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A B S T R A C T   

Presently the world is passing through a critical phase due to the prevalence of the Novel Corona virus, 2019- 
nCoV or COVID-19, which has been declared a pandemic by WHO. The virus transmits via droplets of saliva 
or discharge from the nose when an infected person coughs or sneezes. Due to the absence of vaccine, to prevent 
the disease, social distancing and proper quarantine of infected populations are needed. Non-resident citizens 
coming from several countries need to be quarantined for 14 days prior to their entrance. The same is to be 
applied for inter-state movements within a country. The purpose of this article is to propose mathematical 
models, based on quarantine with no lock down, that describe the dynamics of transmission and spread of the 
disease thereby proposing an effective preventive measure in the absence of vaccine.   

Introduction 

Viruses are not new on Earth. Since the evolution of first living cells 
they existed as most numerous biological entity in almost ecosystem 
having infected all life forms besides human beings. The history of 
human race was disrupted several times by terrible impacts of viral in-
fections. During last one year the entire world is facing challenges posed 
by novel corona virus 2019, commonly known as COVID-19 and the 
battle is not over yet. A new strain of COVID-19 has become very 
dangerous through its exceptional infectious qualities [3]. Reportedly, 
China country office of WHO, for the first time on December 31st ,2019, 
come to know about cases of pneumonia of unknown aetiology which 
was detected in Wuhan city, Hubei Province of China. Up to January 
3rd,2020, a total of 44 cases of pneumonia with unknown cases were 
reported. Subsequently on January 7th, 2020, it was identified that the 
pathogenic agent behind the cases of pneumonia was corona virus of a 
new strain. On January 13th, 2020, the first imported case of novel 
corona virus (2019-nCoV) was reported by the Ministry of Public Health, 
Thailand [9,14,21]. With the passage of time the whole world have been 

hit by the rapid spread of COVID-19. As reported by WHO [22] a total of 
8385440 confirmed cases of COVID-19 positive and total of 450686 
deaths have taken place by 19th June,2020. The following table 1 shows 
a list of top 12 countries with respect to transmission of COVID-19. 

Way back in 1918 − 19 the world had seen a pandemic of similar 
extent when the human civilization was attacked by H1N1 influenza. 
Since there was no vaccine available, different governments took 
different measures to contain the transmission of the virus in their 
countries.These pharmaceutical interventions (NPIs) included closing 
schools, churches, bars and other places of social gathering. The places 
where these interventions were implemented early were successful in 
reducing the number of cases while a lower mortality rate were expe-
rience in place where interventions remained in place. But with the 
lifting of controls the transmission renounced once again [10]. 

Now we, the whole human civilization over the globe, experience a 
very similar kind of situation in combating COVID-19 with so called non- 
pharmaceutical interventions which aims at reducing contact rates in 
the population to arrest the transmission of the virus [11,24]. Such 
measures include the reduction of social contact in work places, schools 
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and other public domains. For quantitative estimates of the impact of 
these measures in reducing morbidity, infection rate, excess mortality, 
proper mathematical model of virus transmission are required and these 
can contribute significantly in the public health planning. 

To combat against COVID-19 the measures that included closing of 
international borders, shutting school, colleges and workplaces con-
taining large gatherings (“Great lock down”, the phrase coined by the 
IMF), has invited huge impact on global economy which resulted in 
people to loose their jobs and businesses being disrupted. It’s truly a 
global crisis. 

At this point of time mathematics has emerged to be an invaluable 
weapon to combat against COVID-19. Mathematical models allow 
public health officials to conduct virtual experiments thereby evaluating 
the efficacious of control strategies. By studying the transmission dy-
namics [15,19] a systematic quarantine strategy can be taken up. 

Epidemic outbreaks evolve in geographic territories with consider-
able variability in spatial footings. This spatial inconstancy is significant 
in understanding the dominance of public health policies and in-
terventions in regulating these epidemics. A major trouble in provoking 
models to narrate spatial inconstancy in epidemics is accounting for the 
movement of people in spatial contexts. Multiple approaches to generate 
such statement have been exhibited, including individual based models, 
network models, stochastic models, and partial differential equations 
models. For the geographic spread [4] and control of COVID-19, we 
consider two epidemic models of partial differential equations [8,17] 
corresponding to the epidemic 2019-nCoV, one is due to proper quar-
antine of infected population and other is due to no quarantine. To 
include and quantify spatial effect we consider these models as diffusion 
models [1,5,15] for the geographic spread of the epidemic. The problem 
we interested in including a number of E class and I class in a uniform 
population together with homogeneous initial susceptible volume S0 
and calculating geotemporal propagation of the malady. Nomenclatures 
used in the epidemic models of the pandemic disease COVID-19 is given 
in the Table 2. 

Basic terminologies: 

Susceptible population S(x, t): A susceptible population S(x, t) in 
an epidemiology is a population at x ∈ Ω⊂Rn in time t, in which an in-
fectious disease is not present but each individuals of this population is 
at risk of gaining infection by the disease in forward time. 

Latent infected population E(x, t): A latent infected population 
E(x, t) in an epidemiology is a population at x ∈ Ω⊂Rn in time t, in 
which an infectious disease (COVID-19 in our case) is present without 
any symptoms. In forward time they may belong to the infected popu-
lation with symptoms or may become susceptible. They have ability to 

transmit the disease. 
Infected population I(x, t):An infected population I(x, t) in an 

epidemiology is a population at x ∈ Ω⊂Rn in time t, in which an infec-
tious disease (COVID-19 in our case) is present with symptoms. In for-
ward time they have full ability to transmit the disease through migrant 
population transmission or by local individual transmission or com-
munity transmission. 

Removed population R(x, t): A removed population R(x, t) in an 
epidemiology is a population at x ∈ Ω⊂Rn in time t, whose members are 
recovered from the infection of the infectious disease or died due to the 
infectious disease (COVID-19 in our case). 

Basic reproduction rate R0: For an infectious disease (COVID-19 in 
our case) the basic reproductive number is the number of secondary in-
fections delivered by a single infected individual in whole susceptible 
population. This quantity indicates the initial growth rate for the 
infected class and the potential for a large-scale epidemic. It is one of the 
touchstones of epidemiology. 

Herd immunity: The immunization of an individual not only pro-
tects that individual but also indirectly protects others against the pos-
sibility of disease transmission from the immunized individual. If a 
sufficient fraction of a population is immunized, then an epidemic may 
be averted altogether. The protection of an entire population via the 
immunity of a fraction of the population is called herd immunity. 

Epidemic models 

In this section we develop two non-linear epidemic models [12], one 
is due to proper quarantine of infected population and other is due to no 
quarantine. 

Hypothesis 

For the non-linear epidemic model [12] the whole population N is 
considered to be constant. Due to diffusion, we consider the spread of 
the infection within the population as a function of time and space both. 
Let Ω⊂Rn, be a bounded domain. Suppose the disease is such that the 
population can be separated into four distinct classes: the susceptible 
population, S(x, t), who can grab the disease; the infected population, 
I(x, t), who have the disease and can emit it; a class in which the disease 
is latent, E(x, t), who also can transmit the disease; and the removed 
population, R(x, t), namely, those who are recovered, immune or iso-
lated until recovered or dies out; at the location x ∈ Ω and at time t. Then 

S+E + I +R = N, (1) 

Also suppose that λ1 is the rate at which the interaction between the S 
class and the E class occur, λ2 is the rate at which the interaction between 
the S class and the I class occur, λ3 be the fraction of λ1 for which the 
interaction between S class and E class belong to the E class, λ4 is the rate 
at which the interaction between the I class and the E class occur, λ5 be 

Table 1 
World top 12 countries with reported laboratory-confirmed COVID-19 cases and 
deaths; data as of 19th June, 2020 [22].  

Country Name Total 
confirmed 
cases 

Total 
confirmed new 
cases 

Total 
deaths 

Total 
new 
deaths  

United States 
of America 

2149166 23139 117472 770  

Brazil 955377 32188 46510 1269  
Russian 

Federation 
569063 7972 7841 181  

India 380532 13586 12573 336  
The United 

Kingdom 
300473 1218 42288 135  

Spain 245268 585 27136 0  
Peru 240908 3752 7257 201  
Italy 238159 331 34514 66  
Chile 225103 4475 3841 226  
Iran 197647 2596 9272 87  
Germany 187764 0 8856 0  
Turkey 184031 1304 4882 21   

Table 2 
Nomenclature for the models.  

Symbols Descriptions 

S(x, t) Susceptible population 
E(x, t) A population in which the disease is latent 
I(x, t) Infected population 
R(x, t) Removed population 
λ1  Rate of contact between S and E class 
λ2  Rate of contact between S and I class 
λ3  A fraction of λ1 that belong to E class  
λ4  Rate of contact between E and I class 
λ5  A fraction of λ1 that belong to I class  
γ  Rate at which both E and I classes release their individuals from their 

respective classes 
D Diffusion coefficient  
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the remaining fraction of λ1 for which the interaction between S class 
and E class belong to the I class, that is λ3 +λ5 = λ1, γ be the rate at which 
both E class and I class release the individuals from their respective 
classes(in this case we choose the same rate for both E and I class) and D 
be the diffusion coefficient for all the population. 

Model for no quarantine case 

If there are no quarantine for infected populations, no social 
distancing and not considering for citizens of several countries that 
needed to be quarantined for 14 days earlier to entering their topical 
countries or topical state who comes outside their own country or own 
state respectively, the population of all S, E and I classes are interact with 
each other. For which as time goes,the total populations has high 
probability to become latent infected as well as infected and the corre-
sponding model is followed by the flow chart Fig. 1, given by: 

∂S
∂t

= −

(

λ1SE+ λ2SI
)

+D
∂2S
∂x2 , (2)  

∂E
∂t

= λ3SE − λ4IE − γE+D
∂2E
∂x2 , (3)  

∂I
∂t

= λ2SI + λ4IE+ λ5SE − γI +D
∂2I
∂x2 . (4)  

∂R
∂t

= γ
(

I +E
)

. (5) 

It is easy to check that the system (2)–(4) has infinitely many solu-
tions. The following results show that the solutions of the system (2)–(4) 
are non-negative and uniformly bounded. First we represent a non- 
negativity lemma, which can be found in any standard book. 

Lemma 1. Let u ∈ C2,1(Ω × [0, τ]) ∩ C2,1(Ω × [0, τ]) with 

ut − DΔu⩾a(x, t)u; x ∈ Ω, 0 < t⩽τ  

∂u
∂η⩾0; x ∈ ∂Ω, 0 < t⩽τ  

u(x, 0)⩾0; x ∈ Ω  

where a(x, t) ∈ C2,1(Ω × [0, τ]) and ∂u
∂η is the outward normal derivative of u 

at ∂Ω. Then u(x, t)⩾0 on Ω × [0, τ]. Moreover u(x, t) > 0 or u(x, t) = 0 in 
Ω× [0, τ]. 

Proposition 1. For a non-negative initial condition, the system (2)–(4) 
possesses a non-negative solution. 

Proof. Let (S, E, I)be a solution of the system (2)–(4) in Ω× [0, Tmax]. 
Then for every τ ∈ (0,Tmax)and from the system (2)–(4) 

St − DΔS = − (λ1E + λ2I)S  

Et − DΔE = (λ3S − λ4I − γ)E  

It − DΔI = λ2SI + λ4IE+ λ5SE − γI⩾(λ2S + λ4E − γ)I  

where x ∈ Ω, 0 < t⩽τ. Also λ1E + λ2I, λ3S − λ4I − γand λ2S+λ4E − γ are 
bounded in Ω× [0, τ]. 

Thus from Lemma (1, as τ is arbitrary in (0,Tmax), we must have S(x,
t)⩾0,E(x, t)⩾0 and I(x, t)⩾0 in Ω× [0, τ]. Hence the proof. □ 

Proposition 2. For a non-trivia and non-negative initial value let 

(S, E, I) ∈
[
∈ C2,1(Ω × [0,Tmax)) ∩ C2,1(Ω × (0,Tmax))

]3be a solution of 
the system (2)–(4). Then Tmax = ∞ and 

0 < S(x, t)+E(x, t)+I(x, t)⩽max{||S0(x) + E0(x) + I0(x)| |∞ +
⃒
⃒
⃒
⃒S′

0(x)
+E′

0(x) + I′0(x)
⃒
⃒
⃒
⃒
∞ +

⃒
⃒
⃒
⃒S′′

0(x) + E′′
0(x) + I′′0(x)

⃒
⃒
⃒
⃒
∞,N}, where prime denote 

the differentiation with respect to x and N is given by the relation (1). 

Proof. First we show that all of S(x, t),E(x, t) and I(x, t) are bounded 
in Ω× (0,Tmax). Let U(x, t) = S(x, t) + E(x, t) + I(x, t). As. 

0 < U(x, 0)⩽||U0(x)| |∞ +
⃒
⃒
⃒
⃒U′

0(x)
⃒
⃒
⃒
⃒
∞ ++

⃒
⃒
⃒
⃒U′′

0(x)
⃒
⃒
⃒
⃒
∞ and 

(S + E + I)t − DΔ(S + E + I) = − γ(E + I)⩽γN − γ(S + E + I),

we must have 0 < U(x, 0)⩽w(t) in Ω× (0, Tmax), where 
w(t) =

[
N +

(
||U0(x)| |∞ +

⃒
⃒
⃒
⃒U′

0(x)
⃒
⃒
⃒
⃒
∞ +

⃒
⃒
⃒
⃒U′′

0(x)
⃒
⃒
⃒
⃒
∞ − N

)
e− γt ]for t ∈

[0, ∞) is the solution of the ODE 

dw(t)
dt

= γN − γw
(

t
)

,

w(0) = ||U0(x)| |∞ +
⃒
⃒
⃒
⃒U′

0(x)
⃒
⃒
⃒
⃒

∞ +
⃒
⃒
⃒
⃒U′′

0(x)
⃒
⃒
⃒
⃒

∞. 
Thus we have 0 < w(t)⩽max

{
||U0(x)| |∞ +

⃒
⃒
⃒
⃒U′

0(x)
⃒
⃒
⃒
⃒
∞ ++

⃒
⃒
⃒
⃒U′′

0(x)
⃒
⃒
⃒
⃒
∞,N

}
for t ∈ [0, ∞). 

Therefore 0 < S(x, 0) + E(x, 0) + I(x, 0)⩽w(t). 
⩽max{||S0(x) + E0(x) + I0(x)| |∞ +

⃒
⃒
⃒
⃒S′

0(x) + E′

0(x) + I′0(x)
⃒
⃒
⃒
⃒
∞ 

+
⃒
⃒
⃒
⃒S

′

0(x) + E′

0(x) + I′0(x)
⃒
⃒
⃒
⃒
∞ +

⃒
⃒
⃒
⃒S′′

0(x) + E′′
0(x) + I′′0(x)

⃒
⃒
⃒
⃒
∞, N}. 

Hence the proof. 
R0 and Herd immunity for ‘no quarantine case’: For the reproduc-

tive rate of COVID-19 [23,25], in the model (2)–(5), considering initially 
E0 = I0 the per capita increase of E and I class is given by 

1
(E + I)

∂(E + I)
∂t

=
(λ1E + λ2I)S

(E + I)
− γ.

Which gives us the basic reproductive rate 

R0 =
(λ1 + λ2)S0

γ
.

If R0 > 1, then every infected member of the population will emit the 
disease to leastwise one other member during the infectious epoch, and 
the model argue that the disease will propagate within the population. If 
not, then the disease is desired to fall through before overreaching a 
substantive fraction of total population. Therefore R0 = 1 is a critical 
epidemiological grade. In other terms, pathogens with elevated equi-
librium of contagion and subordinate rescue and mortality rates will 
gesture an ideal threat. The reciprocal of the removal rate is the average 
time interval during which an individual from both E and I class remain 
contagious, given by 1γ. 

The expression for R0 can be rearranged to find the minimum size of 
a susceptible population, necessary for an epidemic to occur. Assuming 
that R0 = 1, the threshold condition is given by 

ST =
γ

(λ1 + λ2)
.

Fig. 1. Flow of COVID-19 transmission for ‘no quarantine case’.  
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A pathogen will go extinct if the size of the susceptible population is 
less than this threshold (S < ST). If the population size is above this 
threshold, then we can rewrite the basic reproductive rate as 

R0 =
S0

ST
.

Immunization reduces the size of the S class and thus leads to a 
smaller basic reproductive rate of the pathogen. In particular, immunizing 
a fraction p of a population reduces R0 to 

Ri
0 =

(1 − p)S0

ST
=

(

1 − p
)

R0.

Immunization will successfully eradicate the disease if it causes the 
basic reproductive rate to drop below one. Thus the critical immunization 
rate pc is 

pc = 1 −
1
R0

.

Expansion of this model have been utilized to anticipate the necessity 
of minimum coverage to urge some other tangible diseases to mitigation. 
For example, measles and whooping cough two of the most contagious 
diseases are thought to require 90–95% coverage, chicken pox and 
mumps 85–90% coverage, polio and scarlet fever 82–97% coverage, and 
smallpox 70–80% coverage [2]. □ 

Re-parametrisation 
For non-dimensionalisation, re-scaling dependent variables S, E, I,R 

by S0, the initial susceptible population and independent variables as x, t 
by x0 and t0 respectively, let S = S0S*,E = S0E*,I = S0I*,R = S0R*,t =

t0t*, x = x0x*, where S0, t0 and x0 are the characteristic units used to 
scale the above variables. Putting these in the system (2)–(5) we get 

S0

t0

∂S*

∂t*
= − (λ1S0S*S0E* + λ2S0S*S0I*)+D

S0

x2
0

∂2S*

∂x∗2  

S0

t0

∂E*

∂t*
= λ3S0S*S0E* − λ4S0I*S0E* − γS0E* +D

S0

x2
0

∂2E*

∂x∗2  

S0

t0

∂I*

∂t*
= λ2S0S*S0I* + λ4S0I*S0E* + λ5S0S*S0E* − γS0I* +D

S0

x2
0

∂2I*

∂x∗2  

S0

t0

∂R*

∂t*
= γS0

(

I* +E*
)

that is, 

∂S*

∂t*
= − (λ1t0S*S0E* + λ2t0S*S0I*)+D

t0

x2
0

∂2S*

∂x∗2  

∂E*

∂t*
= λ3t0S*S0E* − λ4t0I*S0E* − γt0E* +D

t0

x2
0

∂2E*

∂x∗2  

∂I*

∂t*
= λ2t0S*S0I* + λ4t0I*S0E* + λ5t0S*S0E* − γt0I* +D

t0

x2
0

∂2I*

∂x∗2  

∂R*

∂t*
= γt0

(

I* +E*
)

With S*
(

x, 0) = 1, E*
(

x, 0) = E0
S0
, I*

(

x, 0
)

= I0
S0
,R*(x, 0

)

= 0 as 

initial conditions, where E0 and I0 are respectively the initial population 
of E and I class. 

Letting γt0 = 1 and D t0
x2

0
= 1, we get t0 = 1

γ and x0 =

(
D
γ

)1
2

. Thus we 

end up with the scaled model 

∂S*

∂t*
= − aS*E* −

(

R0 − a
)

S*I* +
∂2S*

∂x∗2 , (6)  

∂E*

∂t*
= bS*E* − μI*E* − E* +

∂2E*

∂x∗2 , (7)  

∂I*

∂t*
=

(

R0 − a
)

S*I* + μI*E* +

(

a − b
)

S*E* − I* +
∂2I*

∂x∗2 . (8)  

∂R*

∂t*
= I* +E*. (9)  

with S*
(

x, 0) = 1, E*
(

x, 0) = E0
S0 

, I*
(

x, 0) = I0
S0
,R*(x, 0

)

= 0 and four 

dimensionless numbers a, b, μ and R0 as a = λ1S0
γ , b = λ3S0

γ , μ = λ4S0
γ and 

R0 =
(λ1+λ2)S0

γ respectively. 
The parameters λ1, …, λ5, γ and D in the dimensional model have 

been reduced to four dimensionless grouping R0, a, b and μ. 

Method of solution 
In this model we investigate the local spread of an epidemic wave 

[13] of infection into a uniform susceptible population. We want to 
designate conditions for the existence of such travelling wave, its speed 
of propagation and, when it exists. 

Looking for the one dimensional travelling wave solutions, let. 
S*(x*, t*)

= S*(z),E*(x*, t*) = E*(z), I*(x*, t*) = I*(z),R*(x*, t*) = R*(z), z
= x* − ct* 

where the wave speed c, have to determine. The above consideration 
will gives us a travelling wave of constant shape in the direction of 
positive x*-axis. Substituting the above consideration into the system 
(6)–(9) we get the system of equations as 

− c
dS*

dz
= − aS*E* −

(

R0 − a
)

S*I*  

− c
dE*

dz
= bS*E* − μI*E* − E*  

− c
dI*

dz
=

(

R0 − a
)

S*I* + μI*E* +

(

a − b
)

S*E* − I*  

− c
dR*

dz
= I* +E* 

Which can be represented as 

S*′′ + cS*′ − aS*E* − (R0 − a)S*I* = 0, (10)  

E*′′ + cE*′ + bS*E* − μI*E* − E* = 0, (11)  

I*′′ + cI*′ + (R0 − a)S*I* + μI*E* +(a − b)S*E* − I* = 0. (12)  

cR*′ + (I* +E*) = 0. (13)  

where prime represents differentiation w.r.t. z. The above system con-
sists of finding range of parameters considered above, for which there 
exists a solution with positive wave speed c and non-negative S*, I* such 
that 

E*( − ∞) = E*(∞) = 0, S*( − ∞) = 1, S*(∞) = 0,
0⩽I*( − ∞) < I*(∞) = 1 

The conditions on E* and I* imply a pulse wave of infective popu-
lation which propagates into the uninfected population. As time goes, 
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the equations (11) and (12) changes by linearising, with S*→E*, E*→I* 

and I*→1 to get 

S*′′ + cS*′ − R0S* ≈ 0, (14)  

E*′′ + cE*′ + (b − μ − 1)E* ≈ 0, (15)  

I*′′ + cI*′ + (R0 + μ − b − 1)I* ≈ 0. (16) 

Phase plane analysis: From equation (15) a typical wave front so-
lution is where E* towards one side, say, as z→ − ∞, is at one steady state 
and as z→∞ it is at the other. In that case we have to determine the value 
or values of c, for which the equation (15) has a non-negative solution E* 

which satisfies. 
limz→− ∞E*(z) = 1, limz→∞E*(z) = 0. 
In (E*,U) phase plane. 
E*′ = U,U′

= − cU − (b − μ − 1)E*we have the phase plane trajectories 
as the solution of 

dU
dE* =

− cU− (b− μ− 1)E*

U which has one singular point for (E*,U) as (0, 0). 
Corresponding to this singular point we define the matrix 

A =

⎛

⎝
− c − (b − μ − 1)
1 0

⎞

⎠

whose eigenvalues are 
1
2

[
− c ±

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
c2 − 4(b − μ − 1)

√ ]

⇒

⎧
⎨

⎩

stable node, if c2 > 4(b − μ − 1)
stable spiral, if c2 < 4(b − μ − 1) If c⩾cmin = 2

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
b − μ − 1

√
then 

the singular point (0, 0) is a stable node. The case when c = cmin gives us 
a degenerate node. If c2 < 4(b − μ − 1), it is a stable spiral; i.e., E* oscil-
lates in a neighbourhood of the origin. By continuity disputes, in 
dimensional terms the range of c must satisfy 

c⩾cmin = 2
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
b − μ − 1

√
= 2

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
λ3S0

γ
−

λ4S0

γ
− 1

√

, μ < b − 1.

No wave solution exists for μ > b − 1. So this condition is necessary 
for the spread of epidemic wave for E* class. 

There are a typical travelling wave solution when c⩽2
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
b − μ − 1

√
. As 

E* < 0 for some z, they are physically unrealistic, because in that case E* 

spirals around the origin. In this seance E*→0 at the leading edge with 
decreasing oscillation around E* = 0. 

From equation (16) a typical wave front solution is where I* at one 
side, say, as z→∞, is at one steady state and as z→ − ∞ it is at the other. 
In that case we have to determine the value or values of c for which the 
equation (16) has a non-negative solution I* which satisfies. 

limz→− ∞I*(z) = 1, limz→∞I*(z) = 0. 
In (I*,U) phase plane. 
I*′ = V, V′

= − cV − (R0 + μ − b − 1)I*we have the phase plane tra-
jectories as solution of 

dV
dI* =

− cV− (R0+μ− b− 1)I*

V which has one singular point for (I*,V) as (0, 0). 
Corresponding to this singular point we define the matrix 

A =

⎛

⎝
− c − (R0 + μ − b − 1)
1 0

⎞

⎠

whose eigenvalues are 
1
2

[
− c ±

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
c2 − 4(R0 + μ − b − 1)

√ ]

⇒

⎧
⎨

⎩
stable node, if c2 > 4(R0 

+μ − b − 1
)
stable spiral, if c2 < 4

(
R0 + μ − b − 1

)

If c⩾cmin = 2
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
R0 + μ − b − 1

√
then the singular point (0,0) is a stable 

node. The case when c = cmin gives us a degenerate node. If c2 < 4(R0 +

μ − b − 1), it is a stable spiral; i.e., I* oscillates in a neighbourhood of the 
origin. By continuity disputes, in dimensional terms the range of c must 
satisfy. 

c⩾cmin = 2
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
R0 + μ − b − 1

√
= 2

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(− λ1+λ2+λ3+λ4)S0

γ − 1
√

, 
μ > b + 1 − R0. 
No wave solution exists for μ < b + 1 − R0. So this condition is 

necessary for I* class to propagate an epidemic wave. 
There are a typical travelling wave solution when 

c⩽2
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
R0 + μ − b − 1

√
. As I* < 0 for some z, they are physically unreal-

istic, because in that case I* spirals around the origin. In this seance I*→0 
at the leading edge with decreasing oscillation around I* = 0. 

Analysis of analytical solution 
Now solutions of equations (15) and (16) are respectively given by 

E*

⎛

⎜
⎜
⎝z

⎞

⎟
⎟
⎠∝exp

⎡

⎢
⎢
⎣

⎛

⎝ − c ± {c2 − 4(b − μ − 1)}
1
2

⎞

⎠z

2

⎤

⎥
⎥
⎦, (17)  

and 

I*

⎛

⎜
⎜
⎝z

⎞

⎟
⎟
⎠∝exp

⎡

⎢
⎢
⎣

⎛

⎝ − c ± {c2 − 4(R0 + μ − b − 1)}
1
2

⎞

⎠z

2

⎤

⎥
⎥
⎦. (18) 

As we required E*(z)→I*(z) and I*(z)→1 with E*(z) > 0 and I*(z) > 0, 
these solutions can not oscillate about E* = I* and I* = 1 respectively; 
otherwise E*(z) < 0 and I*(z) < 0 for some z. Then from relations (17) 
and (18), the travelling wave speed c and μ must satisfy 

c⩾cmin = max
{

2
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
b − μ − 1

√
, 2

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
R0 + μ − b − 1

√ }

= max

{

2

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
λ3S0

γ
−

λ4S0

γ
− 1

√

, 2

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(λ1 + λ2)S0

γ
+

λ4S0

γ
−

λ3S0

γ
− 1

√ }

where b + 1 − R0 < μ < b − 1. This maximum represents whether due to 
the pandemic COVID-19, the population in which the disease is in latent 
state or the infected population increase more from the starting of 
pandemic or not. 

Thus the wave speed for the pandemic COVID-19 in total population 
is given by 

||c| |2⩾2
⃒̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
⃒
⃒

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
b − μ − 1

√ ⃒
⃒
⃒

2
+

⃒
⃒
⃒

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
R0 + μ − b − 1

√ ⃒
⃒
⃒

2
√

= 2
̅̅̅̅̅̅̅̅̅̅̅̅̅̅
R0 − 2

√
. (19) 

In dimensional term this is given by 

||c| |2⩾2

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(λ1 + λ2)S0

γ
− 2

√

we expect such travelling waves derived from fully non-linear system of 
equations, will evolve into a travelling waveform with the minimum 
wave speed given by the equation(19), except in exceptional conditions. 
The wave velocity for COVID-19, V say, in dimensional term is then 
given as 
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V = (γD)
1
2||c| |2,

where 

||c| |2 = 2
̅̅̅̅̅̅̅̅̅̅̅̅̅̅
R0 − 2

√
.

The travelling wave solution for susceptible population S* cannot 
exhibit a local maximum, since S*′ = 0 there and the equation for S* 

shows that S*′′ = aS*E* + (R0 − a)I*S* > 0, which indicates a local 
minimum. So S*(z) is a monotone increasing function of z. By linearising 
the equation (10) for S* as z→∞, where S* = 0 + s, with s small, we get 

s′′ + cs
′

= 0  

which gives S*(z)→0 as z→∞. 

Model for proper quarantine case 

Due to proper quarantine of infective population and considering for 
citizens of several countries that needed to be quarantined for 14 days 
earlier to entering their topical countries or topical state, who comes 
outside their own country or own state respectively and treating them as 
infective, though the interaction between several classes of people, 
considered above, is reduced but not properly [18]. Because of daily life 
survival, some of the susceptible population comes in contact with some 
of the E class, like in market, medicine shop etc. In this model only the 
population of S and E classes are interact with each other, infected are to 
be separated in an isolated place. The corresponding model followed by 
the flow chart Fig. 2 is: 

∂S
∂t

= − λ1SE+D
∂2S
∂x2 , (20)  

∂E
∂t

= λ3SE − γE+D
∂2E
∂x2 , (21)  

∂I
∂t

= λ5SE − γI. (22)  

∂R
∂t

= γ
(

I +E
)

. (23) 

It is easy to check that the system (20)–(21) has infinitely many so-
lutions. The following results show that the solutions of the system (20)– 
(21) is non-negative and uniformly bounded. 

Proposition 3. For a non-negative initial function, the system (20)–(21) 
possesses a non-negative solution. 

Proof. The proof is similar as Proposition (1. □ 

Proposition 4. For a non-negative non-trivial initial value let 
(S, E) ∈

[
C2,1(Ω × [0, Tmax)) ∩ C2,1(Ω × (0, Tmax))

]2be a solution of 

the system (20)–(21). Then Tmax = ∞ and 
0 < S(x, t) + E(x, t)⩽max{||S0(x)

+E0(x)| |∞ +
⃒
⃒
⃒
⃒S′

0
(
x
)
+ E′

0
(
x
)⃒
⃒
⃒
⃒
∞ +

⃒
⃒
⃒
⃒S′′

0
(
x
)
+ E′′

0
(
x
)⃒
⃒
⃒
⃒
∞, N

}

, where prime denote the differentiation with respect to x. 

Proof. The proof is similar as Proposition (2. □ 

R0 for ‘proper quarantine case’: Due to ‘proper quarantine’ [6], the 
strict isolation [7] of infected individuals and considering for citizens of 
several countries that required to be quarantined for 14 days prior to 
entering their native countries or native state, who comes outside their 
own country or own state respectively, mainly the E class is dominated 
to spread the pandemic COVID-19. From the equation (21), the per 
capita increase of E class is given by 

1
E

∂E
∂t

= λ3S − γ.

Which gives us the basic reproductive rate 

R0 =
λ3S0

γ
.

If R0 > 1, then every infected member of the population will emit the 
disease to leastwise one other member during the infectious epoch, and 
the model argue that the disease will propagate within the population. If 
not, then the disease is desired to fall through before overreaching a 
substantive fraction of total population. Therefore R0 = 1 is a critical 
epidemiological grade. In other terms, pathogens with elevated equi-
librium of contagion and subordinate rescue and mortality rates will 
gesture an ideal threat. The reciprocal of the removal rate is the average 
time interval during which an individual from both E and I class remain 
contagious, given by 1γ. 

Re-parametrisation 
For non-dimensionalisation, rescaling dependent variables S, E, I,R 

by S0, the initial susceptible population and independent variables as x, t 
by x0 and t0 respectively, let S = S0S*,E = S0E*, I = S0I*,R = S0R*, t =

t0t*, x = x0x*, where S0, t0 and x0 are the characteristic units used to 
scale the above variables. Putting these in the system (20)–(23) we get 

S0

t0

∂S*

∂t*
= − λ1S0S*S0E* +D

S0

x2
0

∂2S*

∂x∗2  

S0

t0

∂E*

∂t*
= λ3S0S*S0E* − γS0E* +D

S0

x2
0

∂2E*

∂x∗2  

S0

t0

∂I*

∂t*
= λ5S0S*S0E* − γS0I*  

S0

t0

∂R*

∂t*
= γS0

(

I* +E*
)

that is, 

∂S*

∂t*
= − λ1t0S*S0E* +D

t0

x2
0

∂2S*

∂x∗2  

∂E*

∂t*
= λ3t0S*S0E* − γt0E* +D

t0

x2
0

∂2E*

∂x∗2  

∂I*

∂t*
= λ5t0S*S0E* − γt0I*  

∂R*

∂t*
= γt0

(

I* +E*
)

With S*
(

x, 0) = 1,E*
(

x, 0) = E0
S0
, I*

(

x, 0
)

= I0
S0
,R*(x, 0

)

= 0 as 
Fig. 2. Flow of COVID-19 transmission for ‘proper quarantine case’.  
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initial conditions; where E0 and I0 are respectively the initial population 
of E and I class. 

Letting γt0 = 1 and D t0
x2

0
= 1, we get t0 = 1

γ and x0 =

(
D
γ

)1
2

. Thus we 

end up with the scaled model 

∂S*

∂t*
= − μS*E* +

∂2S*

∂x∗2 , (24)  

∂E*

∂t*
= R0S*E* − E* +

∂2E*

∂x∗2 , (25)  

∂I*

∂t*
=

(

μ − R0

)

S*E* − I*. (26)  

∂R*

∂t*
= I* +E*. (27)  

with S*
(

x, 0) = 1, E*
(

x, 0) = E0
S0 

, I*
(

x, 0) = I0
S0
,R*(x, 0

)

= 0 and two 

dimensionless numbers R0 and μ as R0 = λ3S0
γ and μ = λ1S0

γ respectively. 
The parameters λ1, …, λ5, γ and D in the dimensional model have 

been reduced to only two dimensionless grouping R0 and μ. 

Method of solution 
In this model we investigate the local spread of an epidemic wave 

[13] of infection into a uniform susceptible population. We want to 
designate conditions for the existence of such travelling wave, its speed 
of propagation and, when it exists. 

Looking for the one dimensional travelling wave solutions, let. 
S*(x*, t*)

= S*(z),E*(x*, t*) = E*(z), I*(x*, t*) = I*(z),R*(x*, t*) = R*(z), z
= x* − ct* 

; where the wave speed c, have to be determine. The above consideration 
will gives us a travelling wave of constant shape in the direction of 
positive x*-axis. Substituting the above consideration into the system 
(24)–(27) we get the system of equations as 

− c
dS*

dz
= − μS*E*,

(28)  

− c
dE*

dz
= R0S*E* − E*,

(29)  

− c
dI*

dz
=

(

μ − R0

)

S*E* − I*,
(30)  

− c
dR*

dz
= I* +E*.

(31)  

Proposition 5. For the positive constants R0, μ, c; let the system (28)–(29) 
possesses a solution S*(z)⩾0,E*(z)⩾0 with S*(0) = S*

0 = 1, E*(0) = E*
0 > 0. 

Then the long term behaviour of the system (28)–(29) is characterized by R0, 
i.e., if R0 < 1, then S*(z) decreases to a limiting value S*(∞) > 0 and E*(z)
first increase and then decrease to 0. If R0 > 1, then S*(z) decreases to a 
limiting value S*(∞) > 0 and E*(z) decrease to 0. 

Proof. Addition of (28)–(29) and integration over (0, z) gives 

0⩽S*
(

z
)

+E*
(

z
)

=
μ − R0

c

∫ z

0
S*
(

s
)

E*
(

s
)

ds+
1
c

∫ z

0
E*

(

s
)

ds+ 1+E*
0 

The existence of unique non-negative solution on [0,∞) follows from 
the standard theory. 

Since dS*

dz ⩾0, S*(z
)

converges to a limit S*(∞)⩾0. The boundedness of 

dE*

dz on [0,∞) follows from the boundedness of S*(z),E*(z) on [0,∞) and 
∫∞

0 E*(s)ds < ∞, 
∫ z

0 S*(s)E*(s)ds < ∞. which implies that 
limz→∞E*(z) = 0 and limz→∞S*(z)E*(z) = 0. 

Division of equation (28) by S*(z) and integration over (0, z) gives 

S*
(

z
)

= exp
(

μ
c

∫ z

0
E*

(

s
)

ds
)

⇒ S*
(

∞) = exp
(

μ
c

∫∞
0 E*(s

)

ds
)

∕= 0 Now differentiating equation 

(29) with respected to z we get 

d2E*

dz2 = −
R0

c

[
dS*

dz
E* + S*dE*

dz

]

+
1
c

dE*

dz 

If there exists z* ∈ [0,∞) such that 
(

dE*

dz

)

z*
= 0 then from the above 

equation we get 
(

d2E*

dz2

)

z*
= −

R0

c

(
dE*

dz

)

z*
(E*)z* < 0  

. 

Thus if 
(

dE*

dz

)

z*
= 0 for some z* ∈ [0, ∞), then E(z) is concave 

downwards. 
Again from (29) 

dE*

dz
=

1
c
( − R0S*(z) + 1)E*

(

z
)

Then E*(z) increases at z = 0 if − R0 + 1 > 0, i.e. if R0 < 1 and de-
creases at z = 0 if − R0 + 1 < 0, i.e. if R0 > 1. 

Therefore E*(z) has at most one peak. Also with the convergence of 
E*(z) to 0, our claim on E*(z) follows. Hence the proof. 

Now the system (28)–(31) can be represented as 

S*′′ + cS*′ − μS*E* = 0, (32)  

E*′′ + cE*′ +R0S*E* − E* = 0, (33)  

I*′′ + cI*′ + (μ − R0)S*E* − I* = 0, (34)  

cR*′ + (I* +E*) = 0. (35)  

where prime represents differentiation w.r.t. z. The above system con-
sists of finding range of parameters considered above, for which there 
exists a solution with positive wave speed c and non-negative S*, I* such 
that 

E*( − ∞) = E*(∞) = 0, I*( − ∞) = I*(∞) = 0,0⩽S*( − ∞) < S*(∞) =

1. 
The conditions on E* and I* imply a pulse wave of infective popu-

lation which propagates into the uninfected population. As time goes, 
the system (33)–(34) changes by linearising, with S*→1,E*→0 and I*→0 
to get 

E*′′ + cE*′ + (R0 − 1)E* ≈ 0, (36)  

I*′′ + cI*′ − I* ≈ 0. (37) 

Phase plane analysis: From equations (36) a typical wave front 
solution is where E* at one side, say, as z→ − ∞, is at one steady state and 
as z→∞ it is at the other. So here we have to determine the value or 
values of c, for which the equation (36) has a non-negative solution E* 

which satisfies. 
limz→∞E*(z) = 0, limz→− ∞E*(z) = 1. 
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In (E*,U) phase plane. 
E*′ = U,U′

= − cU − (R0 − 1)E*we have the phase plane trajectories 
as the solution of 

dU
dE* =

− cU− (R0 − 1)E*

U which has one singular point for (E*,U) as (0, 0). 
Corresponding to this singular point we define the matrix 

A =

⎛

⎝
− c − (R0 − 1)
1 0

⎞

⎠

whose eigenvalues are 
1
2

[
− c ±

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
c2 − 4(R0 − 1)

√ ]

⇒

⎧
⎨

⎩

stable node, if c2 > 4(R0 − 1)
stable spiral, if c2 < 4(R0 − 1) If c⩾cmin = 2

̅̅̅̅̅̅̅̅̅̅̅̅̅̅
R0 − 1

√
then the 

singular point (0,0) is a stable node. The case when c = cmin gives us a 
degenerate node. If c2 < 4(R0 − 1), it is a stable spiral; that is, in a 
neighbourhood of the origin, E* oscillates. By continuity disputes, in 
dimensional terms the range of c must satisfy 

c⩾cmin = 2
̅̅̅̅̅̅̅̅̅̅̅̅̅̅
R0 − 1

√
= 2

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
λ3S0

γ
− 1

√

,R0 > 1.

No wave solution exists for R0 < 1. So this condition is necessary for 
the spread of epidemic wave for E* class. 

There are a typical travelling wave solution when c⩽2
̅̅̅̅̅̅̅̅̅̅̅̅̅̅
R0 − 1

√
. As 

E* < 0 for some z, they are physically unrealistic, because in that case E* 

spirals around the origin. In this seance E*→0 at the leading edge with 
decreasing oscillation around E* = 0. 

From equations (37) a typical wave front solution is where I* at one 
side, say, as z→∞, is at one steady state and as z→ − ∞ it is at the other. 
In that case we have to determine the value or values of c for which the 
equation (37) has a non-negative solution I* which satisfies. 

limz→∞I*(z) = 0, limz→− ∞I*(z) = 1. 
In (I*,V) phase plane. 
I*′ = V, V′

= − cV + I*we have the phase plane trajectories as so-
lution of 

dV
dI* = − cV+I*

V which has one singular point for (I*,V) as (0, 0). Corre-
sponding to this singular point we define the matrix 

A =

⎛

⎝
− c 1
1 0

⎞

⎠

whose eigenvalues are 
1
2

[
− c ±

̅̅̅̅̅̅̅̅̅̅̅̅̅
c2 + 4

√ ]
⇒saddle point. □ 

Analysis of analytical solution 
Now solutions of the system (36)–(37) are respectively given by 

E*

⎛

⎜
⎜
⎝z

⎞

⎟
⎟
⎠∝exp

⎡

⎢
⎢
⎣

⎛

⎝ − c ± {c2 − 4(R0 − 1)}
1
2

⎞

⎠z

2

⎤

⎥
⎥
⎦ (38)  

and 

I*

⎛

⎜
⎜
⎝z

⎞

⎟
⎟
⎠∝exp

⎡

⎢
⎢
⎣

⎛

⎝ − c ± {c2 + 4}
1
2

⎞

⎠z

2

⎤

⎥
⎥
⎦ (39) 

As we required E*(z)→0 and I*(z)→0 with E*(z) > 0 and I*(z) > 0, 
these solutions can not oscillate about E* = 0 and I* = 0 respectively; 

otherwise E*(z) < 0 and I*(z) < 0 for some z. Then from the relations 
(38) and (39), the wave speed c and R0 must satisfy 

c⩾cmin = 2
̅̅̅̅̅̅̅̅̅̅̅̅̅̅
R0 − 1

√
= 2

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
λ3S0

γ
− 1

√

,R0 > 1 (40)  

and the threshold condition in dimensional terms is given by 

R0 =
λ3S0

γ
> 1 (41)  

we expect such travelling waves derived from the fully non-linear sys-
tem of equations will evolve into a travelling waveform with the mini-
mum wave speed c = 2(R0 − 1)

1
2, except in exceptional conditions. The 

wave velocity for COVID-19, V say, in dimensional term is then given by 

V = (γD)
1
2c = 2(γD)

1
2

[
λ3S0

γ
− 1

]1
2 

The travelling wave solution for susceptible population S* cannot 
have a local maximum, since S*′ = 0 there and the equation for S* shows 
that S*′′ = μE*S* > 0, which indicate a local minimum. So S*(z) is a 
monotone increasing function of z. By linearising the equation (32) for 
S* as z→∞, where S* = 1 − s, with s small, we get 

s′′ + cs
′

− μE* = 0  

with which E*(z) from (38), 

S*

⎛

⎜
⎜
⎝z

⎞

⎟
⎟
⎠ ∼ 1 − O

⎛

⎜
⎜
⎝exp

⎡

⎢
⎢
⎣

⎛

⎝ − c ± {c2 − 4(R0 − 1)}
1
2

⎞

⎠z

2

⎤

⎥
⎥
⎦

⎞

⎟
⎟
⎠

and so, as z→∞, S*(z)→1 exponentially. 

Results and discussion 

In this paper for the epidemic COVID-19, we have investigated both 
analytical and numerical solutions for both the models ‘no quarantine 
case’ and ‘proper quarantine case’. From our analysis of analytical so-
lution for both the models it is observed that for ‘no quarantine case’ as 
time goes, both the susceptible and latent infected population tend to 
zero and the total population will become infected where as for ‘proper 
quarantine case’ as time goes; the infected population decrease, latent 
infected population tend to zero and the total population will become 
susceptible. 

For ‘no quarantine case’ we separately calculate the speed of spread 
of COVID-19 in both E and I class, which tells us that, as time goes, 
whether E or I class increase. After that we consider the Euclidean norm 
to calculate the wave velocity for the pandemic COVID-19 in total 
population, given by the relation (19). For ‘proper quarantine case’, due 
to proper quarantine for infected population, the speed of spread of 
COVID-19 only depend on E class. So the speed of spread of COVID-19 in 
E class is the wave velocity for the pandemic COVID-19 in total popu-
lation, given by the relation (40). 

For ‘no quarantine case’ the numerical simulation of travelling wave 
solution of the system (6)–(9) is done using Crank-Nicolson method. For 
the sake of convenience we truncate the time domain [0,∞) to [0,50]
and the one dimensional spatial domain Ω to [0,1]. With respect to this 
boundary condition of t* and x*, The boundary conditions of S*(x*, t*)),

E*(x*, t*) , I*(x*, t*) and R*(x*, t*) are considered as S*(x*,0) = S*(x*,50)
= 1, S*(0, t*) = S*(1, t*) = 0; E*(x*, 0) = E*(x*,50) = E*(0, t*) = E*(1, t*)

= 0 and I*(x*,0) = I*(x*, 50)⩾0, I*(0, t*) = I*(1, t*) = 1 and R*(x*,

0)=0 respectively. The 3D plots of S*(x*, t*), E*(x*, t*) I*(x*, t*) and 
R*(x*, t*) are shown in Figs. 3 and 4,respectively with respect to x* and t* 
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for the travelling wave solution. Based on above boundary conditions, 
numerical simulation shows that for the figure Fig. 3, the susceptible 
population S*(x*, t*) goes to zero in forward time and at any position x*. 
From the figure Fig. 3 it is obvious that the latent infected population 

E*(x*, t*) first increase and after certain time it decrease and goes to zero 
in forward time at any position x*. From the figure Fig. 4, it is observed 
that the infected population I*(x*, t*) increases and takes the value one 
in forward time at any position x*. From the figure Fig. 4 we observe that 

Fig. 3. No quarantine case: Numerical simulation for Susceptible population S*(x*, t*) and Latent infected population E*(x*, t*) for the system of equations (6)-(9) 
when a = 8; b = 3; μ = 1.8,

⃒
⃒
⃒
⃒c
⃒
⃒|2 = 2.5 and R0 = 2.5. 

Fig. 4. No quarantine case: Numerical simulation for Infected population I*(x*, t*) and Removed population R*(x*, t*) for the system of equations (6)–(9) when a =

8; b = 3; μ = 1.8,
⃒
⃒
⃒
⃒c
⃒
⃒|2 = 2.5 and R0 = 2.5. 

Fig. 5. Proper quarantine case: Numerical simulation for Susceptible population S*(x*, t*) and Latent infected population E*(x*, t*) for the system of equations (24)– 
(27) when c = 5, mu = 3 and R0 = 2.5. 
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the graph of removed population R*(x*, t*) is flat with respect to t*, 
because there are no diffusion of R*. 

For ‘proper quarantine case’ the numerical simulation of travelling 
wave solution of the system (24) and (27) is done. Like ‘no quarantine 
case’ here we also truncate the time domain [0,∞) to [0, 50] and the one 
dimensional spatial domain Ω to [0, 1]. With respect to this boundary 
condition of t* and x*, the boundary condition of S*(x*, t*),E*(x*, t*),

I*(x*, t*) and R*(x*, t*) are defined as by S*(x*,0) = S*(x*,50)⩾0, S*(0,t*)

= S*(1, t*) = 1, E*(x*, 0) = E*(x*,50) = E*(0, t*) = E*(1, t*) = 0 , I*(x*,

0) = I*(x*, 50) = 1, I*(0, t*) = I*(1, t*) = 0 and R*(x*,0)=0. The 3D plots 
of S*(x*, t*), E*(x*, t*) I*(x*, t*) and R*(x*, t*) are shown in figures (5 and 
6, respectively with respect to x* and t* for the travelling wave solution. 
Based on above boundary conditions, numerical simulation shows that 
for the Fig. 5, the susceptible population S*(x*, t*) increases and goes to 
one in forward time and at any position x*. From the figure Fig. 5 it is 
obvious that the latent infected population E*(x*, t*) first increase and 
after certain time it decrease and goes to zero in forward time at any 
position x*. From the figure Fig. 6 we observe that the infected popu-
lation I*(x*, t*) decrease and takes the value zero in forward time at any 
position x*. From the figure Fig. 6 we observe that the graph of removed 
population R*(x*, t*) is increases in forward time and at any position x*. 

For ‘no quarantine case’, we solve the system (10)–(13) numerically 
with boundary conditions E*( − ∞) = E*(∞) = 0, S*( − ∞) = 1,S*(∞) =

0, 0⩽I*( − ∞) < I*(∞) = 1. The estimation of parameters are given by 
a = 8, b = 3, μ = 1.8, c = 2.5 and 2.5⩽R0⩽3.00. Based on those bound-
ary conditions and the estimation of parameters, a numerical simulation 
is done for all of S*, E*, I* and R* populations with respect to z and the 
variations of Basic Reproduction number R0 = 2.50,R0 = 2.75 and R0 =

3.00. In Fig. 7 we draw the graphs of S* with respect to z and the above 
stated variations of R0. For all the variations of R0 we observed that 
S*tends to 0 as z approaches to ∞. As for an infectious disease (COVID- 
19 in our case) the basic reproductive number is the number of secondary 
infections delivered by a single infected individual in whole susceptible 
population and this quantity indicates the initial growth rate of the 
infected population and the potential for a large-scale epidemic, it is also 
noticed that for the larger value of R0 the susceptible population will 
become more infected and the rate of convergence of the susceptible 
population S* to 0 becomes faster for a large population. In Fig. 8 we 
draw the graphs of E* with respect to z and for the variations of R0. In 
this case for all the variations of R0 we observed that the latent infected 
population E* tends to 0 as z approaches to ∞. In Fig. 9 we draw the 
graphs of I* with respect to z and the variations of R0. For all the vari-
ations of R0 we observed that I* tends to 1 as z approaches to ∞. It is also 

noticed that for the larger value of R0 the volume of susceptible popu-
lation S* decreases, whereas the volume of infected population I* in-
creases. That is why the rate of convergence of the infected population I* 

to 1 becomes faster for the larger value of R0 for a larger population. In 
Fig. 10 the graphs of R* with respect to z and for the variations of R0 are 
drawn. For all the above stated variations of R0 the removed population 
R* decreases as z approaches to ∞. This discussion guarantee us that for 
vno quarantine case’ the total population will become infected after 

Fig. 6. Proper quarantine case: Numerical simulation for Infected population I*(x*, t*) and Removed population R*(x*, t*) for the system of equations (24)–(29) when 
c = 5, mu = 3 and R0 = 2.5. 

Fig. 7. Variation of the susceptible population with z when a = 8; b = 3; μ =

1.8,
⃒
⃒
⃒
⃒c
⃒
⃒|2 = 2.5, with respect to the variation of R0. 

Fig. 8. Variation of the latent infected population with z when a = 8,b = 3,μ =

1.8,
⃒
⃒
⃒
⃒c
⃒
⃒|2 = 2.5; with respect to the variation of R0. 
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certain time. That is why a ‘proper quarantine’ is essential, as a result we 
consider our next model as a ‘proper quarantine model’. 

For ‘proper quarantine case’, we solve the system (28)–(31) 
numerically with boundary conditions E*( − ∞) = E*(∞) = 0, 
I*( − ∞) = I*(∞) = 0, 0⩽S*( − ∞) < S*(∞) = 1. The estimation of pa-
rameters are given by μ = 3, c = 5 and 2.40⩽R0⩽2.50. Based on those 
boundary conditions and the estimation of parameters, a numerical 
simulation is done for all of S*,E*, I* and R* populations with respect to z 
and the variations of the Basic Reproduction Number R0 as R0 = 2.40, 
R0 = 2.45 and R0 = 2.50.In Fig. 11 we draw the graphs of S* with 
respect to z and the variations of and R0. For all the above stated 

variations of R0 we observed that S* increases as z approaches to ∞. It is 
also noticed that for the larger value of R0, the rate of increase of the 
susceptible population S* becomes slower. This happens because of 
‘proper quarantine’ of infected individuals and proper isolation of latent 
infected population. In this case the number of secondary infection from 
a single primary infection is reduced and therefore the value of the Basic 
Reproduction Number R0 is reduced. In Fig. 12 we draw the graphs of E* 

with respect to z and for the variations of R0. In this case for all the 
variations of R0 we observed that the latent infected population E* tends 
to 0 as z approaches to ∞. In Fig. 13 we draw the graphs of I* with 
respect to z and the variations of R0. For all the variations of R0 we 
observed that I* decreases monotonically as z approaches to ∞. It is also 
noticed that due to ‘proper quarantine’, for the smaller value of R0, the 
rate of decrease of the infected population I* becomes faster. In Fig. 14 
the graphs of R* with respect to z and for the variations of R0 are drawn. 
For all the above stated variations of R0 the removed population R* first 
decrease and after that it increases as z approaches to ∞. This discussion 
guarantee us that for ‘proper quarantine case’ the total population will 
become susceptible after certain time. Thus in the absence of vaccine, 
proper quarantine of infected individuals and proper isolation of latent 
infected individuals are very essential together with social distancing 
and use of mask. 

An elementary public health intention is to fetch disease from over 
an epidemic threshold grade to under threshold grade, thereby 
excluding a threat of a large scale epidemic. That can accomplish 
through interventions that either directly impact the infectiousness of 
the pathogen, modify patterns of interaction so that the pathogen cannot 
easily spread within the population, or immunize partitions of the 
population. We call those three forms of intervention as contact 
reducing, transmission reducing, and immunizing [16]. 

There are some important enlightenment of the threshold result (41) 
like, the critical population density Sc =

γ
λ3 

for the existence of epidemic 
wave for ‘proper quarantine case’; the critical transmission coefficient 
λ3c =

γ
S0 

to the E class which, if not exceeded, obstruct the spread of the 
disease; the threshold mortality rate γc = λ3S0 for E class which, if not 
exceeded, obstruct the spread of the disease etc. All of these have 
adhesion for control strategies [20,26].If we can minimize the trans-
mission measure λ3 for COVID-19 to E class, it may be feasible to 
overstep condition (41) and therefore again obstruct the spread of the 
disease. This can be done by social distancing, proper quarantine of 
infective population and considering for citizens of several countries 
that needed to be quarantined for 14 days earlier to entering their 
topical countries or topical state, who comes outside their own country 
or own state respectively. Finally with R0 > 1 as the threshold criterion 
we notice that an accidental inflow of the susceptible population can 
increase S0 above Sc and hence commence an epidemic. 

Fig. 9. Variation of the Infected population with z when a = 8,b = 3,μ = 1.8,
⃒
⃒
⃒
⃒c
⃒
⃒|2 = 2.5; with respect to the variation of R0. 

Fig. 10. Variation of the Removed population with z when a = 8,b = 3,μ =

1.8,
⃒
⃒
⃒
⃒c
⃒
⃒|2 = 2.5; with respect to the variation of R0. 

Fig. 11. Variation of the susceptible population with z when c = 5, μ = 3; 
with respect to the variation of R0. 

Fig. 12. Variation of the latent infected population with z when c = 5,μ = 3; 
with respect to the variation of R0. 
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All the mathematics for both models are done by the non- 
dimensionalisation, rescaling dependent variables S, E, I,R by S0, the 
initial susceptible population and independent variables x, t by x0 and t0 
respectively. Later on we found the value of x0 and t0. As the re- 
parametrisation for a mathematical model reduces number of parame-
ters only, for the dimensional system in both our models we get the same 
result as re-parametrised system. 

Conclusions 

In the absence of vaccine for COVID-19, governments across the 
world are struggling to find ways to prevent the spread of COVID-19 and 
many countries are adoption lock down as a possible way to prevent the 
spread of the disease. But this strategy is not only hurting the economy of 
their respective countries, but also hurting the global economy. 

In this article our investigation for the necessity of social distancing, 
isolation etc. for an infectious disease, proved that social distancing, 
proper quarantine of infective population and considering for citizens of 
several countries that required to be quarantined for 14 days prior to 
entering their native countries or native state, who comes outside their 
own country or own state respectively is one of the best possible way to 
stop the spread of COVID-19 with out lock down, in the absence of 
vaccine. This strategy can also save them from the destroy of their 
economy. Because, solving the model for ‘proper quarantine case’ by 
numerical method as well as analytical method we saw that the total 
population will become susceptible after certain time, where as for ‘no 
quarantine case’, we saw that the susceptible population become 0 after 
certain time. Not only for COVID-19, this model is also valid for any 
infectious disease, which transmit through contact. 

We also make the following important observations. for both the 
model ‘no quarantine case’ and ‘proper quarantine case’, the system of 
diffusion equations possess non-negative solutions and the solution are 
uniformly bounded. For both models we derive the wave velocity for the 
epidemic, comparing them we get that the wave velocity for ‘no quar-
antine case’ is always greater than that of ‘proper quarantine case’. 
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