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workforce.

Protection of the healthcare workforce is of paramount importance for the care of patients in the setting
of a pandemic such as coronavirus disease 2019 (COVID-19). Healthcare workers are at increased risk of
becoming infected. The ideal organisational strategy to protect the workforce in a situation in which
social distancing cannot be maintained remains to be determined. In this study, we have mathematically
modelled strategies for the employment of the hospital workforce with the goal of simulating the health
and productivity of the workers. The models were designed to determine if desynchronization of medical
teams by dichotomizing the workers may protect the workforce. Our studies model workforce productiv-
ity and the efficiency of home office applied to the case of COVID-19. The results reveal that a desynchro-
nization strategy in which two medical teams work alternating for 7 days increases the available

© 2021 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

During the spread of worldwide pandemics, protecting and sup-
porting caregivers to maintain the workforce in hospitals is a cru-
cial and challenging task. Under such extraordinary situations, the
efficiency of the healthcare workforce is threatened by several fac-
tors including: 1) infected patients, 2) infected co-workers and 3)
infected persons outside the hospital. This is of high importance
in the current coronavirus disease 2019 pandemic (COVID-19)
given that the virus may be transmitted by asymptomatic persons
and the long incubation period averaging 5 days (Guan et al., 2020;
Zhou et al., 2020; Lauer et al., 2020). Unlike for most other profes-
sions, social distancing is typically not possible in medical teams
where healthcare workers are required to work in close contact
with patients and coworkers. Currently, little is known about
which work organizational strategies in the hospital are most suit-
able for protecting the healthcare workforce. Potential strategies
may include prolonging duty hours and thereby limiting interac-
tions between coworkers or complete desynchronization of the
workforce in which teams are dichotomized and each half of the
team work alternate weeks.

* Corresponding authors at: Department for Visceral Surgery and Medicine, Bern
University Hospital, University of Bern, Switzerland.
E-mail address: guido.beldi@insel.ch (D. Sanchez-Taltavull).

https://doi.org/10.1016/j.jtbi.2021.110718
0022-5193/© 2021 The Author(s). Published by Elsevier Ltd.

In this report, we perform simulations of biophysical models of
coronavirus epidemics of COVID-19 in a healthcare working team,
and discuss the efficiency of different work strategies during the
viral outbreak.

Different types of mathematical models have been used to
study epidemiology. In the classical Susceptible-Infectious-Recov
ered (SIR) model, a susceptible worker (S) can be infected (I), and
the infected person can recover (R), without the risk of reinfection.
Variants of this model are the Susceptible-Infectious-Susceptible
(SIS) and Susceptible-Exposed-Infectious-Recovered (SEIR) models
(Getz et al., 2018) and the Susceptible-Infected-Recovered-Deceas
ed (SIRD) models (Sinha et al., 2020). The SEIR model in which
the recovered patients are susceptible again, has already been used
for modeling purposes during the COVID-19 outbreak (Rocklov
et al., 2020). Also, SEIR models have been used to model control
of expansion in the context of the COVID-19 and have been
extended to include patients age and asymptomatic cases (Pan
et al, 2019; Prem et al., 2020). Furthermore, SEIR models have
been applied in this context by including persons in quarantine
(QSEIR model) (Liu et al., 2020; Peak et al., 2020). A model based
on Microscopic Markov Chain approach have been proposed to
study the effect of confinement (Arenas et al., 2020).

Further extensions have recently been proposed to better model
COVID-19 transmission dynamics. Mobility data from the United
States have been used to create social-distance metrics and com-
bined with epidemiological models to assess infection rates (Badr
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et al., 2020). Recent work has analyzed the impact of population
heterogeneity in epidemic waves (Neipel et al., 2020). Models of
the transmission dynamics in Switzerland have been developed
to study the effect of the implementation of non-pharmaceutical
interventions (NPIs) on time-varying reproduction number
(Joseph et al., 2020) as well as to explore counterfactual scenarios
of earlier and later implementation of NPIs (Althaus et al., 2020).
Optimization of resource sharing of multiple hospitals has been
studied to optimize the use of ICU beds (Lacasa et al., 2020). How-
ever, the question on how to organize healthcare units during pan-
demics remains unclear.

Here, we put forward SIS and SIR models by dividing the infec-
tious persons into a latent and infected state in order to account for
the potentially long asymptomatic phase of COVID-19. Next, have
developed a family of time-dependent compartmental models
with and without reinfection by adapting the SAIR model
(Althaus et al., 2010; Leung et al., 2018; Kahn et al., 2019). We
added a variable to account for work W and built mathematical
models for COVID-19 described by ordinary differential equations
(ODE). The family of models is denoted Susceptible-Latent-Infec
ted-Recovered-Susceptible-Work (SLIRSW) model. In our SLIRSW
models, the workers can be healthy and susceptible to infection,
S, infected in the incubation period, L, infected presenting symp-
toms, I, and after recovery temporarily immune to new infections,
R. Eventually the recovered workers lose their immunity and
become susceptible again. Additionally, the models are adapted
to account for work, W, done by the non-infected workers. There
are two limiting cases of particular interest: when the recovered
do not gain immunity (SLIW) and when the immunity is perma-
nent (SLIRW).

To investigate the possible scenarios for workforce organiza-
tion, we use ODEs describing the dynamics of the models including
time-dependent parameters in which the rate changes based on
their location, that is, in-hospital compared with home office.
Deterministic models may not be accurate to describe the dynam-
ics when small populations are present (McKane et al., 2005). In
the context of COVID-19, stochastic epidemiology models have
been used to study confinement strategies (Bittihn et al., 2020).

For this reason, we studied the limitations of the deterministic
model by reformulating them in terms of a master equation
(Gillespie, 1977), and we determined the range of parameters
where stochastic models were necessary. Later, the stochastic
models are used to investigate space separation of the workers.

The rest of the report is organized as follows: we formulate
mathematical models to investigate organizational strategies of
the hospital workforce and their effect on productivity during a
pandemic (Section 2, and present the results of simulations (Sec-
tion 3). Finally, our results are summarized and discussed
(Section 4).

2. Models

In this section we present the mathematical models used to
explore the different strategies to organize healthcare workers.

Our goal is to create a model to study the pandemic from its
beginning, where the number of infected workers is O, to later time
points where the population becomes immune, or when the virus
becomes endemic. Therefore we are studying both, the steady state
and the transient dynamics.

2.1. Sketch of the models

In the normal/control strategy, the SLIRSW model describes the
transmission dynamics among one group of healthcare workers
that follows their usual schedule at the hospital. In that scenario,
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workers can be infected by coworkers and by the general popula-
tion. This model is described in detail in Section 2.2.1. This normal
strategy is compared with a desynchronized model, in which the
healthcare workers are divided into two non-interacting teams of
equal size. At any time, one team is at the workplace and the other
team stays at home. A dichotomous work switch is implemented as
follows (Fig. 1A): during the first week Team 1 stays at the work-
place and Team 2 at home; during the second week Team 1 stays
at home and Team 2 at the workplace; next the teams continue
alternating their location at the end of each week. When at the
workplace, each healthy susceptible worker can become latent at
an infection rate that is larger than when staying at home. Latent
workers develop the infection at the workplace, at the same rate
as at home. Infection of a susceptible by a latent worker can only
occur in the workplace. We also assume that infected workers
recover at the same rate at the workplace than at home, becoming
recovered and immune and eventually losing their immunity. This
model is described in detail in Section 2.2.1. Fig. 1 shows the
SLIRSW model with compartmentalization.

2.2. Mathematical formulation

In this section we present the mathematical details of the
SLIRSW model.

2.2.1. Normal strategy: One group of healthcare workers

In the normal strategy, our infection model describes the evolu-
tion in time t of the number S of healthy workers susceptible to be
infected, the number, L, of infected workers in a latent state, the
number, I, of infected workers presenting symptoms and therefore
isolated, and the number R of recovered workers who gained tem-
poral immunity and can not be infected. The dynamics of each pop-
ulation are described by the following system of ODEs:

%:—asfﬁSLerR, (1)
% =08 + fSL — s, (2)
% —sL 1l 3)
% =rl —mR, (4)
dd_‘?/ =S+L+R ()

where « is the infection rate coming from the general population -
e.g. infected persons in the city where the hospital is located-,
resulting in an infected worker in a latent state, f is the infection
rate when the person is infected by a co-worker, s is the inverse
of the incubation period, or the activation rate, at which a patient
in a latent state starts presenting symptoms. r is the recovery rate,
where an infected patient recovers and becomes healthy, and m is
the loss of immunity rate at which a recovered patient becomes
susceptible.

By considering o to be constant, we assume that there is a
roughly constant fraction of infected individuals among the gen-
eral population that becomes infected and can infect the health-
care workers. Although more complex infection rate functions
that introduce an infection curve could be considered, we use a
constant force of infection for simplicity to represent infections
from the general population. One interpretation of this approxima-
tion is to consider it as a worst-case approximation when the infec-
tion rate o is fixed at its highest during the whole epidemic. This
worst-case approximation would produce a lower bound on the
number of healthy workers.
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A Workplace

Team 1

B Workplace
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Workplace

Team 2

Home

Fig. 1. Sketch of the Susceptible-Latent-Infected-Recovered-Susceptible-Work model (SLIRSW). (A) Scheme of work shifts between two teams changing their location in the
workplace and at home once per week. (B) Infection dynamics at the workplace and home. See Section 2.2 for further details. Image of the doctor adapted from Kissclipart

(2020).

W is a function that keeps track of the work output of the work-
ers, for simplicity we assume its growth is proportional to the
number of available workers. For simplicity, we consider the death
rate negligible and we do not consider recoveries coming from
latent patients. In our simulations reported below, we set the ini-
tial condition to S(0)=300,L(0)=0,I(0)=0,R(0)=0, and
W(0) = 0, thereby representing a large unit with 300 workers.

As a function of m, there are two limiting cases of this model.
When m = 0, the immunity gained is permanent, we denote this
model as SLIRW. When m — oo, the time to go from R to S tends
to 0, we will refer to this model as SLIW.

2.2.2. Desynchronization strategy: Two groups of healthcare workers

Our main goal is to identify strategies to protect healthcare
workers. The first organizational strategy we present is a desyn-
chronization strategy that we compare with the normal strategy
presented in Section 2.2.1. The desynchronization strategy consists
of the division of the workers into two groups, one group works for
one week in the hospital while the other works at home, and the
week after the two groups swap their roles. Accordingly, we model
it as two groups of healthy persons susceptible to be infected, S;
and S,, two groups of infected persons in a latent state, L; and L,

two groups of infected persons presenting symptoms, I; and I,
and two groups of recovered R; and R,. The dynamics of each pop-
ulation are described by the following system of ODEs.

ds

dTl = — oy (6)S1 — By (H)S1Ly + mR; (6)
dL

G =S+ Bi(O)SiL Ly Q)
di

d—; =sLy — 1l 8)
dR

T; :Tll — TT'IR17 (9)
for the first group and

ds

(th = — az()S; — Bo(t)S2Ly + MRy (10)
dL

G =05+ B (0S:L2 — sLz (am
dl

d—; :SLZ — 1’[2 (12)
dR

d—tz =rl, — mRy, (13)
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for the second group. The rate of change of the work output obeys

aw
G
For this model, the parameters that are purely related to the
disease, r,s and m remain the same, while the parameters that
determine the epidemiological spreading vary. Accordingly, we
simulate our model for the first seven days with g, = 0 because
the workers are not in contact with the other co-workers when
they do home office. Additionally we define oy as the value o4 (t)
(o (t)) takes during the home office of group 1 (group 2). We con-
sider oy < oo because we assume that the probability of becoming
infected by the general population is higher when working at the
hospital. Every seven days, we switched the group’s roles, by
exchanging their parameter values. We assume that the productiv-
ity decreases during home office, therefore we choose A(t) = 1 and
B(t) = Wy during the odd weeks and B(t) = 1 and A(t) = Wy during
the even weeks. Then, o;(t), §;(t),A(t) and B(t) can be written as

Ba(t) = 0, B (t) = B,
o (t) = o, 0p(t) = oy,
A(t) =1 and B(t) = Wy,

At)(S1 +Li +R) +Bt)(Sy + L +Ry) (14)

t € odd weeks

Ba(t) = B, B1(t) = O,
al(t) = OH, OCZ(t) = o,
B(t) =1 and A(t) = Wy t e even weeks

Our model assumes that g remains constant when the desyn-
chronization strategy is applied. The rational for this assumption
is that with half of the workers in the same space, the time for
them to interact would double. However, some procedures (e.g.
surgical interventions) would require the workers to interact,
increasing the value of . The current lack of data does not allow
us to estimate B during desynchronization, and the assessment of
the true value is yet an open question.

In our simulations reported below, we set the initial condition
to  S:(0) =150,5,(0) = 150,L;(0) = 0,1;(0) = 0,R;(0) =0, and
W(0) = 0.

Based on the available data of COVID-19, we choose
s = 1/(5 days), because the average duration of the incubation per-
iod is 5 days (Guan et al.,, 2020; Zhou et al., 2020; Lauer et al.,
2020), and r = 1/(14 days) because the average recovery time is
14 days (Rhee et al., 2020; Gandhi et al., 2020).

2.2.3. Spatial divisions

Another strategy we consider, in addition to desynchronization,
is the possibility of dividing the space in the hospital into spatial
compartments.

In order to model space division, we divide our variables
Si,Li,I;, R;, in non-interacting compartments, Sy, L), [ij), Rij) with
i=1,2,j=1,...,N and N is the number of compartments. Since
the space is divided by N where N is the number of compartments,
we assume the rate g is multiplied by N, that is,  — Ng.

With these extensions, the equations describing the model read

Sy _

g =~ (O = NB(6)S1 Ly + mR, (15)
dLy;
gt =081+ Ny (S350 — 5Ly (16)
%ZSL]J—H]J (17)
dRy;
TL]_‘IZT'qumR]J', (]8)

for the first group and
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a5 _

i - 02 (£)S25 — NP, (£)S24L2 + MRy, (19)
dLy;
Tij =0l (t)SZJ‘ + Nﬁz (t)SZ_jLz_j — SLz_j (20)
%:SLZJ—TIZJ (21)
dR;;
T?J =rly; — MRy, (22)

for the second group, where the case N = 1 describes our previous
model.

2.3. Stochastic model

In this section, we present a stochastic formulation of our model
in terms of a Master equation, which we use to study smaller units,
e.g. 75 workers instead of 300. Here, due to the small size, stochas-
tic effects can become dominant.

We consider the susceptible, S, latent, L, infected showing
symptoms I, and recovered R, coupled with the following reactions

e S can be infected by a non-co-worker resulting into a L with a
rate T;. See Table 1.

e S can be infected by a co-workers resulting into a L with a rate
T,. See Table 1.

¢ A latent infected worker L can start presenting symptoms and
be sent to quarantine at rate T3. See Table 1.

¢ An infected worker I can recover and become R at rate T4. See
Table 1.

o A recovered worker R can lose their immunity and become S at
rate Ts. See Table 1.

The SLIW and SLIRW models are reformulated in terms of the
following Master Equation

P(X
T = DK noPX - 6.0) - TXOPXD) (@)

Where P(X,t) is the probability of being at state X at time ¢,
where X=(S,LILR) in the control model and
X =(81,L1,11,R1,S2,L5,15,R;) in the desynchronized model. The
transition rates, T;, and the state changes, r;, are described in
Table 1.

The Work done, W, is described as the ODE of the deterministic
models, Eq. (14).

Analogously, for spatial desynchronization the master equation
reads

OP((X1,...,Xn),t)

o =3 (Ti((Xa,....Xn) =1, )P(Xq, ...

J
-Ti((Xq,... . Xn), OP((Xs,... . Xn), 1)) (24)

,XN) —T;,t))

where X; = (S1;,L14, 114, R14,S24, L2, 124, R2i), and the transition rates
are described by the Table 1.

Table 1
Transition rates and state changes describing the model.

Transition rate State change Description

Ty = as; r =(-1,1,0,0) S L
T = pSiLi r, =(-1,1,0,0) Si+Li—Li+L
T3 =sL; r3 =(0,-1,1,0) L — 1
Tq=rl; r2=(0,0,-1,1) I —R;
Ts = mR; r4 =(1,0,0,-1) R —S;
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The Master equations are investigated by using the Gillespie
stochastic simulation algorithm (Gillespie, 1977).

3. Results

3.1. Desynchronization increases the available workforce during the
peak of infected healthcare workers

In this section we performed numerical simulations of our
dynamical systems model to study the effect of the desynchroniza-
tion. Our strategy consists of comparing simulations of the model

Number of healthy workers

Number of healthy workers
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with desynchronization and the model without desynchronization
in terms of number of healthy workers, and amount of work done.

3.1.1. Simulations of the SLIW model

First, we study the effect of the infection rates on the health of
the workers. In Fig. 2 we show the simulations of our systems of
ODEs with two representative sets of parameters, low infection
rate (Fig. 2Ai) and high infection rate (Fig. 2Aii). Regardless of the
values, we observe that the strategy of dividing the workers into
two groups decreases the number of infected workers, thus
increasing the available workforce. In Fig. 2B we show the number

300

250

200

150

100

50

0 | | | | I | | | 0 | | | | | | | |
0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40
time (d. time (d.
1 group strategy JiEi(Hoys) groupl — = 1 group strategy ImEtdays) groupl — —
2 group strategy group2 = = = - 2 group strategy group2 = = = -
B i C i ii
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Fraction of Healthy workers work output per worker work output per worker (W,=0.5)
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130 30
!
B 208 . 20
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2-group strategy 2-group strategy 2-group strategy
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103 103 103¢
{08 30 ’ 30
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Fig. 2. SLIW model simulations. (A) Representative examples of infection rates of healthcare workers with and without desynchronization. Number of healthy workers
(S + R) as a function of time for two sets of parameters values. (i) Assumption: low infection rate: o« = 0.1, = 0.001, oy = 0.01. (ii) Assumption: high infection rate:
o =0.2, 8 =0.002, 04 = 0.02. All rates are in units of day'. (B) Impact of infection rates on healthcare workers availability. Number of healthy workers as a function of the
infection rates. (i) Normal strategy. (ii) Desynchronization strategy oy = . The rates o, oy, and # in units of day~. (C) Impact of infection rates on the productivity. Value of
the work output W(t) at the end of the simulation (6 weeks) divided by the total number of workers for the normal strategy (Strategy 1), and different values of the home
office productivity with the desynchronized strategy (Strategy 2). (i) Strategy 1, (ii) Strategy 2, with productivity at home Wy = 0.5, (iii) Strategy 2, productivity at home
Wy = 0.75, (iv) Strategy 2, productivity at home Wy = 1. The rates , oy, and f in units of day~'. The color levels of the heatmaps were discretized to make the comparisons

easier.
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of workers as a function of the infection rates. We observe that
with the desynchronization strategy the number of healthy work-
ers is higher than with the normal strategy. So far, we have
observed that the desynchronization strategy increases the num-
ber of healthy workers. Because a desynchronization strategy
includes decreased productivity of home office, we next deter-
mined the overall economic impact of this strategy. Therefore,
we simulate our model for 6 weeks and we represent the value
of W divided by the total number of workers as a function of o
and g, for different values of home office efficiency (Fig. 2C). We
observe that if the productivity decreases by 50% during the home
office week, the normal strategy performs better than the

Number of healthy workers

Number of healthy workers
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desynchronization strategy. For higher values (75% or 100%) of
the home office productivity, the desynchronization strategy out-
performs the normal strategy for high infection rates.

3.1.2. Simulations of the SLIRW model

Next, we study the effect of the infection rates in a model that
does not allow for reinfection. In Fig. 3A we show the simulations
of our systems of ODE with two representative sets of parameters.
Regardless of the values, we observe that the strategy of dividing
the workers into two groups increases the number of healthy
workers when the maximum of infected healthcare workers is
reached. In Fig. 3B we show the number of minimum healthy

0 | | | | | | I | 0 | | | | | | | |
0 5 0 15 20 25 30 35 40 0 5 0 15 20 25 30 35 40
time (d time (d.
1 group strategy ime (days) groupl = = 1 group strategy = me (days) groupl = -
2 group strategy group2 - - - - 2 group strategy group2 - - - -
B i C i ii
1-group strategy 1-group strategy 2-group strategy
Fraction of Healthy workers work output per worker work output per worker (W,=0.5)
150 50
103 103
|40 40
B "30 6 30
104 oo 107 20
10 10
103 102 107 103 102 107 103 102 107
a a a
ii iii iv
2-group strategy 2-group strategy 2-group strategy
Fraction of Healthy workers ] work output per worker (W,=0.75) 50 work output per worker (W, =1) 50
103 103 103
0.8 140 40
|
6 0.6 5 130 30
.4 g .
10 04 10" Lo 107 20
0.2 10 10
103 102, T L T T o T TR

Fig. 3. SLIRW model simulations. (A) Representative examples of infection rates of healthcare workers with and without desynchronization (SLIRW). Number of healthy
workers (S + R) as a function of time. (i) Assumption: low infection rate: o = 0.1, § = 0.001 oy = 0.01. (ii) Assumption: high infection rate: « = 0.2, = 0.002 o; = 0.02. All
rates are in units of day-1. (B). Impact of infection rates on healthcare workers availability during the peak of infected healthcare workers. Minimum fraction of healthy
workers during a simulation as a function of the infection rates. (i) Normal strategy. (ii) Desynchronization strategy o stands for «; during the odd weeks and o, during the
even weeks, idem for f. The rates o and § in units of day~'. (C). Impact of infection rates on the productivity. Value of W(t) divided by the total number of workers at the end of
the simulation for the normal strategy (Strategy 1), and different values of the home office productivity with the desynchronized strategy. (i) Strategy 1, (ii) Strategy 2,
Wy=0.5, (iii) Strategy 2, Wy=0.75, (iv) Strategy 2, Wy=1. The rates o, oy, and $ in units of day~. The color levels of the heatmaps were discretized to make the comparisons

easier.
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workers as a function of the infection rates during a 6-week
simulation.

So far, we have observed that the desynchronization strategy also
increases the number of healthy workers in the situation without
reinfection. To determine the economic impact, we simulate our
model for 6 weeks and we represent the value of W as a function o
and p, for different values of home office efficiency (Fig. 3C). The
desynchronization strategy outperforms the normal strategy for
high values of home office efficiency. However, to achieve the same
amount of work done, the desynchronization strategy requires
higher values of home office productivity than in the SLIW model.

3.1.3. Simulations of the SLIRSW models

In this section, we study the remaining scenario, where the
worker gains immunity after recovery, which is however not per-
manent. We consider that this immunity is lost at a rate m which
can vary from 0 (SLIRW model) to co (SLIW model).

In Fig. 4A we illustrate a 12 week simulation of the number of
healthy workers for different values of m. They showed similar
dynamics before the peak of infected healthcare workers, all of
them reaching a similar minimum value. Thereafter, each
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condition tends to a different steady state, which decreases with
the value of m.

In Fig. 4B we show how the minimum value and the steady
state vary as a function of the parameter m. We do not observe
remarkable differences in the minimum value, and desynchroniza-
tion reduces the number of maximum infected workers for all val-
ues of m. The steady state increases for values close to 0. Therefore,
if the immunity is preserved for a long time, the system tends to
the SLIRW results.

In Fig. 4C we show the W(t) for multiple values of m. During the
first weeks we do not observe differences. After that, the lower the
value of m, the higher the value of W(t). This effect is due to the
fraction of non-healthy workers after reaching the peak of infected
healthcare workers (Fig. 4A). In this scenario, we observe that the
desynchronization strategy is beneficial for high values of m and
only detrimental for low values of m for long periods of
observation.

In summary, our results show that the effect of desynchroniza-
tion can be helpful to protect healthcare workers for all values of
m, and the dynamics for all values of m are in between the extreme
cases SLIW and SLIRW.
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Fig. 4. (A) Representative examples of the number of healthy healthcare workers with desynchronization (SLIRSW) for different values of m. (B) Minimum value of S +R
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3.1.4. Impact of home productivity on the performance of the two
strategies for the limiting cases

Next, we compared the SLIW and SLIRW. To this end, we
defined iz as the infection rate and we computed the value of W
as a function of the home office efficiency for different values of
the infection rate, by choosing « = 0.1ix and g = 0.001iz (Fig. 5).
We observe that the SLIW model requires a lower home office effi-
ciency than the SLIRW model (Fig. 5A,B). Next, we computed the
minimal value of home office efficiency needed to not have loss
in work using the desynchronization strategy (Fig. 5C).

Note that we have fixed a ratio of o/ to compare the SLIW and
the SLIRW model, and a different value could change the quantita-
tive behavior of what we observed in Fig. 5. However, this selection
is a representative value of the qualitative dynamics which allows
for the understanding of the difference between the extreme cases.

3.1.5. For small values of o and high values f the stochasticity is
dominant

Our deterministic model allowed us to identify differences
between the normal and the desynchronization strategy. However,
it remains unclear if some features could be hidden because of
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stochasticity. In this section, we study the stochastic effects on
our model by performing Gillespie simulations.

In Fig. 6A, we show that for low levels of o and low values of ,
the stochasticity does not play an important role due to the low
number of infections. For high values of «, regardless the value of
B, stochasticity does not play an important role, in that situation,
stochastic simulations are oscillating around the mean-field
dynamics (6C, D). However, we found that for low rates of « and
high rates of g, the stochastic effects are dominant (6B). This result
led us to study them further as shown below.

3.2. Spatial desynchronization introduces a purely stochastic
protective mechanism

In this section we explore the effect of dividing the work space
by reducing the number of persons working in a team. The workers
are assigned to one small team and are never in contact with work-
ers from other teams. In doing so, we simulate the stochastic
model with spatial compartmentalization described in Section 2.3.

In Fig. 7A,B we observe that several stochastic trajectories
remain unchanged (i.e. at 1), indicating that all individuals stay

20000 T T T T
e Infection rate i, = 0.2 day !
s |nfection rate i, = 3day ! N
s nfection rate i, = 10 day
10000
5
g
5
(s}
2
o
=
5000
2000 L 2 L L
0 0.2 0.4 0.6 0.8 1
Home office efficency

Home office efficency

0 L
0.1 1

10 100
Infection rate

SLIRW =~ s SLIW - s

Fig. 5. Value of W (work done) at the end of the simulation as a function of the home office efficiency for different infection rates, where o = 0.1ig, oy = 0.01ig, and
B =0.001ig. The dashed threshold is the productivity with the 1 group strategy. (A) SLIW model. (B) SLIRW model. (C) Value of home office efficiency needed to be as

productive as the normal strategy, as a function of infection rates.
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Fig. 6. Number of non-infected workers during a 6-week simulation in the deterministic system and 50 Gillespie simulations for different values of o and g using the SLIWR

model. Parameter values: (A)
o =0.1,04 = 0.01, p = 0.005.

non-infected in those simulations. The number of non-infected tra-
jectories increases with the number of compartments, while the
mean field dynamics remain the same. In Fig. 7C we observe that,
on average, an increase in the number of compartments is trans-
lated into a higher number of healthy workers. Note that the
changes in the number of compartments come with an increase
in B; resulting in the ODE system giving the same result (Fig. 7A).
Therefore, the spatial division incorporates a purely stochastic pro-
tective mechanism to our system.

This protective mechanism points to possible problems with
the interpretation of certain regions of Fig. 2B,C and Fig. 3B,C.
Specifically, the upper left region of the heatmaps (high g, low ).
In that regime, the mean-field dynamics possibly overestimate
the number of infected workers.

4. Discussion

Given the urgent need to protect caretakers, we present here
modelling approaches that address the impact of desynchroniza-
tion of healthcare workforces. We have developed a family of
time-dependent compartmental models (SLIRSW) with and with-
out reinfection by adapting the SAIR model of Althaus et al.
(2010), Leung et al. (2018) and Kahn et al. (2019). A time-
dependent compartmental model was included to account for the

o = 0.0001, a4 = 0.00001, § = 0.0005.  (B)

o = 0.0001, o4 = 0.00001, § = 0.005. (C) o =0.1,a4 = 0.01, = 0.0005. (D)

desynchronization of healthcare teams. In addition to the availabil-
ity of healthcare workers, we modelled productivity by incorporat-
ing different levels of work performed at home office.

First, we studied the limiting case where workers turn suscep-
tible again immediately after recovery (SLIW model), which
showed that the desynchronization strategy is associated with an
increase in the number of healthy workers compared to no desyn-
chronization. This effect is present with both high and low levels of
infection rates (Fig. 2).

Next, we incorporated productivity of the workers in the period
of home office. In practice, productivity of home office may depend
on the tasks that may be done outside the hospital such as writing
reports. We have determined the overall productivity as a function
of infection rates and home office efficiency. Figs. 2 and 5 show
that, for our case study model of COVID-19, a decrease of produc-
tivity to 50% during home office (only half of the time can be used
for productive work) does not imply a substantial decrease of the
overall productivity. However, if the productivity at home office
is above 75%, overall productivity is increased with a desynchro-
nization strategy for high infection rates.

Second, we studied the case, in which the workers gain perma-
nent immunity to the disease after recovering (SLIRW model). In
this SLIRW model, the protective effect of desynchronization
reduces over time (Fig. 3). In this situation, however, the number
of healthy workers with desynchronization increases, especially
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Fig. 7. (A) Mean-field dynamics (thick line) and 100 gillespie simulations (thin lines) of one group of workers S during a 12-week simulation of the stochastic model with
spatial separation, for 150 workers (1 compartment), 75 workers (2 compartments), and 38 workers (4 compartments). (B) Distribution of S;)(t) at the end of a 12-week
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during the peak of infected healthcare workers (Fig. 3). This obser-
vation is potentially the consequence of workers being immune to
the infection thereby not requiring a desynchronization anymore.
The protection of the healthcare workforce (Fig. 3B) and productiv-
ity (Fig. 3C) also depends on the infection rate in the SLIRW model.

Third, we studied an intermediate scenario in which the worker
gains immunity after recovery, which can be lost after some time.
We quantified the effect of the protective measure (Fig. 4), which is
between the two extreme cases of SLIW and SLIRW.

Next, we aimed to determine the ideal level of productivity for
each model (Fig. 5). The ideal home office productivity strongly
depends on infection rates in the model with reinfection (SLIW).
In this model productivity is required to be around 60% for infec-

10

tion rates 3 and 10. In the model without reinfection (SLIRW),
which is rather the case with COVID-19, the home office productiv-
ity needs to be higher in order to keep overall productivity similar
between the one and two group strategy.

However, the way the model was designed, we artificially
included a handicap to the desynchronization strategy. As long
as it remains unclear if reinfection is possible, the desynchroniza-
tion strategy would be maintained. Such strategy would be
stopped for recovered workers if reinfection does not occur
because of immunity. A possible future direction would be the
study of optimization strategies to manage healthcare workers
with adaptive strategies that analyze the temporal immunity of
the recovered workers.
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Next, we reformulated the model in terms of a master equation
to study the effect of the intrinsic noise. In Fig. 6 we showed that
for low levels of & and high levels of B, the stochastic effects can
be dominant, and therefore, in that regime a deterministic model
would not be an accurate approximation of the process.

The stochasticity was of special importance in our next in silico
experiment, where we studied spatial separation, due to the low
number of individuals in each compartment. We have shown
(Fig. 7) that for low levels of oy, the spatial separation reduces
the spread of the disease among the workers. We investigated
the origin of this effect by studying the distribution of the number
of infected workers, and we have shown that most of the simula-
tions had no infections (Fig. 7A,B), reducing considerably the aver-
age number of infected workers (Fig. 7C). This stochastic protective
measure is a discrete effect similar to ones previously reported in
biology (Bittihn et al., 2020; Sanchez-Taltavull et al., 2016).

Thus, we have determined the impact of a pandemic in the
number of available healthcare workers for the different possible
infection rates. It is important to note the different regimes. Low
o and low B would correspond to an infectious disease that it is
slowly spread among the healthcare workers, and few or no mea-
sures would be necessary. High o and high g would correspond to
an infectious disease that spread rapidly and the desynchroniza-
tion could help to keep the healthcare workforce available. High
o and low B represent an epidemic with high case numbers among
the general population but to which healthcare workers remain
relatively well protected and avoid transmission amongst them-
selves. This would be the case in which high social distancing mea-
sures are applied in the hospital. Low o and high g would represent
the opposite scenario - an epidemic that does not significantly
reach the general population but spreads mainly in hospital set-
tings - which has been seen in other outburst like MERS
(Hastings et al., 2016).

An important limitation of our model, is that it assumes the
infections coming from the general population to be constant. A
possible future direction would be to build a more complex model
in which the hospital dynamics are coupled to an epidemiological
model of the general population (e.g. a city where the hospital is),
and the pandemic in the general population and the hospital co-
evolves.

Recent models have revealed that the efficiency of desynchro-
nization strategies is dependent on the frequency of rotations
(Ely et al., 2020; Lim et al., 2020). Our study extends these models
by incorporation assumptions on work efficiency and reinfection
rates.

Our model has limitations that can be addressed in multiple
ways. Another extension would be to add asymptomatic patients
to the model, that is, patients that pass the infection without pre-
senting symptoms. Furthermore, the model does neither address at
what costs such a desynchronization strategy would come. Given
that a complete set of workers is always present, there might be
losses of acquired experience for the group absent. Furthermore,
these models neither address the impact of length of duty shifts
nor the impact of potentially impaired communication as a conse-
quence of decreased interactions between healthcare workers.

In summary, our model is a starting point to study how to pro-
tect healthcare workers while determining economic impact dur-
ing a pandemic outbreak.
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