¢, m,,...m,) of mate edges (m,, m,,...),
contig edges (c;, ¢,,...) and long-read labels F(P) = (F(m,), F(c,), F(m,),...F(m,)).
We can compute the path length I(P) and its standard deviation o(P) as follows™:

I(P) = S°U(m;) + SU(C;) and 6(p) = 1/ S6(m;)*. A mate edge e from v to
w (that is, e4; 5 in Fig. 1) can be transitively reduced on the path P (that is,
P2=(tail(c,), ey, c3, €5, head(c,)); 6 in Fig. 1) if e and P have similar lengths and the
long-read labels of e are coherent with every edge e, of P: |I(e) — I[(P)| < 4max(o(e),
o(P)) and F(e) C F(e;,) V e;€ P. If this is the case, then the transitive path P (that
is, P2) is long-read coherent with the mate edge e (that is, ¢;) and represents an
approximate overlap of length /(P) among all of the long reads composing the
mate edge e (F(e)). We store the overlap information by removing e (that is, e4)
from the SSG and incrementing the weight of every mate edge m; in P by w(e)
(that is, w(e;) =w(e;) + w(e,) and w(e;) =w(e;) + w(e,); 6 in Fig. 1). Before starting
the computation of approximate long-read overlaps, the repetitive contig edges
are masked, the mate edges are sorted by ascending length I(e) and the set of
biconnected components of the SSG is computed. The masking of repetitive contig
edges is performed by estimating the average coverage of unique genomic regions
using as a proxy the longest (10%), all likely to be single-copy, short-read contigs
(u). Contig edges with an average coverage cx > 1.5x u are masked by default.
This repeat masking procedure is similar to but simpler than the A-statistic and
threshold (~1.44) introduced by Myers’. Transitive long-read-coherent path search
takes place inside each biconnected component. In practice, we use a depth-first
search algorithm to enumerate all of the long-read-coherent paths of a given mate
edge e. At each edge extension, we extend the path only if the new added edge is
long-read coherent with the given mate edge e (F(e) C F(e,)). We stop searching
when the size of a partial path P is larger than 80 vertices or its length is longer
than expected (I(P) > I(e) and |I(e) — I(P)| > 4max(s(e), o(P))). If there is more
than one long-read-coherent path, we choose the path having the maximum
number of hits from the long reads supporting the given mate edge e. For very
long mate edges (I(e) > 100 kb), we stop searching if we find more than 100
long-read-coherent paths. All of the selected long-read-coherent paths are stored in
a path database for later use.

The final SSG graph is created by performing first bundling and then transitive
reduction (approximate long-read overlaps) of mate edges. From now on, we will
refer to this simply as the reduced SSG.

Generation of the assembly backbone with the SSG. Computation of approximate
long-read overlaps allows one to solve the scaffolding problem using all of the
synthetic mate-pair libraries simultaneously. Given the reduced SSG, our goal is to
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determine an optimal set of vertex disjoint paths covering all of the contig edges
with a maximum total weight of the mate edges. As this optimization problem is
NP-hard (non-deterministic polynomial-time hard), we use Edmond’s maximum
weighted matching approximation algorithm that guarantees to find an optimal
solution with a worst-case performance ratio r=W(S)/W(G) >2/3 (ref.*'). The
matching algorithm implementation is based on an extensive use of priority
queues, leading to an O(VElog[ V]) time complexity’>*. All of the contig edges, as
well as the mate edges associated with repetitive contigs or having a weight smaller
than 5, are masked during the matching cover step. After computing the matching
cover, all of the contig edges are added to the matching cover solution and we

use a depth-first search approach to detect simple cycles. If such cycles are found,
the set of biconnected components of the graph is computed and simple cycles

are destroyed by removing the mate edge of lowest weight in each biconnected
component. In practice, the matching cover solutions contain few cycles (<10 on
human genomes) and we observed performance ratios higher than r>0.8. The set
of optimal simple paths (lines or scaffolds) is what we call the assembly backbone.

Validation of the assembly backbone with the SSG. We validate the assembly
backbone using the physical genomic coverage obtained from the computation of
the approximate long-read overlaps. The key idea is to identify suspicious mate
edges e (corresponding to potentially incorrect joins) not supported/covered by
long-read overlaps longer than O (by default O>20kb). We first assign genomic
coordinates to each line L,=(c;, m,,...m;_,, ¢) from 1 to I(L,), taking into account
the orientation of the contig edges and the ordering and distance provided by

the matched mate edges. In a second step, all of the contig edges are converted
into physical genomic fragments as well as the mate edges spanned by long reads
longer than O. In a third step, if the vertices v, w of a reduced mate edge e belong
to the same line L, and the length of [(e) is longer than O, we create a new simple
path pf that goes from v to w in the line L,. The new simple path pf is converted
into a physical genomic fragment f only if the length of pf is similar to the length
of the reduced mate edge e; that is, if |I(e) — I(pf)| < 4max(o(e), o(pf)). If that is

the case, the simple path pf increases the physical genomic coverage of the line

L, In a fourth step, once the physical genomic coverage of all the lines L, has been
computed, we look for all of the intervals inside a scaffold having a lack of physical
coverage at the mate-edge locations and we tag such mate edges as potentially
erroneous joins. A line L, is split at potential error joins only if the number of long
reads supporting the suspicious mate edge e is less than mlr (default mlr<4). In
practice, we observe that the physical path coverage of human assemblies is around
20X (30x long-read coverage); thus, usually fewer than 200 mate edges

are removed.

Gap filling with the SSG. A property of the SSG is that all of the mate edges are
spanned by at least one long read. Therefore, after construction and validation

of the assembly backbone, we proceed to create a consensus sequence for each

of the matched mate edges. We start by ordering the lines by decreasing length,
which imposes a global order to the mate edges and consequently to the long-read
sequences. For each mate edge e, we select the N best long reads (default:

20) spanning e. The long-read selection is carried out by counting, with the
edge-labeling function F(e), the number of synthetic mate pairs contributed by

the long-read [; to compose the mate edge e. This means that, the more synthetic
mate pairs are contributed by long-read [, the greater is the confidence that the
long-read I; spans e. All of the selected long-read sequences are sorted according

to the mate-edge order using an external merge sort algorithm to create a
long-read sequence database. Following the long-read database creation, we build
a consensus sequence for each mate edge using the partial order alignment graph™.
For each mate edge, we select the long read contributing the most synthetic

mate pairs as the consensus template; then the remaining long reads spanning

e are aligned to the template using a fast implementation of Myers’s bit-vector
algorithm™. The long-read alignments are scanned to partition the long reads into
non-overlapping windows of size w (by default 500 bp) on the template sequence.
The long-read chunks that have an average identity lower than 65% are removed
from the corresponding windows. The purpose is to use high-quality alignments to
build the template consensus. For each window w, we call the consensus sequence
using an SIMD-accelerated (single instruction multiple data) implementation of
the partial order alignment graph'”. The mate-edge consensus is built by joining
the window sequences. Finally, the corresponding contig ends are aligned (using
once again Myers’s bit-vector algorithm) to the mate-edge consensus sequence to
determine the correct mate-edge sequence boundaries, thus filling the gap between
the two contig edges.

Polishing with the SSG. As not all of the contig edges are part of the assembly
backbone (as is the case for the contig edges related to repeats or short sequences),
we can use them to improve the consensus base accuracy of the mate-edge
sequences. To this end, we use two polishing strategies, one based on the SSG

and a second based on pairwise alignments. The graph polisher uses the reduced
SSG to find transitive long-read-coherent paths as before, but masking the contig
edges composing the assembly backbone. Since now we navigate on more complex
parts of the SSG (unmasked repeat sequences), we limit the path search to a
maximum of 5 million iterations on each mate edge. Once a long-read-coherent

path has been found, we align the contig edges (with the proper orientation) to the
mate-edge sequence using Myers’s bit-vector algorithm™®. Then, the alignments

are trimmed as a function of the average long-read depth of the mate-edge
consensus sequence. We thus expect a minimum identity between 80% and 99%
when the average long-read depth of the consensus sequence is between 1 and 20,
respectively. If a contig edge maps with an identity higher than the expected and
the alignment covers at least 75% of the contig edge, we replace the corresponding
mate-edge-aligned sequence with the contig-edge-aligned sequence, thus polishing
the mate-edge sequence. The alignment polisher searches for matches between the
singleton contig edges and all of the mate-edge consensus sequences. In brief, we
first index all of the mate-edge consensus sequences using (5,17)-minimizers™.
Minimizers are stored in a hash table and the ones having a frequency higher

than 1,000 are excluded. The (5,17)-minimizers of the contig edges are scanned
on the mate-edge sequence index to collect high-scoring segment pairs or exact
(5,17)-minimizer matches. High-scoring segment pairs are sorted by mate edges
and hits are identified by finding the longest strictly increasing subsequence
(co-linear chain) between the contig and the mate edges. After collecting all of the
hits, we use a greedy algorithm to determine a layout of contig-edge hits along the
mate-edge sequence. The greedy algorithm starts by sorting the contig-edge hits by
number of minimizer matches and then adds the hits to the layout only if there is
no overlap with a previously added hit. We then proceed as in the graph polisher
to align and polish the mate-edge sequence using the best-hit layout. Finally,
WENGAN outputs the sequence of each line plus the sequence of contig edges
(>5kb) not used in the polishing steps.

WENGAN assemblies of CHM13. The WENGAN (HiFi + UL) assembly of

the haploid CHM13 genome was generated using the WENGAN-M mode. The
PacBio/HiFi reads were assembled with MINIA3 using an iterative multi-k-mer
approach with the following k-mer sizes: 41, 81, 121, 161, 201, 251, 301 and 351.
The PacBio/HiFi reads were then included in all of the subsequent WENGAN-M
steps (Fig. 1). The WENGAN (ILL+ UL) assembly was generated using the
WENGAN-D mode. The specific commands to reproduce both WENGAN
assemblies are provided in Supplementary Subsection 1.2.

Assembly validation. Genome assemblies generated by WENGAN and other
assemblers were assessed by whole-genome alignment to the human reference
genome using the QUAST* (v.5.0.2) tool. QUAST was run with the options
-large -min-identity 80 —fragmented using the GRCh38 (patch 19) reference
(autosomes plus X and Y). We also ran a QUAST analysis using as a reference

the curated CHM13 assembly (chm13.draft_v0.7, 2.9384 Gb) generated by the
T2T consortium™ for all of the CHM13 assemblies (Supplementary Table 4).
Several assembly metrics (that is, NG50, NGA50, longest alignment block, indels
per 100kb, genome fraction and others) were collected from the QUAST report.
QUAST assembly errors overlapping centromeric regions or SDs annotated in
GRCh38 were excluded from the analysis using the script and annotation files
provided by Shafin et al.”” (quast_sv_extractor.py -s empty -d GRCh38_masked_
regions.bed -c centromeres.bed -q quast-all_alignments.tsv). The procedure
masked a total of 610 Mb of the GRCh38 reference. Assembly errors before and
after the masking of highly repetitive regions are reported. The consensus quality
was determined by computing a more stringent alignment allowing a maximum
of 1% divergence using the MINIMAP?2 (ref.*') program (MINIMAP2 options:
cxasm10 —cs -r2k), and then contig-to-reference alignments longer than 1kb were
scanned by PAFTOOLS (option call —11000 —L1000) to call single-nucleotide
variants, insertions and deletions. Additionally, we used the 100-mer completeness
analysis to assess with an alignment-free method the consensus quality of the
genome assemblies using the KMC* k-mer counter (v.3.1.0). The GRCh38
(patch 19) reference genome has a total of 2,835,070,131 distinct 100-mers and
those were intersected with the 100-mers of the genome assemblies using the
KMC_TOOLS utility (option intersect -cil -cx1000). The gene completeness of
the genome assemblies was assessed with the BUSCO* program (v.3.0.2) using the
MAMMALIA ODBS9 gene set (4,104 BUSCO groups). The single plus duplicated
complete BUSCO gene counts are reported. The consensus quality of the genome
assemblies was determined by aligning orthogonal BAC or fosmid sequence data
(Supplementary Table 16). The statistics were computed considering fully resolved
BAC/fosmid alone. The BAC/fosmid consensus quality analysis was performed
using the BACVALIDATION tool (https://github.com/skoren/bacValidation).
The amount of SD resolved by the genome assemblies of CHM13, HG00733,
NA12878 and NA24385 was determined using SEGDUPPLOTS (https://github.
com/mvollger/segDupPlots). SEGDUPPLOTS aligns the assembled contigs to
GRCh38 and considers an SD as resolved when the aligned contig extends the
SD flanking sequences by at least 50kb. The sequence of the T2T-X chromosome
was repeat-masked with the REPEATMASKER program (v.4.1.0, search engine:
HMMER v.3.2.1, options: -species human -gff -xm) using the DFAM (v.3.1)
database. The contigs of the CHM13 assemblies were anchored to the T2T-X
chromosome using MASHMAP (v.2.0) and then masked with REPEATMASKER
using the aforementioned options. Finally, the WENGAN assemblies of CHM13
were validated and scaffolded using the hybridScaffold.pl program (BIONANO
Solve3.4_06042019a) (with the options -c hybridScaffold_DLE1_config.xml -B 2
-N 2) and the BIONANO map was assembled by the T2T consortium™.

NATURE BIOTECHNOLOGY | www.nature.com/naturebiotechnology
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Hybrid polishing of FLYE assemblies. We polished the FLYE assemblies of
NA12878 using the same sequencing reads employed in the WENGAN assemblies.
We used two rounds of long-read polishing with RACON'” followed by three
rounds of short-read polishing with NTEDIT*. The commands executed as well as
the consensus quality improvement after each round of polishing are provided in
Supplementary Tables 10 and 14.

Genome sequencing of NA12878. The genomic DNA from the GM12878
human cell line was purchased from the Coriell Institute (catalog no. NA12878,
RRID:CVCL_7526).

MGI sequencing. Library preparation for the NA12878 sample was performed
with the MGIEasy DNA Library Prep Kit V1.1 (MGI, 940-200022-00) following
the manufacturer’s instructions. Briefly, 1 pg genomic DNA at a concentration
of 12.5ngpl~" was fragmented with an E220 Covaris program optimized to yield
fragments of 450 bp in average length. A double-sized selection was performed
with AMPure XP beads (Beckman Coulter) at 0.52x ratio followed by a 0.15%
ratio as recommended by MGI. A total of 50 ng fragmented DNA was used for
the end repair and A-tailing reaction following the manufacturer’s instructions.
A set of adapters with 8 barcodes were ligated to the repaired DNA for 1h at
23°C. After purification with AMPure XP beads (Beckman Coulter) at a 0.5X
ratio, the DNA was subjected to PCR enrichment following the manufacturer’s
instructions. A total of 330 ng PCR product was hybridized with the Split

Oligo (MGI, 940-200022-00) for the circularization step followed by digestion.
Circularized single-stranded DNA (ssDNA) was purified with Library Purification
Beads (MGI, 940-200022-00) and quantified with an ssDNA assay on a Qubit

3 fluorometer (Thermo Fisher). For the linear amplification to generate DNA
nanoballs (DNBs), 75 fmol circularized ssDNA was used. The DNB library

was loaded in a single lane and sequenced on an MGISEQ-2000 instrument
with a paired-end modus and read length of 150 bp with the MGISEQ-2000RS
High-Throughput Sequencing Set PE150 (MGI, 1000003981) according to the
manufacturer’s instructions.

Illumina sequencing. The library was prepared using the TruSeq DNA PCR-Free
Library Prep kit (Illumina, FC-121-3001) following the TruSeq DNA PCR-free
reference guide (Illumina, 1000000039279v00). Briefly, 1 pg genomic DNA

was used for fragmentation on an E220 Covaris to yield insert sizes of 350 bp.
The DNA was end-repaired, adenylated and subjected to adapter ligation as
described in the reference guide. The library was quantified using the KAPA Lib
Quantification Kit (Roche, LB3111) and the double-stranded DNA (dsDNA) HS
(high sensitivity) assay (Qubit). The average fragment size was estimated with an
HS DNA kit (Agilent) on a 2100 Bioanalyzer (Agilent). An S2 flow cell loaded with
2.2nM library was processed on a NovaSeq 6000 instrument to generate 2 X 150
paired-end reads.

Nanopore sequencing. Three flow cells were run with the sample NA12878. One
flow cell was loaded with a library prepared from unsheared genomic DNA.

For the additional two sequencing runs, 14 pg NA12878 genomic DNA was
mechanically sheared with Megaruptor 3 (Diagenode) (at a concentration of
70ngpl~" in a volume of 200 pl) with the manufacturer’s recommended speed

to get sheared DNA with an average fragment length of 30kb. Size selection was
performed with Blue Pippin (Sage Science) to remove fragments shorter than 10kb
using a 0.75% agarose cassette, the S1 marker and a high-pass protocol (Biozym,
342BLF7510). A further clean-up with AMPure XP beads (Beckman Coulter) on
the size-selected DNA was performed at a 1xX ratio for one library. The fragment
size was assessed with the Genomic DNA 165kb Analysis Kit on a FemtoPulse
(Agilent) and the concentration of DNA was assessed using the dsDNA HS assay
on a Qubit 3 fluorometer (Thermo Fisher). For each of the three sequencing runs,
one library was prepared with the SQK-LSK109 Ligation Sequencing kit (ONT)
per flow cell following the instructions of the ‘1D genomic DNA by ligation’
protocol from ONT. Briefly, 1.1 to 1.3 pg genomic DNA was used for the DNA
repair reaction with the NEBNext Ultra II End Repair/dA-Tailing Module (New
England Biolabs, E7546S) and the NEBNext FFPE DNA Repair Module (NEB,
M6630S). On clean-up with AMPure XP beads (Beckman Coulter) at 1X ratio,

the end-repaired DNA was incubated for 1h at room temperature with Adapter
Mix (ONT, SQK-LSK109), Ligation Buffer (ON'T, SQK-LSK109) and the NEBNext
Quick Ligation Module (NEB, E6056S). The ligation reaction was purified with
AMPure XP beads (Beckman Coulter) at a 0.4X ratio and L Fragment Buffer (ONT,
SQK-LSK109). A 600 ng (25fmol) quantity of each generated library was loaded
into the flow cell (FLO-PR002) on a PromethION instrument (ONT) following the
manufacturer’s instructions. The Nanopore reads were base-called using GUPPY
(v.3.0.3) with the high accuracy FLIP-FLOP model.
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Reporting Summary. Further information on research design is available in the
Nature Research Reporting Summary linked to this article.

Data availability

All sequence datasets and de novo genome assemblies described in the manuscript
are publicly available through the corresponding repositories. Specific hyperlinks

for the four human datasets are provided in the Supplementary Information:
Supplementary Table 1 provides hyperlinks for all of the long-read datasets;
Supplementary Table 2 provides hyperlinks for all of the short-read datasets;
Supplementary Table 3 provides hyperlinks for all of the de novo assemblies used in
the benchmark; Supplementary Table 16 provides hyperlinks for the BAC/fosmid
sequences used for consensus quality assessment. The BIONANO data of CHM13
are available at https://github.com/nanopore-wgs-consortium/CHM13. Specific
hyperlinks for the non-human datasets are provided in Supplementary Table 17.

The supplementary files, including all of the WENGAN assemblies described in the
manuscript, are available through Zenodo at https://zenodo.org/record/3779515. The
specific commands for each WENGAN assembly are provided in Supplementary
Subsection 1.2. The NovaSeq 6000, MGISEQ-2000RS and PromethION sequence
data of NA12878 were submitted to the Sequence Read Archive under the BioProject
accession number PRJNA603060. Source data are provided with this paper.

Code availability

The WENGAN code (v.0.2) used in this manuscript is freely available at https://
github.com/adigenova/wengan and is distributed under the MIT open source
license, and at CODE OCEAN (https://doi.org/10.24433/C0.9469612.v1).
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supplementary files, including all the WENGAN assemblies described in the present manuscript, are available through Zenodo at https://zenodo.org/
record/3779515. The specific commands for each WENGAN assembly are provided in the Supplementary Material (Subsection 1.2). The NovaSeq6000,
MGISEQ-2000RS and PromethlON sequence data of NA12878 were submitted to the Sequence Read Archive (SRA) under the BioProject PRINA603060.
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Sample size Not applicable, since a single sample was sequenced.
Data exclusions  No data was excluded from the analysis.

Replication Not applicable, since the manuscript describes deterministic algorithms. We have references all publicly available datasets and software
versions for reproducibility of our analysis.

Randomization  Not applicable.

Blinding Not applicable, since our manuscript does not require case/control comparison.
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Materials & experimental systems Methods
Involved in the study n/a | Involved in the study
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|:| Palaeontology |Z| |:| MRI-based neuroimaging
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|:| Human research participants
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Eukaryotic cell lines

Policy information about cell lines

Cell line source(s) This study uses NA12878 cell line and DNA which is supplied by Coriell and is
approved for genome sequencing governed by the Coriell Institutional Review
Board (“Coriell IRB”) in accordance with DHHS regulations (45 CFR Part 46) and is
not considered human subjects research.

Authentication Purchased directly from validated source and sequenced. Coriell validates cells as
described here: https://www.coriell.org/0/pdf/CC_Process_Flow.pdf

Mycoplasma contamination Coriell routinely screen the cells for mycoplasma: https://www.coriell.org/0/pdf/CC_Process_Flow.pdf

Commonly misidentified lines  no commonly misidentified cell lines were used.
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