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Predicting women with depressive 
symptoms postpartum 
with machine learning methods
Sam Andersson1, Deepti R. Bathula2, Stavros I. Iliadis1, Martin Walter3,4,5 & 
Alkistis Skalkidou1* 

Postpartum depression (PPD) is a detrimental health condition that affects 12% of new mothers. 
Despite negative effects on mothers’ and children’s health, many women do not receive adequate 
care. Preventive interventions are cost-efficient among high-risk women, but our ability to identify 
these is poor. We leveraged the power of clinical, demographic, and psychometric data to assess 
if machine learning methods can make accurate predictions of postpartum depression. Data were 
obtained from a population-based prospective cohort study in Uppsala, Sweden, collected between 
2009 and 2018 (BASIC study, n = 4313). Sub-analyses among women without previous depression 
were performed. The extremely randomized trees method provided robust performance with highest 
accuracy and well-balanced sensitivity and specificity (accuracy 73%, sensitivity 72%, specificity 75%, 
positive predictive value 33%, negative predictive value 94%, area under the curve 81%). Among 
women without earlier mental health issues, the accuracy was 64%. The variables setting women 
at most risk for PPD were depression and anxiety during pregnancy, as well as variables related to 
resilience and personality. Future clinical models that could be implemented directly after delivery 
might consider including these variables in order to identify women at high risk for postpartum 
depression to facilitate individualized follow-up and cost-effectiveness.

Postpartum depression (PPD), defined as having an episode of minor or major depression during pregnancy or 
up to one year after giving birth, is a relatively common condition that affects 8–15% of new mothers in Sweden 
every year1,2. The etiology of PPD is not well understood, but the condition likely arises from a combination 
of psychological, psychosocial and biological factors3,4. The most well documented biological risk factors for 
PPD are hypothalamic–pituitary–adrenal axis dysregulation, inflammatory processes, genetic vulnerability, and 
allopregnanolone withdrawal4. The strongest psychosocial factors are previous depression, severe life events, 
some forms of chronic stress and relationship struggles4,5. The role of resilience and personality have been lately 
also gaining attention6,7.

PPD is a condition that can have devastating effects on the mothers, as well as their children8,9. Mothers may 
experience persistent doubts about their ability to care for the child, have difficulties bonding with their child, and 
also have thoughts about hurting the child2. Moreover, PPD can affect a child’s development by interfering with 
the mother-infant relationship10,11. For instance, children of mothers with PPD have greater cognitive, behavioral 
and interpersonal problems compared to children of mothers without PPD12,13. Despite PPD being a detrimental 
health condition for many women, numerous affected women fail to receive adequate care14. There exist several 
effective treatments and interventions for PPD14–16, but they are only cost-effective among high-risk women. The 
idea of prenatal prediction of PPD has existed for several years and early studies using more traditional methods 
attempted to predict women at risk by prenatal assessment of critical variables17. However, to date, there has been 
no effective way to predict women at risk for the development of depressive symptoms postpartum.

Traditional statistical methods allow researchers to estimate risks by sequentially analysing the associations 
mainly between two variables, often controlling for the effect of others. Further, machine learning (ML) methods 
enable researchers to iteratively and simultaneously analyse multiple interacting associations between variables18 
as well as to devise data-driven predictive models that then can be evaluated by quantifying the performance 
metrics across all models in order to find the best predictive model. The power of ML allows for the analysis of 
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complex non-linear relationships and even the integration and pooling of multiple different data-types from 
several sources19–21. Over the last decade, there has been a steady increase in the use of ML in medicine and its 
effects can be observed in many fields including oncology22–25, cardiology and hematology26,27, critical care28,29, 
and psychiatry30–35. Importantly, PPD represents a unique case in which a moderately high chance to develop 
a serious psychiatric condition is coupled with a very precise temporal prediction of when such symptoms are 
to be expected. As such, and considering PPDs substantial societal burden, ML-based risk classification can be 
applied in an ideal situation with high expected societal benefit. With approximately 120,000 annual births in 
Sweden and the typical prevalence of PPD at 12% among women who nearly in their entirety present with a 
multitude of adaptations after childbirth, close monitoring of the whole population for early depressive sentinels 
after childbirth seems hardly feasible in reality. In contrast, close follow-up among high risk groups during mid-
wife or nurse-led postpartum assessments may strongly contribute to more tailored and cost-efficient maternal 
perinatal mental care services.

However, despite promising results in other fields, relatively few studies have been performed using ML in 
the field of perinatal mental health. An early study in the field could predict PPD with an accuracy of 84% by use 
of multilayer perceptrons and assessment of 16 variables36. A recent pilot study used ML algorithms applied to 
data extracted from electronic health records to show that ML models can be utilized to predict PPD and iden-
tify critical variables that conform with known risk variables such as race, demographics, threatened abortion, 
prenatal mental disorder, anxiety, and an earlier episode of major depression34. Another study also developed 
models to predict PPD, which were then integrated into a mobile application platform to be used by pregnant 
women37, while a recently published study compared four PPD prediction models that comprised demographic, 
social and mental health data38. In the latter study, psychological resilience was pointed out as an important 
predictive factor. However, these studies have been limited by either sample size or richness of data. Finally, in 
a recently published study, Zhang et al. proposed a machine learning based framework for PPD risk prediction 
in pregnancy, using electronic health record data39.

To date, our study is the first using a population-based, large and rich dataset, including a wide range of 
clinical and psychometric self-report and medical journal-derived variables and evaluating a range of different 
ML algorithms against each other, and also after stratification for earlier or pregnancy depression, to provide a 
robust screening tool, at discharge from the delivery ward, for predicting women at risk for developing depressive 
symptoms later in the postpartum period.

Hence, we aim to predict women at risk for depressive symptoms at 6 weeks postpartum, from clinical, demo-
graphic, and psychometric questionnaire data available after childbirth, by use of machine learning methods.

Results
Descriptive statistics.  Table 1 shows summary statistics of the study population by depressive symptom 
status at 6 weeks postpartum. Results are presented as frequencies and relative frequencies within EPDS status 
[N (%)] or median (interquartile range) for sociodemographic, clinical and questionnaire variables. Of the 4313 
participants in the study, 577 had depressive symptoms at 6 weeks postpartum. The mean age for both groups 
was 31 years. Differences were seen among women with depressive symptoms and women without depressive 
symptoms across sociodemographic variables like education, employment, and country of origin, as well as 
many other variables known as risk factors for postpartum depression. A greater proportion of women with 
depressive symptoms postpartum did not receive adequate support from their partner and were not breastfeed-
ing.

Classification graphs.  To evaluate whether ML can predict women with depressive symptoms, two data-
sets were used, namely the BP variables and the combined dataset, that includes the BP variables and three 
psychometric questionnaires (RS, SOC, and VPSQ). Performance of different ML models was first evaluated 
for the BP data (Fig. 1). The performance metrics for Ridge Regression, LASSO Regression, Gradient Boosting 
Machines, Distributed Radom Forests (DRF), Extreme Randomized Forests (XRT), Naïve Bayes and Stacked 
Ensembles models are shown. Balanced accuracy, NPV and AUC were quite similar across the models, with 
accuracy reaching 72% and AUC 79% for XRT. NPV was over 92% for all models. Sensitivity was quite low and 
together with specificity and PPV, they varied between the models. Sensitivity was highest for DRF at 84%, while 
only 65% for XRT; DRF had though the lowest specificity and PPV. The highest PPV was observed for Ridge 
Regression and Stacked Ensemble, at 41%.

Performance of different ML models was then evaluated for the combined dataset, even including psycho-
metric measures (Fig. 2). Performance metrics for the same models showed that NPV was still over 90% for all 
models, but otherwise, similar levels of accuracy and AUC were observed. More variability among the models 
was observed for sensitivity, specificity and PPV. XTR had the highest accuracy (at 73%) and AUC (at 81%) 
among all models, with a balance in sensitivity at 72% and specificity at 75%; PPV was at 33% and NPV at 94%. 
As this balancing act is an essential attribute of predictive models based on imbalanced datasets the subsequent 
experimental analysis was provided using only XRT.

Comparative performance of the XRT model using all variables, the top 50%, and the top 25% variables, 
for both the BP and the combined dataset is shown in Fig. 3. There was an apparent trade-off between model 
sensitivity and specificity, which were both affected by dataset used and percent of variables included (Fig. 3). 
Sensitivity was highest with use of only 25% of the combined dataset, while specificity was highest with the use 
of the top 50% of the BP dataset. None among the other measures were greatly affected by either dataset used 
or percent of variables included (a trend to lower PPV when 25% of variables used was noted). The AUC curves 
corresponding to Figs. 2 and 3 are available in the supplementary material (Supplementary Figure 1).
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Characteristics Missing values

EPDSa at 6 weeks postpartum

po0–11 (n = 3736) 12–30 (n = 577)

N (%) or median (IQRb)

Age (years) 3 31 (6) 31 (6) 0.247

BMI (kg/m2) before pregnancy 162 22.8 (4.4) 23.3 (5.5) 0.001

Height at gestational week 17 (cm) 151 168 (9) 167 (8) 0.305

University level education (vs. less) 268 2734 (78%) 387 (72%) 0.001

Employment 264 < 0.001

 Full-time work 2291 (65%) 310 (57%)

 Part-time work 696 (20%) 102 (19%)

 Studying 242 (7%) 49 (9%)

 Maternity leave 110 (3%) 15 (3%)

 Sick-leave 89 (3%) 26 (5%)

 Unemployed 78 (2%) 41 (7%)

Marital status (single vs. married/cohabiting) 9 55 (1.5%) 16 (2.8%) 0.022

Country of origin (scandinavia vs. other) 184 3311 (93%) 499 (91%) 0.193

Depression historyc 185 959 (27%) 296 (54%) < 0.001

Contact with psychiatrist (self-reported)d 250 285 (8%) 98 (18%) < 0.001

Contact with psychologist (self-reported)d 250 1190 (34%) 299 (55%) < 0.001

Hypomanic episodes (1 or more vs. none)d 270 141 (4.0%) 50 (9.3%) < 0.001

Premenstrual syndrome history (based on the ICD and ACOG criteria)d 303 169 (4.9%) 79 (15%) < 0.001

History of pregnancy loss 2072 21 (1.1%) 5 (1.6%) 0.477

Parity 303 0.072

 0 1934 (55%) 309 (60%)

 1 1082 (31%) 154 (30%)

 2 or more 477 (14%) 54 (10%)

Smoking, ever 175 1157 (32%) 197 (36%) 0.096

Snuff, before pregnancy 402 251 (7.4%) 40 (7.6%) 0.846

Sleep before pregnancy (hours per day) 179 0.005

 < 6 124 (3%) 32 (6%)

 6–8 29 27 (82%) 421 (77%)

 > 8 534 (15%) 96 (17%)

Migrained 295 584 (17%) 120 (22%) 0.002

Irritable bowel syndromed 295 127 (3.7%) 32 (5.9%) 0.011

Alcohol problemsd 295 5 (0.1%) 5 (0.9%) 0.001

Allergiesd 295 764 (22%) 119 (22%) 0.951

Endocrine problemsd 295 124 (3.6%) 25 (4.6%) 0.220

Hypertensiond 295 55 (1.6%) 14 (2.6%) 0.091

Pain problemsd 295 137 (3.9%) 43 (8.0%) < 0.001

Intimate partner violenced 275 362 (10%) 107 (20%) < 0.001

Pregnancy-related variables

Planned pregnancy 288 481 (14%) 121 (22%) < 0.001

Assisted reproductive technology treatment 424 369 (11%) 46 (8.7%) 0.120

Several ultrasounds during gestation 298 2241 (65%) 371 (69%) 0.048

Fear of childbirth 254 < 0.001

 No fear 2774 (79%) 336 (62%)

 Fear of caesarean section 339 (9.6%) 73 (14%)

 Fear of vaginal delivery 208 (5.8%) 61 (11%)

 Severe fear 200 (5.6%) 68 (13%)

Visit at fear of childbirth support unit 250 77 (2.2%) 19 (3.5%) 0.061

Negative delivery expectations 305 504 (15%) 131 (25%) < 0.001

Pregnancy nausea 281 < 0.001

 No 705 (20%) 74 (14%)

 Yes, without medication 2313 (66%) 363 (67%)

 Yes, with medication 476 (14%) 101 (19%)

SSRIf use during pregnancy 368 132 (3.9%) 39 (7.5%) 0.001

Anxiety during pregnancyg 237 1032 (29%) 387 (72%) < 0.001

Continued
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Characteristics Missing values

EPDSa at 6 weeks postpartum

po0–11 (n = 3736) 12–30 (n = 577)

Depression during pregnancyh 162 472 (13%) 298 (53%) < 0.001

Sleep during pregnancy (hours per day)i 266 < 0.001

 < 6 322 (9%) 98 (18%)

 6–8 2340 (67%) 332 (61%)

 > 8 843 (24%) 112 (21%)

Self-reported pregnancy complications (any)j 354 1471 (42.7%) 215 (42.0%) 0.771

Gestational diabetesj 136 35 (1.0%) 19 (3.5%) < 0.001

Preeclampsiaj 136 117 (3.2%) 23 (4.2%) 0.242

Anaemiaj 354 103 (3.0%) 21 (4.1%) 0.177

Hypertensionj 347 165 (4.8%) 41 (8.0%) 0.002

Symphysiolysisj 683 1212 (39%) 228 (47%) < 0.001

Pregnancy length (days) 194 280 (13) 280 (14) 0.103

Childbirth-related variables

Delivery month 1 6 (6) 6 (6) 0.386

Induction 301 651 (18.6%) 100 (19.3%) 0.697

Mode of delivery 0 0.107

 Spontaneous vaginal 2795 (75%) 402 (70%)

 Elective caesarean section 271 (7%) 47 (8%)

 Acute caesarean section 320 (9%) 64 (11%)

 Emergency caesarean section 33 (1%) 7 (1%)

 Instrumental delivery 317 (8%) 57 (10%)

Postpartum hemorrhage (≥ 1000 ml vs. < 1000 ml) 301 221 (6.3%) 46 (8.9%) 0.028

Epidural anaesthesia 286 1306 (37%) 238 (46%) < 0.001

Laceration (Grade III/IV vs. I/II) 146 103 (2.8%) 14 (2.6%) 0.712

Infant-related variables

Gender (female) 171 1733 (48%) 269 (50%) 0.458

Birthweight (kg) 204 3.6 (0.65) 3.6 (0.70) 0.201

Birth length (cm) 219 51 (2.5) 51 (3.0) 0.242

Head circumference (cm) 1184 35 (2.0) 35 (2.0) 0.672

Apgar score (1st min) 222 0.027

 0–3 26 (1%) 6 (1%)

 4–6 111 (3%) 28 (5%)

 7–10 3418 (96%) 502 (94%)

Umbilical artery base deficit 991 − 2.9 (4.2) − 2.6 (4.6) 0.250

Umbilical artery pH 949 7.3 (0.10) 7.3 (0.11) 0.519

Newborn admission to neonatal unit 286 300 (8.6%) 69 (13%) < 0.001

Postpartum variables

Negative delivery experience 411 217 (6.4%) 85 (17%) < 0.001

Partner helpful with infant 40 < 0.001

 Yes, a lot 2334 (63%) 300 (53%)

 Yes, a little 1281 (35%) 235 (41%)

 No 87 (2%) 36 (6%)

Breastfeeding 11 < 0.001

 Yes, exclusive 2918 (78%) 354 (62%)

 Yes, non-exclusive 576 (16%) 146 (25%)

 No 233 (6%) 75 (13%)

Stressful life events past 6 months (3–30 vs. 0–2) 13 395 (11%) 129 (22%) < 0.001

Psychometric scales

ASQ [pregnancy week 32]k

 Distance 2658 2.8 (1.1) 3.4 (1.4) < 0.001

 Insecure and repudiation connection 2658 2.1 (0.86) 2.3 (1.0) < 0.001

 Trust 2658 4.8 (1.0) 4.3 (1.3) < 0.001

 Consents 2658 2.9 (1.3) 3.7 (1.4) < 0.001

 Relation 2658 3.0 (1.0) 3.5 (1.1) < 0.001

SOC (total score) [pregnancy week 32]l 2095 154 (28) 131 (31) < 0.001

Continued
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The results for the performance of the XRT models after stratification for previous depression are shown in 
Fig. 4. For all women, XRT achieved a balanced accuracy of 73%, a sensitivity of 72%, a specificity of 75%, a posi-
tive predictive value of 33%, a negative predictive value of 94% and an AUC of 81%. For women with depression 
in pregnancy or earlier in life, XRT achieved a balanced accuracy of 69%, a sensitivity of 76%, a specificity of 61%, 
a positive predictive value of 44%, a negative predictive value of 87% and an AUC of 77%. For women without 
any previous depressive episode, balanced accuracy was 64%, sensitivity 52%, specificity 76%, positive predic-
tive value of 13%, negative predictive value 97% and AUC of 73% (Fig. 4). Among the results from analyses of 
the individual questionnaires, no single one achieved an accuracy of more than 70% (Supplementary Figure 2).

Characteristics Missing values

EPDSa at 6 weeks postpartum

po0–11 (n = 3736) 12–30 (n = 577)

LITE (number of events) [12 months postpartum]m 1696 3.0 (3.0) 4.0 (4.0) < 0.001

Resilience Scale-14 [pregnancy week 32] 1982 81 (15) 72 (24) < 0.001

Beck anxiety inventory (moderate/severe vs. minimal/mild) [pregnancy 
week 32] 2015 299 (15%) 162 (50%) < 0.001

SSP-Neuroticism score [pregnancy week 32]n 3230 328 (66) 387 (64) < 0.001

SSP-Aggressiveness score [pregnancy week 32] 3236 195 (26) 203 (26) 0.001

SSP-Sensation Seeking score [pregnancy week 32] 3224 94 (19) 95 (17) 0.258

Table 1.   Characteristics of the study participants by depression status at 6 weeks postpartum (EPDSa score 
0–11 vs. 12–30) (n = 4313). Bold values indicate p < 0.05. a Edinburgh Postnatal Depression Scale. b Interquartile 
range. c Self-reported and/or diagnosed by psychiatrist. d Pregnancy week 17, self-reported. e EPDS ≥ 12 at 
pregnancy week 17 or 32 or at delivery. f Selective serotonin reuptake inhibitors. g Based on either the Beck 
Anxiety Inventory, the State Trait Anxiety Inventory (STAI) or the anxiety subscale of the EPDS (EPDS 3A, 
items 3–5). h EPDS ≥ 12 at pregnancy week 17, 32 or 38. i Pregnancy week 32. j Self-reported, pregnancy week 
32. k Attachment Style Questionnaire. l Sense of Coherence Questionnaire-29. m Lifetime Instances of Traumatic 
Events. n Swedish Universities scales of Personality. o Based on the Mann–Whitney test for continuous variables 
and the Pearson Chi-square test for the categorical variables.

ACC SENS SPEC PPV NPV AUC
Ridge Regression 70% 51% 89% 41% 92% 79%
LASSO Regression 71% 56% 86% 38% 93% 78%
Distributed Random Forest 70% 84% 56% 23% 96% 79%
Extreme Randomized Forest 72% 65% 79% 32% 94% 79%
Gradient Boosted Machines 70% 69% 70% 27% 94% 75%
Stacked Ensemble 70% 51% 89% 41% 92% 79%
Naive Bayes 70% 59% 81% 33% 93% 78%
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Figure 1.   Evaluation of model performance in the dataset containing only background, medical and 
pregnancy-related variables (n = 4277 women). The models tested were Ridge Regression, LASSO Regression, 
Distributed Random Forest, Extremely Randomized Trees, Gradient Boosted Machines, Stacked Ensemble, 
and Naïve Bayes. Models were assessed for accuracy (ACC), sensitivity (SENS), specificity (SPEC), positive 
predictive value (PPV), negative predictive value (NPV), and area under the curve (AUC), the outcome being 
depressive symptoms at 6 weeks postpartum. The bars represent the level of performance measures (in percent) 
and the table below the bar plot presents the exact numerical values. Error bars represent one standard deviation 
from the mean.
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ACC SENS SPEC PPV NPV AUC
Ridge Regression 67% 42% 92% 46% 90% 79%
LASSO Regression 70% 53% 88% 42% 92% 80%
Distributed Random Forest 71% 55% 86% 40% 92% 80%
Extreme Randomized Forest 73% 72% 75% 33% 94% 81%
Gradient Boosted Machines 68% 58% 77% 30% 92% 73%
Stacked Ensemble 65% 36% 94% 52% 90% 80%
Naive Bayes 69% 54% 84% 38% 92% 78%
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Figure 2.   Evaluation of model performance in the total combined dataset (n = 2385 women). The combined 
dataset contained the background, medical and pregnancy-related variables, as well as answers to the 
questionnaires Resilience-14, Sense of Coherence-29 and Vulnerable Personality Scale Questionnaire. The 
models tested were Ridge Regression, LASSO Regression, Distributed Random Forest, Extremely Randomized 
Trees, Gradient Boosted Machines, Stacked Ensemble, and Naïve Bayes. Models were assessed for accuracy 
(ACC), sensitivity (SENS), specificity (SPEC), positive predictive value (PPV), negative predictive value (NPV), 
and area under the curve (AUC), the outcome being depressive symptoms at 6 weeks postpartum. The bars 
represent the level of performance measures (in percent) and the table below the bar plot presents the exact 
numerical values. Error bars represent one standard deviation from the mean.
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Figure 3.   Comparative performance of the dataset containing only background, medical history and 
pregnancy-related variables (BP) and the combined dataset (BP + RS + SOC + VPSQ). The Extremely 
Randomized Trees (XRT) algorithm was used to compare the performance of the two datasets for predicting 
depression at 6 weeks postpartum. Models were assessed for accuracy (ACC), sensitivity (SENS), specificity 
(SPEC), positive predictive value (PPV), negative predictive value (NPV), and area under the curve (AUC). The 
variable selection procedure shows results when All (100%), Top 50%, and Top 25% of variables were retained, 
ranked according to Mean Decrease in Impurity (MDI) relevance.
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Variable importance.  The 25 most important variables by MDI based on Distributed Random Forests 
(DRF) models, considering the women with different previous depression status are shown in Fig. 5. For all 
women, Anxiety During Pregnancy and Depressive During Pregnancy stand out as the two most important vari-
ables (importance level above 0.7) (Fig. 5A). The variables following in importance were questions included in 
the psychometric instruments, except for history of depression. Similarly, for women with previous depression, 
Anxiety During Pregnancy and Depressive During Pregnancy stand out as important variables for the presence 
of depression postpartum (importance level above 0.9) (Fig. 5B). Finally, for women without depression, Anxi-
ety During Pregnancy was the absolutely most important variable (importance level of 1) (Fig. 5C). Even here, 
variables relating to resilience, sense of coherence and personality followed, but interestingly, variables such as 
breastfeeding, BMI, traumatic events in childhood, mode of delivery, hypoxia in the newborn and age place 
among the top 25 variables.

The 25 most important variables based only on BP variables for all women (n = 4313) can be found in Fig. 6. 
The two variables that have an importance level above 0.9 are again Depression During Pregnancy and Anxi-
ety During Pregnancy. The next variable with an importance level above 0.3 is Depression History, while the 
remaining rate below 0.2.

Including only the top 20 variables, the AUC is only reduced by 1% to 0.79, including just 10 variables 
reduced the AUC by 2% to ~ 0.78, while after including just 5 variables reduced the AUC by 3% to ~ 0.77. For the 
previously non-depressed group, including 10 variables gives an AUC of 0.72, and 5 variables an AUC of 0.71.

Discussion
In this study, we evaluated a range of different machine learning (ML) methods to predict pregnant women at 
risk for postpartum depressive (PPD) symptoms. The classification performance of the chosen ML algorithms 
was not significantly different in regard to accuracy, NPV, AUC measures. However, variations were more pro-
nounced in regard to sensitivity, specificity and PPV. In general, as expected, an inverse relationship is observed 
in performance with respect to sensitivity and specificity. Furthermore, PPV is considerably lower than NPV 
due to low prevalence of PPD, as expected.

Overall, XRT provides robust performance with highest accuracy and well-balanced sensitivity and speci-
ficity. Addition of resilience and personality self-reported variables to the background, medical history and 
pregnancy-related variables provides marginal improvement in both accuracy and AUC. It is nevertheless of note 
that these extra variables boost the sensitivity of the XRT model substantially for only a slight drop in specificity. 
As this does not depend on the lower sample size used for the second step of analyses involving personality and 
resilience measures, it could be hypothesized that there is either a certain redundancy between variables, e.g. 
that low resilience is a core feature among depressed patients during pregnancy, or that anxiety and depression 
measures, available for all patients, have such a strong predictive value that the further addition of variables does 
not greatly improve accuracy.

These results suggest a possible benefit of using ML to screen new mothers at discharge from the delivery 
ward in order to identify those at high risk for postpartum depressive symptoms. However, because of the low 
PPV across all models, due to the relatively low prevalence of PPD at 12%, one would expect that many women 
identified at high risk would in the end not get depressed. On the other hand, these methods may nevertheless 
permit the identification of a high-risk group, to which preventive interventions would be offered in a cost-
effective way, mainly by avoiding large costs related to full-blown depressive episodes postpartum. These could 
include the provision of extra support as well as more focused and longitudinal assessments in these mothers. 
Furthermore, the variables included in the BASIC study refer to easily acquired web-based self-reports, which 
support their use for screening purposes. Because of the high NPV, we would not expect many women not iden-
tified as high risk to develop depression postpartum. As such, the application of our classification algorithms 
would boost cost-effectiveness, allowing for a tailored resource allocation towards the mothers initially identified 
at risk versus a more widespread follow up of all mothers; in the low-risk group, assessments could be limited to 
single timepoints, as is praxis today. As PPD affects more than 16,000 families every year in Sweden alone, with 

Figure 4.   Stratified classification graphs for Extreme Randomized Forest (XRT) model, by pregnancy/previous 
depression status. Results presented for all women (All, n = 2385, of which 14% had postpartum depression, 
PPD), women with depression during current pregnancy or earlier in life (With Previous Depression, n = 971, 
of which 27% had PPD), and women without any previous depression episode (Without Previous Depression, 
n = 1414, of which 6% had PPD). For each category, models were assessed for accuracy (ACC), sensitivity 
(SENS), specificity (SPEC), positive predictive value (PPV), negative predictive value (NPV), and area under the 
curve (AUC).
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Figure 5.   Ranked importance of the assessed variables using the Extremely Randomized Trees (XRT) models 
in the combined dataset, considering the women with different previous depression status. Results presented 
for all women (A), All women (n = 2385), (B) women with depression during current pregnancy or earlier in 
life (Previous/pregnancy depression, n = 971), and (C) women without any previous depression episode (No 
previous depression, n = 1414). The graphs depict the variable importance as a relative measure that is scaled to 
a maximum of 1.0. The x-axis represents the relative contribution to the classification algorithm of the 
corresponding feature on the y-axis.
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high associated costs, estimated at $30,000 per mother-infant pair for untreated peripartum mood disorders, 
preventive efforts would have substantial societal benefits40.

It is interesting that performance metrics, especially accuracy and AUC, remain stable even when the number 
of variables used in the models is reduced from 100 to 50% and even to 25% of all variables available, and AUC 
is relatively stable even at 5–10 variables. As discussed above, this is in line with the thought that there is some 
redundancy when it comes to the variables included, with depression and anxiety during pregnancy being highly 
correlated with some background and medical history variables, and possibly mediating their association with 
PPD. It is thus intriguing to observe that only among non-previously depressed, variables such as breastfeeding, 
BMI, traumatic interpersonal events in childhood, mode of delivery, infant hypoxia and age are emerging as 
important for prediction, along with resilience and personality variables, which are otherwise more prominent 
among those earlier depressed. This is important to have in mind when developing screening strategies; the vari-
ables used might need to be adjusted for the group of women with previous depression. Anxiety during pregnancy 
continues to be very predictive in both groups. The stability of the performance measures however, indicates that 
an abbreviated survey can be used to screen without significantly affecting predictive power.

Among possible explanations for the somewhat lower accuracy in both the depressed group (earlier or during 
pregnancy) (n = 971, accuracy = 69%) and never-depressed subgroups (n = 1414, accuracy = 64%) are the lower 
sample sizes as well as a relatively decreased variability in the data (the algorithms did not have a big number of 
examples of alternatives to learn from). Sensitivity is the same in the earlier depressed group, but drops to 52% 
in the never depressed group, underlining the difficulty in identifying women at high risk for having their first 
ever depressive episode after childbirth. In general, the high NPV figure in the never earlier depressed group 
means that women with a negative screening in that group do not need tighter follow-up; NPV nonetheless 
drops to 86% in the earlier depressed group, suggesting that further screening in the postpartum period might 
still benefit this high-risk group of women.

Our study showed a slightly higher AUC than most earlier studies’ best prediction models (79% by Wang et al. 
and 78% by Zhang et al.), though our accuracy of 73% is lower than the 84% reported by Tortajada et al.34,36,38. 
However, in the latter study, the main outcome was depression at 32 weeks and not at 6 weeks postpartum, 

0 0.2 0.4 0.6 0.8 1

Pregnancy Nausea
Educa
on

Hypomanic Episodes
Child Birth Length

Delivery Month
Age

Pregnancy Length
Mode of Delivery

Planned Pregnancy
Artery BD

Apgar 1
Artery pH

Delivery Expecta
ons
Birthweight

Country of Origin
Partner Helps with Baby

In
mate Partner Violence
BMI Before Pregnancy

Sleep During Pregnancy
Employment

Contact with Psychiatrist
Delivery Experience

PMS
Delivery Fear

Number of Stressful Life Events
Breas�eeding

Contact with Psychologist
Depression History

Anxiety During Pregnancy
Depression During Pregnancy

Background, medical history & pregnancy 
variables

Figure 6.   Ranked importance of the assessed background, medical history and pregnancy variables for all 
women (n = 4277) using Extremely Randomized Trees (XRT) models. The top 25% of the variables are reported. 
The x-axis represents the relative contribution of the corresponding variable to the classification algorithm.
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genetic data was included and the study sample was more homogeneous since it consisted of SSRI-free Caucasian 
women. Moreover, a lower EPDS cut-off was used followed by clinical interviews, possibly reducing the risk of 
misclassification of study cases and controls. Nevertheless, in our study, a clinical evaluation was not possible 
for practical reasons, due to the much larger study population. Finally, in addition to clinical and environmental 
variables, information on related gene polymorphisms was also utilized in that study.

Furthermore, Wang et al. identified race, obesity, anxiety, depression, different types of pain, and antidepres-
sant and anti-inflammatory drug use during pregnancy as the most important variables for their prediction 
models34. These variables differed somewhat from the ones we identified as being most important with the caveat 
that our model also indicated that anxiety during pregnancy and depression history or depressive symptoms dur-
ing pregnancy were overwhelmingly the most significant predictors for PPD. It has to be noted that we included 
many psychometric measures, which followed in importance, e.g. the question 19 on the SOC scale “Do you 
have very mixed up feelings and ideas?” and question 4 on RS, which measures self-regard (“I am friends with 
myself ”). The population in the BASIC study is quite homogeneous, most participants having a high education, 
are quite healthy and born in the Nordic countries. Further, the BASIC dataset has no information on race. BMI 
was also identified in our study as an important variable, both in the BP dataset analysis and the sub-analysis 
among women without previous depression. Rates of antidepressant use are low. Differences in the analytical 
approach might also account for some differences in the results.

These findings further illuminate the difficulties in predicting which women will go on to develop postpar-
tum depressive symptoms after childbirth. From the variable importance plots, the most predictive variables 
for postpartum depressive symptoms, available at the time of discharge from the delivery ward, is to either have 
anxiety or depressive symptoms during pregnancy. In fact, these two variables are by far the most predictive, 
along nevertheless with distinct variables related to resilience, sense of coherence and personality. The predictive 
algorithms reach an accuracy for the whole group of 73% and AUC of 81%, which is at the limit for possible use in 
clinical settings. The algorithms might need to be different according to whether women had experience depres-
sion before in life. Further studies, possibly using more advanced methods and bigger samples, are warranted.

Very recently, Zhang et al. also proposed a machine learning based framework for PPD risk prediction using 
electronic health record (EHR) data39. While the techniques employed are comparable to our study with similar 
processing pipeline, they report higher AUC. This increment can be attributed majorly to the substantially larger 
cohort used in their study. Several ML studies have demonstrated that large datasets lead to lower estimation 
variance and hence provide better predictive performance. Furthermore, the top predictors also differ between 
our study due to differences in data sources. Additionally, a PPV higher than that reported in our study would 
significantly increase the clinical utility of our proposed framework. However, PPV is directly related to the 
prevalence of PPD in the population studied, which is only about 12%. While the classification threshold of the 
model can be adjusted to improve PPV, it does not ensure the expected benefit as other evaluation metrics, like 
sensitivity, specificity and NPV, would be adversely affected. Even Zhang et al. that reported higher AUC values, 
only report a PPV of ~ 27% for the validation site with prevalence of 6.5%, highlighting the issue39.

The lack of effective ways that would allow for early prediction of women at risk for depressive symptoms in 
the postpartum period has been addressed in the Introduction. In fact, the Edinburgh Postnatal Depression Scale 
is nowadays used as a screening tool for current depression41. National guidelines in several countries recommend 
screening for PPD at 6 to 8 weeks postpartum; however, the suggested target groups of women to be screened 
vary between countries42–44. Also, the use of the EPDS at this time is used to screen for concurrent depression. In 
contrast, the role of EPDS in pregnancy, in combination with other variables, for early identification of women at 
risk for development of depressive symptoms later in the postpartum period has not been studied. In our study 
we do show that high EPDS scores in pregnancy are highly predictive of postpartum depression.

This study had numerous strengths. First, it addresses a novel field, as there are very few studies in the area, 
none from the Nordic countries, and none of earlier algorithms is being widely used in clinical practice. The 
large sample size allowed us to train a robust range of different ML algorithms. The richness of the BASIC dataset 
provided us with the opportunity to investigate the predictive power of a large number of background, medical 
history, pregnancy and delivery related variables, as well as psychometric questionnaires; the last ones both as 
total scores but also at individual item level. A key novelty feature of the study in the inclusion of many resilience 
and personality-related variables, that have been identified in the literature but not included in previous models. 
We also explore the importance of variables in terms of their predictive power of PPD, an effort directed towards 
to designing a compact survey to screen for PPD. Finally, the analysis of clinically relevant sub-groups such as 
women with previous depression or depression during pregnancy gave clinically useful insights.

Some limitations of the study include the non-representative sample in that women born in Scandinavia, 
with a high education and cohabitating with the child’s father were over-represented in the cohort, which makes 
the findings difficult to generalize to the background population. Sources of selection bias are the exclusion of 
non-Swedish speaking women as the questionnaires were only offered in the Swedish language, and the fact that 
more healthy women are more prone to participate in studies of this kind. Not all women self-reported on all 
variables, but we addressed this problem of missing values with exclusions and imputations where appropriate. 
Class imbalance in the outcome made the training stages of the algorithms challenging but were also addressed 
appropriately. Lastly, theoretically, some items from the scales on personality (SSP), and attachment (ASQ) might 
have had a more prominent role in prediction if they would have been available for a larger proportion of the 
women in this study. The study by Zhang et al., published after our study was conducted, reported higher AUC 
and included some predictors lacking in our study39. Future studies should make sure to include these important 
predictive variables for further evaluation.

Depressive symptoms and anxiety during pregnancy are highly predictive factors for women who go on 
and develop postpartum depressive symptoms, while variables relating to resilience, sense of coherence and 
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personality also play a modest role. The predictive algorithms have relatively good accuracy and AUC, with 
XRT performing best.

Methods
Data sources.  Data for the development of the prediction models were obtained from the “Biology, Affect, 
Stress, Imaging and Cognition during Pregnancy and the Puerperium” (BASIC) study. BASIC is a population-
based prospective cohort study at the Department of Obstetrics and Gynaecology at Uppsala University Hospi-
tal, Uppsala, Sweden7. Between September 2009 and November 2018 all pregnant women who were 18 years of 
age or older, did not have their identities concealed, had sufficient ability to read and understand Swedish and 
did not have known bloodborne infections and/or non-viable pregnancy as diagnosed by routine ultrasound 
were invited to participate in the study45. Data acquisition in the BASIC study was mainly based on online sur-
veys and questionnaires that the women were asked to fill out during pregnancy at the 17th and 32nd gestational 
week and at 6 weeks, 6 months and 12 months postpartum. The surveys included questions about background 
characteristics, such as sociodemographic variables, psychological measures, medical information, information 
on reproductive history, lifestyle and sleep. All questionnaires were self-reported and web-based. Data are also 
retrieved from the medical journals. The participation rate for the study was 20% but the cohort had a relatively 
low attrition rate, with 71% of the participants remaining in the study at 12 months follow-up45.

This study focuses on two subsets of variables from the BASIC study: and (i) background, medical history and 
pregnancy/delivery variables (BP) and (ii) further psychometric questionnaires (information on exact assess-
ment methods and coding is provided in Table 1 for the background variables and Supplementary Table 1 for 
the exact questions in the different questionnaires). The BP variables consisted of sociodemographic and lifestyle 
information, self-reported health, medical history and variables relating to pregnancy and childbirth. This dataset 
included even information on depression and anxiety symptoms during pregnancy. Depression symptoms were 
assessed by a score of 12 or more on the Edinburg Postnatal Depression Scale (EPDS) in pregnancy weeks 17, 
32 or 38, while anxiety during pregnancy was defined as ratings in the highest quartile on either the State Trait 
Anxiety Inventory (STAI)46, the Beck Anxiety Inventory or the anxiety subscale of the EPDS (EPDS-3A). These 
variables were available for the majority of the BASIC participants. The total number of interpersonal and non-
interpersonal events in the Lifetime Instances of Traumatic Events Scale (LITE)47 was also included among BP 
variables. The BP variables consisted of continuous, discrete, nominal and ordinal categorical variables, measured 
at various time points during the study.

The extra psychometric scales used were the Attachment Style Questionnaire (ASQ)48, the Resilience-14 scale 
(RS)49,50, the Sense of Coherence Scale-29 (SOC)51, the Vulnerable Personality Style Questionnaire (VPSQ)52,53, 
and the Swedish Scale of Personalities (SSP)54. ASQ, RS, SOC, VPSQ, and SSP were filled out at gestational week 
17 or 32, VPSQ and LITE assessments were conducted at 12 months postpartum. All variables were assessed 
on a Likert scale and coded as ordinal variables. These scales were used for only specific period of time during 
the course of the BASIC project, different for each scale, and are thus available for different number of women 
(Table 1)45.

Additionally, the participants of BASIC study were also asked to fill out the EPDS at different time-points dur-
ing and after pregnancy. The outcome in this study was EPDS score at 6 weeks postpartum, assessing the degree 
of self-reported depressive symptoms in the early postpartum period. The discrete scores for this timepoint were 
then aggregated and a cut-off of a score of 12 or higher was used to indicate women with depressive symptoms, 
in accordance to validation studies for the Swedish population55. The number of women in the BASIC study who 
had completed the EPDS at 6 weeks postpartum and were thus included was 4313.

Ethics declarations.  The study has been approved by the Research Ethics Board in Uppsala (Dnr 2009/171, 
with amendments). All participating women gave written informed consent before being included in the study. 
All methods were carried out in accordance with relevant guidelines and regulations.

Data pre‑processing.  The pre-processing consisted of splitting the original BASIC dataset into different 
subsets. Two subsets were retained for our study, i.e. background & pregnancy (BP) data and psychometric 
questionnaire data. Data for twins and women with multiple pregnancies were removed from the dataset, as 
these are relatively rare, are followed very closely during and after childbirth, and are associated with higher 
risk for PPD56,57. Explorative data analyses were conducted on individual variables to check their distributions 
and to identify and remove outliers that were assessed to be non-informative. Psychometric questionnaires and 
BP variables that contained information about the women after the time point of the outcome, namely 6 weeks 
postpartum, were also excluded to avoid inadvertent biases of the results.

SSP was omitted from the analysis due to large number of missing observations, as this survey was used only 
for few years during recruitment for the BASIC study45. Its inclusion would have resulted in a much smaller 
sample size for the final analysis.

The dataset consists of continuous, nominal and ordinal variables. As continuous variables in the dataset 
have varying scales, normalization is performed to transform all the variables to a common range from 0 to 
1. Furthermore, nominal and ordinal variables that represent non-numerical values are encoded using binary 
numerical representations for improving the performance of the ML algorithms.

Data imputation.  As missing values can drastically impact the performance of ML models, a conservative 
approach was adopted to handle them. Firstly, samples (rows, corresponding to one pregnancy) with more than 
50% missing values in the included variables were eliminated, and the final number of pregnancies in the ML 
analyses was 4277. Next, variables (columns, corresponding to a distinct variable) with more than 25% missing 
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data were also eliminated. Finally, the remaining missing values were imputed from the available data. While 
continuous variables were imputed using multivariate imputation by chained equations (MICE)58, categorical 
and ordinal variables were imputed with K nearest neighbors’ imputation59.

Modeling
Classification techniques.  With ML algorithms, there is no one-size-fits-all solution, making it impera-
tive to try multiple alternatives. Consequently, this study explored different ML algorithms for supervised clas-
sification that modeled data in different ways. In order to present a comprehensive comparison, the following 
algorithms were implemented: Ridge Regression, LASSO Regression, Gradient Boosting Machines, Distributed 
Radom Forests, Extreme Randomized Forest, Naïve Bayes, and Stacked Ensembles. Ridge Regression specializes 
in analysing multiple regression data with multicollinearity, while LASSO Regression is a type of linear regres-
sion that shrinks data values towards a central point, and results in simple, sparse models (i.e. models with fewer 
parameters). Gradient Boosting Machines (GBM) and Random Forests are ensemble learners. In Distributed 
Radom Forests (DRF), a subset of features is used to determine the most discriminative thresholds to split the 
trees on. However, unlike DRF, where one builds an ensemble of deep independent trees, in GBM, we specify an 
ensemble of weak, shallow successive trees, where each tree is learning and improving on the previous tree. In 
Extremely Randomized Trees (XRT), instead of using the most discriminative thresholds for the splits, thresh-
olds are drawn at random for each feature and the best of these random thresholds are used as the splitting rule, 
resulting in lower variance but more bias. XRT are similar to DRF with the caveat of more randomness. Naïve 
Bayes (NB) is a probabilistic classifier based on Bayes’ Theorem. The NB works under the assumption that the 
presence of any particular feature for a certain outcome is unrelated to the presence of any other feature for 
that outcome. Thus, despite if the features depend on each other or upon the existence of other features, the NB 
assumes that all of the features independently contribute to the outcome probability. Stacked Ensemble learns a 
new model by combining predictions of existing models. Stacked Ensembles are a class of supervised learning 
algorithms that work by training a meta-learner to find the optimal combination of base learners. Unlike bag-
ging and boosting were the goal is to stack a number of weak learners together, the goal is to stack a number of 
diverse and strong learners together to optimize learning60.

For all the classification algorithms, the outcome measure was the participants’ EPDS score at 6 weeks post-
partum represented as a binary variable with 12 as cut-off, while predictor variables included the BP variables 
and psychometric data described above.

Class imbalance.  The BASIC dataset, as a population-based sample and in accordance to clinical situations, 
is predominantly composed of data from women who did not experience PPD at 6 weeks postpartum (less than 
10% of the women representing PPD cases), consequently leading to extreme data class imbalance. ML classifiers 
trained on such imbalanced datasets usually generate biased results. To mitigate this imbalance, the minority 
class consisting of women with PPD was oversampled during ML training. Unlike under sampling of majority 
class consisting of women without PPD, this approach avoids loss of information and leverages all the samples 
from both classes.

Evaluation metrics.  The performance of model prediction of the ML classification algorithms was evalu-
ated using a variety of performance metrics. The performance of each classification model was captured by the 
Confusion Matrix that formed the basis for other metrics. In addition to the most commonly used classification 
accuracy, sensitivity (true positive rate) and specificity (false positive rate) are also reported. The positive pre-
dictive value (PPV) and negative predictive value (NPV) are also reported. Additionally, a Receiver Operating 
Characteristic (ROC) curve was specified for each classification to show the relation between the true positive 
rate and false positive rate. The performance of the classifiers was then summarized by the total area under the 
ROC curve (AUC), with the higher the AUC (between 0 and 1) indicating a better performance of the classifica-
tion.

Variable (feature) importance/selection.  The success of a ML algorithm does not only depend on good 
predictive performance but also on generalizability and easy interpretability. Identifying variables that have sig-
nificant impact on the outcome is valuable, especially in the medical domain. Variable importance using Ran-
dom Forests models can be calculated using Gini Importance or Mean Decrease in Impurity (MDI)61. The MDI 
relevance of a variable is obtained by calculating how effective the variable is at reducing the uncertainty when 
creating decision trees. The variable that is most effective and used the most will be ranked as most important.

Analytic strategy.  The analytical strategy consisted of breaking the analysis down into steps and iteratively 
building towards a final classification model, all the while being cognizant of any potential biases introduced 
by the approach. The workflow is presented in Fig. 7. First, the raw data was split into the BP and the different 
psychometric questionnaires datasets in order to build predictive models independently on each psychometric 
questionnaire and to identify the ones with the highest accuracy for classification of PPD. Second, the psycho-
metric questionnaires that yielded the highest accuracies were combined with the BP dataset. Predictions were 
then performed with the aggregate data (combined dataset). Additional models were trained with reduced data-
sets resulting from variable selection. Top 50% and top 25% variables with MDI were used to train separate clas-
sification models to determine the relative contribution of those variables to the prediction. Additionally, strati-
fied analyses were performed, where participants were stratified by a previous history of depression (defined as 
earlier depression, earlier contact with psychiatrist/psychologist, or depression during pregnancy).
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Based on preliminary analyses, SSP and ASQ did not provide any information gain relative to BP data. 
Hence, only RS, SOC and VPSQ variables that provided predictive performances comparable to BP variables 
were included in the aggregate analysis.

Data availability
The datasets generated and/or analysed during the current study are available from the corresponding author on 
reasonable request and after data transfer agreements are in place, according to current regulations.
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