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Inflated prediction accuracy 
of neuropsychiatric biomarkers 
caused by data leakage in feature 
selection
Miseon Shim1, Seung‑Hwan Lee2,3 & Han‑Jeong Hwang1,4* 

In recent years, machine learning techniques have been frequently applied to uncovering 
neuropsychiatric biomarkers with the aim of accurately diagnosing neuropsychiatric diseases and 
predicting treatment prognosis. However, many studies did not perform cross validation (CV) 
when using machine learning techniques, or others performed CV in an incorrect manner, leading 
to significantly biased results due to overfitting problem. The aim of this study is to investigate 
the impact of CV on the prediction performance of neuropsychiatric biomarkers, in particular, for 
feature selection performed with high‑dimensional features. To this end, we evaluated prediction 
performances using both simulation data and actual electroencephalography (EEG) data. The overall 
prediction accuracies of the feature selection method performed outside of CV were considerably 
higher than those of the feature selection method performed within CV for both the simulation and 
actual EEG data. The differences between the prediction accuracies of the two feature selection 
approaches can be thought of as the amount of overfitting due to selection bias. Our results 
indicate the importance of correctly using CV to avoid biased results of prediction performance of 
neuropsychiatric biomarkers.

Machine learning (ML) has attracted increasing interest in the development of neuropsychiatric  biomarkers1,2. 
However, recent review and meta-analysis articles revealed that many studies did not perform cross validation 
(CV) when utilizing ML techniques to exploit neuropsychiatric  biomarkers1,3, which significantly deteriorates 
the generalizability of neuropsychiatric biomarkers due to the overfitting  problem1. CV is a way to estimate the 
performance of a prediction  model4, where some of given data (training data) are used to train a prediction model 
and the others (test data) are used to estimate the performance of the model. The most important point when 
applying CV is that the training data must be completely separated from the test data to avoid the overfitting of 
a prediction  model5,6. Otherwise, the prediction performance estimated is inflated, resulting in biased results.

A neuroimaging modality used to study neuropsychiatric biomarkers, such as electroencephalography 
(EEG)7–10, provides high-dimensional spectral-spatiotemporal features, and thus feature selection is generally 
performed to remove redundant features and find the optimal feature subset for accurate prediction. Feature 
selection should be performed within CV on each training data set independently to prevent selection  bias11,12; 
features selected using the training data in each CV loop are used to build a prediction model and the cor-
responding features in the test data are used to evaluate the performance of the prediction model. However, 
there is still a recent study that feature selection was carried out on all data after which CV was performed on 
selected fixed features to estimate the prediction accuracy, which generally leads to selection bias as well as a 
biased prediction  accuracy11,12. The objective of this study is to investigate the effect of the feature selection 
independently performed outside of CV on the prediction performance, thereby openly debating relevant issues 
for future studies. To this end, we applied two different feature selection strategies performed outside of CV and 
within CV for both simulation data and actual clinical EEG data, respectively, and compared the classification 
performance of the two different feature selection strategies. Furthermore, we investigated to what extend the 
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features selected by the two different feature selection strategies were different, and interpreted the result from 
a neurophysiological point of view.

Methods
In the recent  study13 that used ML for predicting prognosis of depression with escitalopram treatment from 
EEGs, 6,424 EEG features were extracted for responders and non-responders to escitalopram treatment, and 
feature selection was performed with a repeated random sub-sampling method on all samples of the data. 80% 
of samples were randomly selected from each class and an unpaired t-test was performed for each feature, which 
was repeated 100 times. If a p-value was less than a significant level (< 0.05), one vote was counted for a corre-
sponding feature, otherwise 0 vote. Five different feature sets were selected based on five different vote thresholds 
(≥ 50, 60, 70, 80, and 90), respectively, after which a support vector machine (SVM) classifier with a 10-fold CV 
was used to estimate the prediction performance. Note that even though a random sub-sampling method was 
used, the feature selection was ultimately performed on all samples outside of CV, and thus the each of the five 
feature sets fixed after the feature selection step was used during the CV to estimate the prediction performance.

To investigate the impact of the feature selection method mentioned above on the prediction performance, 
we first performed a simulation test using 6,424 random variable features created with the Gaussian distribution 
(mean 0–0.3 with an interval of 0.1; variance: 0.1–2.3 with an interval of 0.1) for 2-class prediction. The mean 
and variance ranges of simulation features were selected to similarly match the number of features selected for 
each vote threshold in the previous study via trials and errors. For each feature, a pair of mean and variance was 
randomly selected within each of the mean and variance ranges to generate a feature vector, and this procedure 
was repeated 6,424 times. The simulation features were standardized using z-score method to accurately use the 
linear  classifiers14–16. Both the distributions of the generated features of each class and Matlab code used to gen-
erate the simulation data are provided in the following website: https:// github. com/ miseo nshim/ JAMAf eatur es. 
git. We first estimated the prediction performance using the same approach used in the previous  study13, except 
that a 10 × 10-fold CV was performed and another classifier (regularized linear discriminant analysis; RLDA) 
was additionally introduced to increase the generalization of our study. We also estimated the prediction per-
formance using the same approach to the previous  method13, but at which time feature selection was performed 
within CV, and thus different features were selected in each CV loop. That is, features were selected in each CV 
loop using only training data based on the vote threshold approach, separating the test data completely from 
the training data, and then prediction accuracy was estimated using corresponding features in the test data. 
The classification accuracies were independently estimated using the five different feature sets selected by the 
different vote thresholds (≥ 50, 60, 70, 80, and 90), respectively. Note that we tested two other feature selection 
methods, reduced SVM (RSVM) and SVM-recursive feature elimination (SVM-REF), but we will only report 
the results of the t-test-based vote threshold approach due to its higher performance as compared to RSVM and 
SVM-RFE. Figure 1 represents the flowchart of the two different feature selection strategies performed outside 
of CV and within CV used in this study.

In addition to the simulation study, we performed the same analysis using actual clinical EEG data to check 
whether the results of the simulation study are transferred to real EEG data. To this end, we used resting-state 
EEG data recorded from 58 post-traumatic stress disorder (PTSD) patients and 58 healthy controls. The study 
protocol was approved by the Institutional Review Board of Inje University Ilsan Paik Hosipital [IRB number: 
2015-09-018]. This study was performed in accordance with approved guidelines, and all participants provided 
written informed consent. The EEG data were recorded for 5 min. with eyes closed at a sampling rate of 1,000 Hz 
using 64 Ag/AgCl electrodes evenly mounted on the scalp according to the extended international 10–20 system 
(NeuroScan SynAmps2 (Compumedics USA, El Paso, TX, USA); references: M1 and M2). Eye movement arti-
facts were removed using established mathematical procedures based on regression  approach14, and other gross 
artifacts were rejected by visual inspection. After removing the artifacts, artifact-free EEG data were used for 
computing features. Since altered functional connectivity was regarded as a distinct neurophysiological biomarker 
of PTSD patients, functional connectivity was used as the feature to evaluate the classification performance of 
PTSD patients and healthy controls. Among various functional connectivity indices, phase locking value (PLV) 
was calculated between all possible pairs of channels for six different frequency bands (delta [1–4 Hz], theta 
[4–8 Hz], alpha [8–12 Hz], low-beta [12–22 Hz], high-beta [22–30 Hz], and gamma [30–55 Hz]). To generate 
a comparable number of features to the simulation data, uniformly selected 45 channels were used for comput-
ing PLVs (excluded channels: FPz, AF3, AF4, FC5, FC1, FC2, FC6, CP5, CP1, CP2, CP6, PO7, PO3, PO4, PO8, 
CB1, and CB2). Thus, a total of 5,940 PLV values (45C2 × 6 frequency bands) were extracted for each subject. The 
classification accuracies were evaluated for each of the feature selection methods performed outside of CV and 
within CV, respectively, as same for the simulation data. Furthermore, we compared the spatial distributions 
of features (functional connectivity) selected by the two feature selection strategies (outside of CV vs. within 
CV) to investigate to what extend they were different. To quantify the difference, we counted the number of 
overlap features and divided it from the total number of features selected by the within CV approach, which was 
repeated 100 times (10 × 10 CV), and the overlap ratios were averaged. The mentioned analysis was performed 
independently for the five vote thresholds (50, 60, 70, 80, and 90), but we will only report the result of a vote 
threshold of 90 because the results of the other vote thresholds showed a similar tendency in terms of both the 
overlap ratio and spatial distribution of functional connectivity.

Results and interpretation
Prediction performance for simulation data. For the feature selection method performed outside of 
CV, the prediction accuracy was around 80%, regardless of the number of selected features (vote thresholds), 
with a small variance, whereas it continuously decreased as the number of selected features increased (as vote 
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threshold got lower) for the feature selection method performed within CV (Table 1). This trend was similarly 
shown for the two different classifiers. Note that the number of features selected by the within CV method was 
continuously changed in each CV loop due to the changes in training data, and thus we report the ranges of the 
number of features selected during CV for the feature selection method performed within CV.

Figure 2 shows the changes in prediction accuracies with respect to the number of features from 1 to 40 when 
using the simulation data, showing the general trend of prediction accuracies as a function of the number of 
features. The prediction accuracy of the feature selection method performed within CV showed an increasing 
trend as the number of features increased until a certain number of features (about 10 for each classifier), but 
after which it showed a continuously decreasing trend. This phenomenon was well documented in the ML field, 
called the curse of  dimensionality15,16. On the other hand, the prediction accuracy of the feature selection method 
performed outside of CV also showed an increasing trend with a small number of features, but after which it was 
saturated while retaining its accuracy similarly.

Figure 1.  Flowchart of two different feature selection strategies. Left panel: all features were used for the 
feature selection method performed outside of CV, and then selected fixed features were used to evaluate the 
prediction performance, at which time CV was applied. Right panel: contrary to the feature selection method 
performed outside of CV, CV was applied in the stage of feature selection for the feature selection method 
performed within CV, where the features in the training set were only used for feature selection, and then the 
corresponding features in the test set were used to evaluate the prediction performance.

Table 1.  Prediction accuracies of the simulation data. Two feature selection approaches (outside of CV and 
within CV) were tested using two different classifiers (SVM and RLDA, unit: %) with respect to the different 
vote threshold (number of selected features). n* number of selected features, S.D. standard deviation, SVM 
support vector machine, RLDA regularized linear discriminant analysis.

Vote threshold

Outside of CV Within CV

n SVM RLDA n SVM RLDA

≥ 50 44 83.03 84.64 42–61 50.17 50.50

≥ 60 31 81.11 83.42 26–42 55.75 57.25

≥ 70 21 80.10 82.24 20–33 58.00 61.00

≥ 80 17 79.90 81.28 13–22 63.25 68.42

≥ 90 12 78.31 78.98 8–16 68.33 71.17

Mean (S.D.) 80.49 (1.56) 82.11 (1.93) 59.10 (6.24) 61.67 (7.49)
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Classification performance for actual clinical EEG data. For the feature selection method performed 
outside of CV, classification accuracies were over 70% for both classifiers, regardless of the number of selected 
features, and the mean classification accuracies of SVM and RLDA were 77.09 and 79.84%, respectively. On the 
other hand, for the feature selection method performed within CV, classification accuracies were less than 70% 
for both classifiers, and the mean classification accuracies of SVM and RLDA were 68.02 and 68.29%, respec-
tively. The overall classification accuracy of the feature selection method performed outside of CV was higher 
than that of the feature selection method performed within CV by about 10% due to overfitting issue, regardless 
of the number of features (Table 2).

Figure 3 represents the trend of classification accuracies when using the actual clinical EEG data with respect 
to the number of features from 1 to 40. Contrary to the results of the simulation data, a similar trend of clas-
sification accuracies was observed for the both feature selection methods in terms of the number of features, 
but with the difference of about 10% classification accuracy between the two feature selection approaches. The 
classification accuracy increased until a certain number of features (about 10 for each classifier), but after which 
it was saturated. In particular, when using the within CV feature selection method, the trend of classification 
accuracies obtained using the simulation data was different from that of those obtained using the actual EEG data. 
This difference would come from the different characteristics between the two datasets. In the case of the simula-
tion data, data distribution was artificially controlled, and thus discriminable and non-discriminable features 
were more clearly divided, as compared to the actual clinical EEG data. Therefore, it seemed that uninformative 
features were added after the certain number of features (about 10 for each classifier) was selected in terms of 
the discrimination of two groups, which rather hindered the classification instead of helping the classification. 
On the other hand, in the case of the actual clinical EEG data, the features selected after the certain number of 
features (about 10 for each classifier) did not help increase the classification accuracy, and also did not hinder 
classification at least.

Figure 2.  Prediction accuracies of two different feature selection approaches (outside of CV and within CV) 
for SVM and RLDA (unit: %) with respect to the number of selected features for the simulation data. Note that 
features were sequentially selected with higher votes, and the corresponding features were independently used 
to estimate prediction accuracies for each feature number. As the number of features selected by the within CV 
feature selection method varied in each CV loop, we averaged the prediction accuracies of a specific number of 
features selected in each CV loop. However, features fixed after the feature selection performed outside of CV 
were used to estimate prediction accuracies as a function of the number of features.

Table 2.  Classification accuracies of the actual EEG data. Two feature selection approaches (outside of CV and 
within CV) were tested using two different classifiers (SVM and RLDA, unit: %) with respect to the different 
vote thresholds (number of selected features). n* number of selected features, S.D standard deviation, SVM 
support vector machine, RLDA regularized linear discriminant analysis.

Vote threshold

Outside of CV Within CV

n SVM RLDA n SVM RLDA

≥ 50 54 77.65 79.06 37–67 69.10 68.65

≥ 60 45 77.76 81.91 30–53 67.69 69.18

≥ 70 39 77.53 78.92 23–41 69.13 68.20

≥ 80 31 75.97 79.79 15–32 67.58 68.25

≥ 90 19 76.56 79.54 9–21 66.61 67.16

Mean (S.D.) 77.09 (0.71) 79.84 (1.08) 68.02 (0.97) 68.29 (0.66)
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Spatial distribution and overlap ratio of EEG features. Figure  4 shows the representative spatial 
distributions of selected EEG features extracted from the clinical EEG data for each feature selection strategy 
(outside of CV vs. within CV) when a vote threshold was 90. In the case of feature selection performed outside of 
CV, 19 features fixed before CV were used for classifying two groups (upper row). In contrast, in the case of fea-
ture selection performed within CV, more features were selected because different features were selected in each 
CV step. All features selected by the outside of CV method were overlapped with those selected by the within 
CV method (black lines), but some important features were not captured by the outside of CV method (red and 
blue lines in bottom row). Particularly, the three features selected by the within CV (one theta connection and 
two gamma connections, denoted by a red arrow) were not selected by the outside of CV method even though 
they were selected by the within CV method more than 50 times during 10 × 10 CV. Note that the three features 
were closely associated with the patients’ neurophysiological traits from the clinical point of view; PTSD patients 
generally showed the abnormal functional connectivity in frontal areas for theta and gamma frequency bands, 
and they were closely related to patients’ clinical symptoms, such as rumination and re-experiences17–20. Based 
on the result, it can be reasonably thought that some crucial features, which should be used to train a precise 
classification model, were discarded by the feature selection performed outside of CV.

Figure 5 represents the average overlap ratios with respect to the number of selected features. The overlap 
ratio was kept under the 30% and it was saturated after about 10 features were selected, meaning that features 
selected by the two feature selection approaches were significantly different.

Figure 3.  Prediction accuracies of two different feature selection approaches (outside of CV and within CV) for 
SVM and RLDA (unit: %) with respect to the number of selected features for the actual clinical EEG data. Note 
that features were sequentially selected with higher votes, and the corresponding features were independently 
used to estimate classification accuracies for each feature number. As the number of features selected by the 
within CV feature selection method varied in each CV loop, we averaged the prediction accuracies of a specific 
number of features selected in each CV loop. However, features fixed after the feature selection performed 
outside of CV were used to estimate classification accuracies as a function of the number of features.

Figure 4.  Spatial distribution of selected EEG features extracted from clinical EEG data when a vote threshold 
was 90 for the two feature selection approaches (outside of CV vs. within CV). Upper row and bottom row 
represent the spatial distributions of features selected by the outside of CV method and within CV method, 
respectively. Black lines represent the same features selected by the both feature selection approaches. Red and 
blue lines indicate the features selected by the within CV method more than and less than 50 times during 
10 × 10 CV, respectively, but not selected by the outside of CV method at all.
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Conclusion
The differences between the prediction accuracies of the two feature selection approaches can be thought of as the 
amount of overfitting due to selection bias. However, our results do not mean that those of the previous  study6 
using the feature selection method performed outside of CV were necessarily biased, but indicate that estimat-
ing prediction performance should not be performed after feature selection independently because prediction 
performance can be potentially biased, as shown in both Figs. 2 and 3. In other words, all steps in using ML, 
including feature selection, should be conducted within CV by separating training and test data to obtain an 
unbiased estimate of the true  performance11,12.
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