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The quantitative comparison 
between high wall shear stress 
and high strain in the formation 
of paraclinoid aneurysms
Jung‑Jae Kim  1,5, Hyeondong Yang  2,5, Yong Bae Kim  3, Je Hoon Oh  2* & 
Kwang‑Chun Cho  4* 

In the hemodynamic study, computational fluid dynamics (CFD) analysis has shown that high wall 
shear stress (WSS) is an important parameter in cerebral aneurysm formation. However, CFD analysis 
is not more realistic than fluid–structure interaction (FSI) analysis given its lack of considering the 
involvement of vascular structures. To investigate the relationship between the hemodynamic 
parameters and the aneurysm formation, the locations of high WSS and high strain were extracted 
from the CFD and FSI analyses, respectively. Then the distances between the aneurysm formation 
site and the locations of high WSS or high strain were calculated. A total of 37 intracranial paraclinoid 
aneurysms were enrolled for quantitative comparison. Additionally, the dura mater was modeled 
to facilitate realistic results in FSI analysis. The average distance from the location of the aneurysm 
formation site to the high strain (1.74 mm ± 1.04 mm) was smaller than the average distance to 
the high WSS (3.33 mm ± 1.18 mm). The presence of dura mater also influenced the findings in the 
aneurysm formation site. High strain extracted by FSI analysis is an important hemodynamic factor 
related to the formation of cerebral aneurysms. Strain parameter could help to predict the formation 
of aneurysms and elucidate the appropriate treatment.

To develop new preventive and therapeutic strategies for intracranial aneurysms, it is crucial to understand the 
mechanisms of aneurysm formation1. Accordingly, many studies investigating the mechanisms of aneurysm 
formation have been conducted in the last several decades. Especially, hemodynamic parameters play a key role 
in aneurysm formation, growth, and rupture2,3.

Among the various hemodynamic parameters, wall shear stress (WSS) has been reported to be a predomi-
nant parameter influencing aneurysm formation due to relationship between high WSS and endothelial cells4,5.

Simultaneously with the increasing importance of WSS, computational fluid dynamics (CFD) has become 
widely used to reveal the impact of WSS on the aneurysm formation site6,7. Numerous studies have adopted 
CFD to investigate correlations between high WSS and the site of aneurysm formation8–11. However, CFD has a 
critical limitation in that it cannot consider the variation in blood vessels caused by blood flow and the effects of 
the structure surrounding blood vessels such as the dura mater since a rigid vessel wall is assumed in the CFD 
analysis12. The dura mater is a thick membrane that surrounds the brain and spinal cord within the skull, and it 
blocks cerebrospinal fluid leak within the brain. The dura mater is tightly attached to the vessel walls in the para-
clinoid segment where the vessel enters the intracranial region; therefore, the dura mater affects the deformation 
and movement of the blood vessel near the paraclinoid segment. However, since CFD analysis assumes a rigid 
blood vessel wall, the structural interaction between the blood vessel and the dura mater cannot be considered.

To overcome the limitations of CFD, we utilized fluid–structural interaction (FSI) to investigate the effects of 
the deformation of blood vessels and the influence of the dura mater. Because FSI enables to consider structural 
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variations of the blood vessels due to blood pressure and the interaction between blood vessels and dura mater13, 
it could yield more realistic results than CFD.

We investigated the relationship between the aneurysm formation and the values of WSS or strain. For 
quantitative analysis, the distances from the location of the aneurysm formation site to the points of high WSS 
or high strain were calculated from CFD and FSI results and statistically compared.

Methods
Data acquisition.  The protocols used in this study were approved and the need for patient informed con-
sent was waived by our Institutional Review Board (Catholic Kwandong University, International St. Mary’s 
Hospital). This study analyzed a total of 37 unruptured paraclinoid aneurysms in 36 patients. For this study, a 
paraclinoid aneurysm was defined as an aneurysm arising from the segment of the internal carotid artery (ICA) 
between the distal dural ring and the origin of the posterior communicating artery. Our patients’ mean age was 
56.6 years (range 27–81 years) and the mean aneurysm size was 5.32 mm (range 1.78–11.99 mm). All data were 
obtained retrospectively from patients diagnosed via digital subtraction angiography from March 2018 to March 
2020 at our institution. Ruptured aneurysms were excluded because they were difficult to obtain prior shape data 
and the shape was unclear.

Elimination of the aneurysms.  Aneurysms were manually removed to evaluate the results in the aneu-
rysm formation site using commercial the computer-aided design programs CATIA (V5-6R2012; Dassault Sys-
tems, Paris, France) and Meshmixer (version 11.0.544; Autodesk, San Rafael, CA, USA). Figure 1A shows the 
models before and after an aneurysm was removed. When the two models overlapped, it could be confirmed that 
the aneurysm was reasonably removed (Fig. 1B).

CFD and FSI analysis.  CFD was conducted to calculate the WSS in an aneurysm formation site. The 
blood was assumed to be an incompressible Newtonian fluid with a density of 1,055 kg/m3 and a viscosity of 
0.004 kg/m·s14. Also, pulsatile flow with a Womersley velocity profile was used in the inlet condition15. Flow 
waveform and flow rate were referenced in the study of Kono et al16. The time-averaged flow rate was 200 mL/
min. Because the diameter of blood vessel differs from each patient, it was considered in generating a Womersley 
profile. MATLAB software (R2019b, Mathworks, USA) was used to calculate the Womersley profile. For the out-
let condition, the pressure profile adjusted from the carotid artery was applied17. In the CFD analysis, the blood 
vessel was modeled as a rigid wall with a nonslip condition. CFD was performed using ANSYS Workbench Flu-
ent (version 19.2; ANSYS Inc., Canonsburg, PA, USA).

FSI was adopted to investigate the effects of the interaction between blood flow and the structures such as 
blood vessel and dura mater affecting the blood flow. The location of the dura mater was determined using the 
location of the ophthalmic artery because it typically originates from the anteromedial surface of the ICA just dis-
tal to the dural ring. We assumed the location of the dura mater to be just proximal to the origin of the ophthalmic 
artery18. Figure 2A shows examples of the blood vessel model along with dura mater and the ophthalmic artery.

The strain was calculated by dividing the deformation by the initial length:

where ε , △ L , and L0 are strain, deformation, and initial length, respectively. Therefore, higher strain indicated 
that the blood vessels were more severely deformed. Also, the stress was calculated by dividing the force by the 
cross-sectional area:

ε =
△ L

L0

σ =
F

A

Figure 1.   Example of the modified 3-dimensional blood vessel. The blood vessel model before and after 
aneurysm removal (A). The side view of overlapping model with and without aneurysm (B).
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where σ , F, and A are stress, force, and cross-sectional area, respectively. Finally, the relationship between stress 
and strain can be easily explained by the following simple equation in terms of solid mechanics:

where E is Young’s modulus. The force obtained from CFD is transferred to the structural analysis in FSI to 
clarify the deformation of the blood vessel19. Young’s modulus, a mechanical property of the blood vessel, must 
be used to calculate its deformation. In this paper, the term “strain” refers to the equivalent strain, a representative 
scalar quantity which describes the state of strains in each direction. A detail general procedure of finite element 
analysis is illustrated in Supplementary Figure S1.

In order to improve the efficiency of the structural simulation, a four-node shell element with a size of 0.1 mm 
was used for modeling the dura mater and the blood vessel. The number of shell elements was 160,000–170,000 
for both the blood vessel and dura mater. Since the dura mater is firmly fixed to the blood vessel, the interface 
between the dura mater and the blood vessel was assumed to be bonded. The material properties of the dura 
mater and the blood vessel were simplified to the linear property. The Young’s moduli of the dura mater and the 
blood vessel were assumed to be 50 MPa and 1.6 MPa, respectively20,21. In addition, Poisson’s ratio and density 
of the dura mater and the blood vessel were set to 0.49 and 1000 kg/m3

, respectively. Also, wall thicknesses of the 
dura mater and the blood vessel were defined from experimental data as 0.68 mm and 0.5 mm, respectively20,21. 
Additionally, all degrees of freedoms in the inlet, outlet, and edge of the dura mater were constrained as fixed. 
The values of WSS and strain were extracted at peak systole.

Determination of the coordinates of the aneurysm formation site.  In this study, we investigated 
the distance between the location of the aneurysm formation site and the locations of the results, i.e. high WSS, 
and high strain during quantitative comparison. Therefore, defining the coordinates of the aneurysm forma-
tion site was necessary. The point of the aneurysm formation site was assumed to be the center of the aneurysm 
ostium and the coordinates of the aneurysm formation site were calculated by overlapping models with and 
without aneurysms (Fig. 2B).

Statistical analysis.  Two independent t-tests were used to compare the distance between the aneurysm for-
mation site and the locations of high WSS and high strain. Statistical significance was defined as a p value < 0.05. 
The distances were calculated using the following equation:

where xi , yi , and zi indicate the coordinate of the aneurysm initiation site and xr , yr , and zr indicate the coordinate 
of the results such as high WSS, and high strain. All statistical analyses were perform using IBM SPSS Statistics 
(version 24.0; IBM Corp., Armonk, NY, USA).

Ethical approval.  All procedures performed in this study involving human participants were in accordance 
with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki 
declaration and its later amendments or comparable ethical standards.

Institutional review board.  Catholic Kwandong University, International St. Mary’s Hospital, Institu-
tional Review Board.

σ = E · ε
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∣
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Figure 2.   The methods determining the locations of the dura mater and the aneurysm formation site. The 
location of the dura mater was assumed below the position of the ophthalmic artery (A). In addition, the center 
of the aneurysm orifice center (red arrow) was assumed to be the location of the aneurysm formation site (B).
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Informed consent.  Name of committee that waived the informed consent for the study protocol is Catholic 
Kwandong University, International St. Mary’s Hospital, Institutional Review Board.

Results
Superiority of the strain parameter.  In some cases, the locations of the aneurysm formation site were 
well matched to the locations of both high WSS in CFD analysis and high strain in FSI analysis (Fig. 3). However, 
in other cases, the location of the high strain calculated from FSI analysis was in good agreement with the loca-
tion of aneurysm formation, but the location of high WSS calculated in CFD was not (Fig. 4).

The average distance between the location of aneurysm formation and the location of the high WSS was 
3.33 mm ( ± 1.18 mm). On the other hand, the average distance to the point of high strain (1.74 mm ± 1.04 mm) 
was smaller than that to the high WSS. Figure 5 demonstrated that there was a statistical difference between 
the distance from the location of aneurysm formation to the high WSS and that to the location of high strain.

The effects of dura mater.  Figure 6 presents findings of a difference in strain distribution depending on 
the presence or absence of dura mater. The correlation between the locations of high strain and aneurysm for-
mation was clear when the dura mater is considered (Fig. 6A). In contrast, without dura mater, it was relatively 
more difficult to specify the correlation between them (Fig. 6B). The FSI results with and without dura mater for 
the additional cases are shown in the Supplementary Figure S2.

Moreover, the Young’s modulus of the dura mater affects the strain in the aneurysm formation site. As the 
Young’s modulus of the dura mater decreased, the value of strain in the aneurysm formation site was similarly 
increased. Meanwhile, the area with the high strain was increased as the Young’s modulus of the dura mater 
decreased (Fig. 7). It was confirmed that this trend was the same in other additional cases (Supplementary 
Figure S3).

Figure 3.   Examples which have high correlation between the location of the aneurysm formation site and the 
locations of the high WSS and high strain. The results of WSS calculated from CFD and strain calculated from 
FSI analysis were extracted at the systolic time for comparison of the location of high WSS and strain. A white 
star (*) indicates the location of aneurysm formation site.
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Figure 4.   Examples where location of the aneurysm formation site is clear in correlation with high strain 
but not with high WSS. The location of high WSS and high strain was extracted from results of CFD and FSI 
analysis at the systolic time. A white star (*) indicates the location of aneurysm formation site.

Figure 5.   The box plot of the distance between the aneurysm formation site and the high WSS or high strain. 
The lower and upper borders represent the 25th and 75th percentiles, respectively, while the central bar indicates 
the median and the dots are outliers defined by values that are greater than the 90th or less than the 10th 
percentiles.
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Discussion
FSI analysis is the simulation considering flow and structure together, whereas CFD analysis is the simulation 
considering only flow (e.g., blood flow). Naturally, blood vessels and blood flow through the blood vessels exhibit 
an interaction that affects both elements22. Therefore, the utilization of FSI analysis is more important in analyz-
ing the nature of actual ongoing phenomena23.

In previous studies, WSS has been known as one of the most important hemodynamic factors5,8–10, while 
pressure as a hemodynamic factor appeared to be less important. In particular, many researchers seem to agree 
on the notion that elevated WSS and the location of aneurysm formation achieve a high positive correlation. 
However, most previous hemodynamic studies of aneurysm formation have been conducted mainly through 
CFD analysis. Therefore, we planned to compare the influence of strain on aneurysm formation based on FSI 
analysis with that of WSS based on the CFD analysis.

Quantitative comparison of WSS and strain.  Even though the aneurysm formation site could be pre-
dicted with the WSS only from CFD, the results of the strain calculated during FSI analysis suggest a more intui-
tive correlation between the strain and the aneurysm formation site than between the WSS and the aneurysm 
formation site (Fig. 5). Many studies have suggested that the mechanical stretch in the vessel wall is a major rea-
son for aneurysm formation5,10. The strain is a mechanical quantity that directly represents how much the vessel 
wall is stretched. This may be one of the reasons for the high correlation between strain and aneurysm formation.

Effects of the dura mater.  In the FSI analysis of paraclinoid aneurysm formation, it was confirmed that 
strain distribution appeared differently depending on the presence or absence of the dura mater. Like the actual 
structure, when we included the dura mater surrounding the blood vessels in the analysis, we could see that the 
high strain region and the location of aneurysm formation were more clearly matched. This suggests that the 
dura mater could affect the formation of paraclinoid aneurysms.

In addition, as the material property of the dura decreased, we observed a slight increase in the strain value 
as well as the area with high strain in the same vessel area. This might be correlated with the increased possibil-
ity of aneurysm formation among older patients because their dura mater has a decreased material property20.

Figure 6.   Example of strain distribution change depending on the presence of the dura mater. The strain 
distribution when the dura mater was considered (A). The strain distribution when the dura mater was not 
employed in FSI analysis (B). A white star (*) indicates the location of aneurysm formation site. The strain was 
extracted at the systolic time.

Figure 7.   Example of strain contour change depending on Young’s modulus of the dura mater change. There is 
a difference in strain contour for various Young’s moduli of the dura mater. When Young’s modulus of the dura 
mater is 200 MPa, 100 MPa, 50 MPa, and 25 MPa, the max strain is 0.111, 0.112, 0.114, and 0.116, respectively. 
A white star (*) indicates the location of aneurysm formation site. The strain was extracted at the systolic time.
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The outcomes of FSI analysis in various types of paraclinoid aneurysms.  There are many types 
of paraclinoid aneurysms24. To date, medical research has not clearly explained the cause of an aneurysm occur-
rence in several directions. However, the direction of a paraclinoid aneurysm can be explained by the FSI analy-
sis, as the location of aneurysm formation varies depending on where the high strain appears (Fig. 8). In other 
words, it may be considered that the formation of paraclinoid aneurysms at different locations depends on the 
shape of the blood vessels such as curvature and twist of vessels, and this could be observed using FSI.

Limitations
This study is limited by its inherent accuracies. The material property of blood vessels and inflow profiles used 
in this study were not patient-specific and taken from a cohort of healthy patients. Blood flow was assumed 
Newtonian. Another limitation was that the precise location of the dura mater attached to the blood vessels was 
also assumed. We set the location with the advice of an experienced neurosurgeon based on magnetic resonance 
images, but there is a possibility that we may have not chosen the correct position. Additionally, we assumed the 
aneurysm formation initiates at the center of the aneurysm orifice; however, this has yet to be clearly demon-
strated and could be a limitation of this study.

Conclusions
In this study, using a more realistic FSI analysis approach, we were able to identify the importance of strain among 
the hemodynamic parameters. Considering strain in the future could help predict the formation of aneurysms 
and elucidate appropriate treatments.
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