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ABSTRACT: Electrochemical systems function via interconver-
sion of electric charge and chemical species and represent
promising technologies for our cleaner, more sustainable future.
However, their development time is fundamentally limited by our
ability to identify new materials and understand their electro-
chemical response. To shorten this time frame, we need to switch
from the trial-and-error approach of finding useful materials to a
more selective process by leveraging model predictions. Machine
learning (ML) offers data-driven predictions and can be helpful.
Herein we ask if ML can revolutionize the development cycle from
decades to a few years. We outline the necessary characteristics of
such ML implementations. Instead of enumerating various ML
algorithms, we discuss scientific questions about the electro-
chemical systems to which ML can contribute.

lean energy, pure water, reduced air pollution, and

sustainable fuels are some of the most urgent global

challenges that must be answered within the next few
decades.' Electrochemical systems are promising technologies
for many of these quests.”” These devices function via
interconversion of electric charge and chemical species. In
turn, they intrinsically offer a direct control over the desired
chemical transformation by externally modulating electricity.
For example, the chemical energy stored in a battery can be
converted to electricity on demand. Another example is
electrochemical conversion of CO, to useful fuels, where the
amount and selectivity can be controlled by the electrochemical
driving force. However, the successful implementations of
electrochemical systems are rather limited, as we lack the
material systems that exhibit the desired performance and
longevity for these applications. These materials typically
perform multiple functions, and the challenge is to find not
only materials with appropriate functionalities but also the ones
exhibiting these functions efficiently. To further complicate this
process, the electrochemical systems contain multiple material
phases—electrode and electrolyte in the simplest form—and
the overall functionality strongly relates to how these phases
interact with each other (in addition to their individual
behavior). Accordingly, the development times have been
historically very long, e.g., the first commercial Li-ion battery
took about two decades, and all subsequent chemistries have
required a decade or longer for the lab-to-market transition.”
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Traditionally, this development has been through trial and error
for discovering promising materials and subsequently a
sequential process of understanding their individual and joint
electrochemical responses. We must shorten this time frame to
come up with feasible solutions to the aforementioned global
challenges.

One can condense the development cycle for any electro-
chemical system into answering the four essential why questions
identified in Figure 1:

1. Relationship between structure and relevant property,
e.g., how the molecular structure of an electrolyte relates
to properties describing ion transport. Here structure can
be the atomic/molecular structure, the crystal structure of
bulk phases, or the porous structure of electrodes.
Equivalently, the relevant properties differ.

2. Property <> performance relationship describes how
different properties (and, in turn, the corresponding
processes) come together to define an observable
electrochemical response.
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Figure 1. Research, development, and deployment tasks in any electrochemical system involve fundamentally four why questions. Each
implicitly identifies the length and time scales of interest, thus specifying how to answer these questions using experiments and modeling as the
tools. The sub-figures in the bottom panel are drawn as modules of energy storage systems and can be used to represent equivalent examples of
other electrochemical systems. [Reprinted with permission from ref 5. Copyright 2020 The Electrochemical Society.]

3. Design and control deal with how to scale up to
commercial systems and their operation. For example,
how to combine cells to make a battery pack and
modulate its operation.

. Comparing viability of different electrochemical systems
for a given task: a battery designed for electric vehicles is
not suitable for electric aircraft or storing energy on the

grid.

These four questions are valid across any electrochemical
system, since the fundamental interactions, such as ion
transport, reactions, porous electrodes, etc., are the common
denominator.’ Given the authors’ primary research focus,
batteries are used as tangible examples illustrating the concepts,
but one can easily find equivalent specific examples for any
electrochemical system of interest. Of these four questions, the
smaller scale questions, @ and @, represent the electrochemical
sciences and prolong the development process. Any new
material comes with its own peculiarities, and its behavior has
to be understood sufficiently for commercialization. Electro-
chemical sciences examine these smaller scale phenomena that
are strongly material dependent and prohibit us from naively
assuming similarities to previously explored materials (larger
scales are comparatively material agnostic).

Physics-based analysis has increasingly become commonplace
to quantitatively describe structure <> property and/or property
< performance relationships and facilitate predictability across
scales.”™'® Such model predictions decrease the experimental
efforts as well as identify the rate-limiting processes to guide
material development, thus rationalizing the otherwise empirical
development scheme. An implicit assumption in these physics-
based models is that the physics of the material response is
accurately known. While the fundamental laws governing
material behavior, e.g, conservation of mass, energy balance,
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etc, are unambiguously known, multiple processes simulta-
neously contribute to each of these; for example, reactions and
transport both contribute to species balance. Furthermore, one
has to sufficiently characterize these processes (in terms of
relevant constitutive relations and corresponding material
properties).

Machine learning (ML), on the other hand, is a type of data-
driven modeling that makes predictions without knowing the
underlying physics. The data-driven nature of ML substitutes
knowledge of the underlying physical mechanisms with many
observations of system behavior. This has revolutionized many
domains in the past decade,'””'® especially where large datasets
are available. Successful ML applications typically rely on
abundant data, be it speech patterns to train personal assistants
(e.g., Apple’s “Siri”), purchase history to predict consumer
preferences (e.g, Amazon), or video data to train self-driving
cars (e.g., Comma’s “openpilot”).

The data-driven nature of machine
learning substitutes knowledge of
underlying physical mechanisms with
many observations of system behavior.

This success of ML in the technology sector might lead one to
expect a similar shift in the sciences.'””" However, break-
throughs in science have traditionally relied on our ability to
understand, reason, and formalize underlying physical mecha-
nisms. The data-based character of ML appears insuflicient to
answer such scientific questions. Accordingly, the time scale and
nature of the ML revolution in sciences will be different. This
dichotomy between the physics-based nature of scientific
discoveries and data-driven nature of ML has cornered its
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visible scientific applications to the data-heavy end of the
spectrum, such as automated experiments’' and data-driven
predictions for battery aging.”

The electrochemical sciences are meant to offer rational
guidelines for designing electrochemical systems. The predict-
ability of the material response is essential to the rational design.
Both data-driven and physics-based approaches facilitate
predictability and offer complementary information. Accord-
ingly, the choice of analysis is driven by the questions the
investigator chooses to ask (a secondary criterion is the efforts
required in pursuing each approach). For example, consider
making a high-performing Li-ion porous electrode using
prescribed materials, such as nickel manganese cobalt oxide
(NMC). A data-driven solution is to make multiple porous
electrodes—each with different material compositions (active
material : carbon : binder weight fractions), porosities, and
thicknesses—and carry out electrochemical measurements of
the resulting performance across (dis)charge rates of interest.
Once such a dataset of controlled factors (compositions,
porosities, and thicknesses) and corresponding outcomes (e.g.,
energy and power) is available, data analysis identifies an
optimally performing electrode. Such an approach identifies the
optimal electrode within the design space studied, but it does
not offer any insight into why this electrode configuration is the
optimal one. Therefore, if one were to change the active material
to a different chemistry or even just change the particle
morphology, the previously generated dataset would lose nearly
all usefulness. The physics-based understanding of the porous
electrode performance answers the why question by relying on
intrinsic material properties (e.g, diffusivities, reaction rate
constants, etc.) and predicting the performance differences
across a variety of electrodes having different geometrical
arrangements. The underlying cause for the resultant perform-
ance is precisely identified in this approach, and any ambiguity is
related to inaccurate properties or incomplete physics.

Alternatively, if we combine both approaches, we would use
the measured performance (data) and the physics rules to
characterize the geometrical properties of the electrodes.”® This
amounts to creating a structure—property—performance map-
ping—a generalized thought across many material systems
(Figure 1)—that provides more, as well as quantitatively precise,
information (e.g, uncertainty bounds) than either of the
approaches alone and answers the following questions:

What electrode specifications lead to better performance?

Why a particular electrode specification leads to better
performance?

How to translate the understanding developed by
studying a particular set of electrode materials to other
materials?

Thus, instead of the either-or fallacy, we should explore
combinations of physics- and data-driven predictions to unlock
the true potential of ML for sciences. A judicious combination of
data-driven and physics-based approaches can speed up
scientific discoveries by translating mechanistic information
across systems using physics (i.e., causation) and substituting
unknown or complex physics via data (i.e., correlation). With
the help of physics, one can partially relax the data overhead
since the physics-constrained behavior can be approximated
using a limited dataset. This is particularly suited for ML
applications in sciences'” where the observed response satisfies
fundamental laws such as energy conservation, entropy
generation, charge neutrality, etc. The goal is to improve
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A judicious combination of data-driven
and physics-based approaches can
speed up scientific discoveries by
translating mechanistic information
across systems using physics (i.e.,
causation) and substituting unknown
or complex physics via data (i.e.,
correlation).

predictive accuracy while minimizing efforts. This approach also
aids in the development of transferable functions. In a
conventional physics-based analysis, the accuracy is improved
by progressively introducing advanced constitutive relations,
while the fundamental laws remain unchanged (for example,
replacing dilute solution theory with concentrated electrolyte
transport). In a typical data-driven model, the accuracy is
improved by adding data points. If sufficient data is available, the
underlying physics can be approximated, and if the physics is
accurately known, the observed behavior can be explained.
However, either approach becomes prohibitively expensive as
more accuracy is desired. If pursued alone, accuracy and efforts
scale positively for each approach. For scientific discoveries,
neither sufficient data nor accurate physics is known, and a suitable
combination of the two approaches is an efficient path forward to
simultaneously improve accuracy and reduce efforts. The
subsequent electrochemical examples will illustrate these ideas.
The examples are presented in the order of increasing length and
time scales in Figure 1.

Predicting Material Properties. For Li intercalation
materials such as NMC, the thermodynamic energy storage
response is prescribed as voltage for different extents of
intercalated Li.”* Density Function Theory (DFT) calculations
can, in principle, provide this information. However, the task
becomes computationally prohibitive if one wishes to compute
the open-circuit voltage for all possible combinations of Ni, Mn,
and Co contents over multiple Li intercalation states.”> The
problem becomes even less tractable in the presence of
additional dopants/impurity atoms. Herein, ML surrogates
offers a reasonable solution. Based on selected DFT calculations,
an ML model can be developed that accurately predicts the
inter-species interactions and honors the requisite geometrical
symmetries and invariances.”® Using these ML potentials, one
can accurately explore the open-circuit voltage over a quaternary
composition space of Li, Ni, Mn, and Co. This approach
effectively changes how we answer the first question in Figure 1.

ML potentials have vastly improved in accuracy and
reliability””*® and are approaching the accuracy of ab initio
methods at a minuscule fraction of the computational cost. Such
computational improvements relate to the choice of regression
(i.e., approximation of the underlying trends) as well as
featurization of the structure information.””* The featuriza-
tions are also necessary and effective for unsupervised learning in
materials classification and inference.”’ Additionally, these
techniques have been shown to accurately and efficiently
expand to many-component systems,”” enabling design searches
that were not possible previously. In a recent work, featurization
using atom-centered symmetry functions and neural network as
the regressor are used to generate the voltage profile and lattice
structure dynamics as a function of Li intercalation states for any
arbitrary NMC composition, marking the first step toward a

https://doi.org/10.1021/acsenergylett.1c00194
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Figure 2. (a) Example of a workflow coupling experimental data, a surrogate electrode mesostructure predictor, and ML (Sure Independent
Screening and Sparsifying Operator) to predict the impact of electrode composition, initial porosity, and calendered pressure on the electrode
tortuosity factor. [Reprinted with permission from ref 39. Copyright 2020 Elsevier.] (b) Example of a classification machine learning algorithm
(Support Vector Machine) able to predict the impact of the percentage of NMC active material, solid-to-liquid ratio, and viscosity of the slurry
on the final porosity of a lithium ion battery positive electrode. [Reprinted with permission from ref 38. Copyright 2019 Wiley-VCH GmbH. ]

computationally feasible optimization workflow for relevant
performance properties of cathode material’* and anode
materials.”> The ML potentials are seeing incredible progress®*
toward increasing the generalizability, extrapolation capabilities,
and principled selection of feautrization and hyperparameters.”'
Such progress can lead to mapping high-fidelity multi-
component (n > S) phase diagrams to discover new battery
electrode and electrolyte materials in the coming years.

Rational Electrode Manufacturing. A philosophically
equivalent question arises while defining the mapping from
porous electrode structure (mesostructure) to corresponding
effective properties such as tortuosity factor. As the
mesostructure is set during the electrode manufacturing stage,
one can go a step further and correlate electrode manufacturing
to mesostructure properties. For the same electrode materials,
the mesostructure properties describe the variations in the
electrochemical performance. While the physical modelin§ of
the manufacturing processes has received some attention,” >’
the data-driven approaches™ are just emerging. We essentially
face two interrelated challenges: unraveling the influence of
manufacturing parameters (e.g., recipe, calendering pressure)
and determining the role of different processing steps on the
final electrode mesostructure.

Classically, physical models can be used to simulate each
process step and combine them through sequential multiscale
coupling."® For example, calculated electrode slurries*” can be
used in the simulation of their drying,”” and the dried electrode
mesostructures can be used as inputs for calendering
simulations.”' The resulting geometrical arrangement the
electrodes can then be used in electrochemical performance
simulators to establish the manufacturing—mesostructure—
performance links.** ML models are efficient tools in ensuring
the experimental validity of such involved multiscale computa-
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tional models. For instance, ML models have been used to
correctly parameterize force fields used in the coarse-grained
simulation of electrode slurries.*” They ensured a proper
matching of calculated and experimental properties (e.g.,
viscosity vs applied shear rate) with about 20 times reduction
in efforts—from 6 months to 8 days—compared to manual
parameterization.** ML can be also used in combination with
surrogate models to bypass these expensive physical simulations,
which usually solve the dynamics of a very significant number of
particles®”*’), and to accelerate the manufacturing parameters’
optimization. For instance, a surrogate modeling approach
informed with experimental data to predict electrode meso-
structures in three dimensions and their properties has been
recently proposed.”” The experimental data and the surrogate
model results are used to successfully train a ML model to be
able to predict the influence of calendering conditions on the
electrode properties, such as the tortuosity factor (Figure 2a).

Another way to approach these problems is to apply ML
directly to experimental data. This works only if accurate
experimental measurements are available for electrodes
prepared under different conditions—composition, solid-to-
liquid ratio, etc. ML has been employed to map electrode
properties, e.g., porosity as a function of the manufacturing
conditions, as shown in Figure 2b.%® Once such a mapping is
generated, it is used to identify optimal conditions for electrode
manufacturing.

Accurate 3D Mesostructures. Instead of sequentially
building mesostructure <> effective properties and effective
properties <> electrochemical performance relationships, if
detailed mesostructure information is available, one may directly
simulate electrochemical interactions at the pore scale. X-ray
computed tomography (XCT) and other advances in 3D
imaging allow us to study the composition and structure of

https://doi.org/10.1021/acsenergylett.1c00194
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critical materials as manufactured, rather than using idealized
representations. The use of such realistic geometries is directly
related to higher fidelity predictions of the electrochemical
responses of these materials. However, many challenges are
prevalent in obtaining accurate 3D mesostructures, including
image segmentation (ie., assigning correct material phase to
each voxel) and the effort required for 3D imaging, resulting in
limited datasets.

Convolutional neural networks (CNNs) are particularly
suited for image segmentation using supervised learning
methods. Unlike 2D image analysis in other fields, electrodes
are 3D and reguire appropriate customization to typical CNN
algorithms.*”** Figure 3a—c shows a recent application of CNN-

(a) Original Image (c) Machine Label

(b) Human Label

(d) Geometric Uncertainty

B =J L s =
U
aQ . .

Figure 3. (a—c) Comparison between human (b) and CNN (c)
segmentations of 3D XCT images. (d) Bayesian CNNs used to
quantify the uncertainty in image segmentations.*> (e, f)
Appliigtion of GANs to create unique, yet realistic, mesostruc-
tures.

based image segmentation for graphite anode materials. In this
and other cases,”* CNNs are shown to produce more convincing
segmentations than several conventional segmentation ap-
proaches. Amazingly, CNNs can even generate segmentations
that are, in a sense, more reliable than the training data used to
produce them, as they apply their learned rules consistently over
the whole volume, which can be difficult for a human when
manually segmenting billion-voxel volumes. Crucially, the
segmentations are based on features resulting from 3D
convolutions, meaning that non-trivial (i.e., not “thresholded”)
segmentations result and imaging artifacts (such as varying
brightness) can be overcome. The training itself is the
computationally intensive step for CNNs, but once trained,
inferences are very fast (orders of magnitude faster than manual
segmentation) and repeatable. Such CNNs are specific to
particle morphology, i.e., segmenting graphite vs NMC
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electrodes. In other words, a CNN trained on one electrode
can be used to convincingly segment many electrode samples of
the same type, but likely not a different particle morphology
without additional training.

Since training data derived from real images is never perfect, it
is important to characterize associated uncertainties. An
emerging direction is to combine Bayesian inference with
CNNs to quantify uncertainties. By probing the trained
variances in the weights of such networks, uncertainty maps
can be generated (Figure 3d). 3D image uncertainties can then
be propagated to subsequent physics calculations, for example,
porosity, effective property, and electrochemical predictions
(unpublished results). In addition, following segmentation,
Generative Adversarial Networks (GANs) are now being
developed to learn the phase arrangement in segmented data
and generate mesostructure realizations with customized
properties in volumes larger than could be obtained from
imaging alone (Figure 3e,f)."”

Estimating Properties from Experiments. Typically the
effective mesostructure properties <> electrochemical perform-
ance mapping is used to explore how performance varies with
effective properties. This mapping can be inverted to characterize
effective properties if appropriate performance measurements
are available. As shown in Figure 4, first physics-based
performance calculations are carried out for multiple effective
property combinations. Once such a dataset is available, the
data-driven modeling is used to generate such mappings.
Subsequently, it is used to estimate mesostructure properties
from performance measurements.”” The data-driven modeling
avoids explicitly solving the governing equations for all possible
combinations of property values, which is prohibitively
expensive.

For example, consider identifying mesostructure properties,
e.g., tortuosity factor, from the electrochemical performance of
porous electrodes, as shown in Figure 4. Not every
mesostructure property <> electrochemical performance map-
ping can be inverted, and accordingly one must ensure that the
mapping is sensitive to every property one wishes to estimate.
Figure 4c is an example mapping generated for a given
experimental dataset (Figure 4a) and physics-based porous
electrode theory responses (Figure 4b) based on a select few
property combinations. Herein the sensitivity to each property is
achieved by comparing performance at multiple currents (C-
rates). The accuracy of such an approach is presented in Figure
4d by comparing measurements against the physics-based
predictions using the estimated mesostructure properties.

In essence, ML builds reduced order (or surrogate) models
from data. The model building is an iterative process where the
reliable approximation of the datasets is not known beforehand
(refer to “Model Parameters and Data Accuracy” in the
Supporting Information). If pursued as a purely data-driven
problem, the usefulness of such models is limited. The fidelity of
ML predictions is constrained by (i) the quality and quantity of
the training data and (ii) the appropriateness of the function
representation. It is implicitly assumed that, given sufficient data
and suitable function, the necessary trends can be learned
efficiently. It is possible that the chosen representation is effort-
intensive to learn, and either a customized learning approach (to
find model coefficients faster) or a different representation (to
speed up learning) is required for a practical ML implementa-
tion. To illustrate these nuances, consider having a set of discrete
measurements of diffusivity, D, at different temperatures, T. This
discrete information needs to be converted into a continuous
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Figure 4. (a) Measured electrode performance is interpreted using (b) physics-based electrochemical description. (c) The difference between
the two is mapped in terms of mesostructure properties using data-driven modeling. The most representative properties are retrieved using this

error landscape. (d) Experiments and predictions
[Used with permission from Mistry et al., ref 23.]

using interpreted mesostructure properties are shown to illustrate reliability of analysis.

function for further analysis, such as obtaining activation
energies from the slope or using the D = D(T) property relation
in a temperature-dependent analysis. In essence, machine

learning builds reduced order (or surrogate) mo

In essence, machine learning builds
reduced order (or surrogate) models

from data.

Figure 5 shows three different datasets in each of the columns,
and two different Neural Network (NN) representations are
used to learn the underlying trends (each row respectively). The
datapoints contain inaccuracies (noise in the measurements).
The learning ensures that the model predicts the training data
accurately, while a similar accuracy is not necessarily guaranteed
for predicting datapoints not part of the training set. For
example, Figure Se,f shows that predicted trends exhibit drastic
changes away from the training datapoints. Note that not just
extrapolation but also interpolation in between the two data
clusters are questionable.

dels from data.

log(D)

o0

log(D)

1/T

1/T 1/T

Figure 5. Data-dependent characteristics of ML are illustrated by learning D(T) relation from discrete datapoints using two NN representations

(with Sigmoid activation functions) shown in the in
The solid red line is the trained model in each plot.

sets. Columns represent different data complexity, while rows express model complexity.
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Approaching this as a data-driven modeling question, testing
the model accuracy on a dataset not used for training can help
expose and manage artifacts. The model complexity is
intrinsically tied to the accuracy of the dataset. Compare Figure
S, panels b and e, having identical datapoints: the simpler
representation in (b) is reliable if the data contains inaccuracies,
while the more complex representation in (e) is meaningful if
the datapoints are reliable. (“Model Parameters and Data
Accuracy” in the Supporting Information further discusses the
connection between model complexity and data reliability;
model complexity often scales with the number of model
parameters.) Alternatively, the physics can guide through this
impasse. The slope of log(D) vs 1/T in Figure S represents
activation energy and is typically a positive and a slowly varying
property (if at all). Accordingly, the trends in Figure Se,f are
likely unphysical. These qualifications are easier to make from
Figure 5 where a one-dimensional dataset is explored, but
become quite difficult to identify when higher dimensional
datasets are studied.

Appropriately pre-processing datasets using physical symme-
tries or geometrical invariances (known as feature engineering),
for example, training log(D) vs 1/T, instead of D vs T, helps
considerably with building data-driven models. Since any ML
implementation relies on data, data generation and curation are
crucial steps. If data is generated through experiments, one must
ensure repeatability and reproducibility of measurements. Such
precautions minimize systematic errors so that the remaining
variability is a true random error and analyzed statistically.
Instead, if data is generated using physics-based calculations, the
accuracy of computed trends in deterministic simulations and
reliability of statistics in stochastic simulations must be ensured.
Essentially, one should be mindful of the confidence in the raw
data and how the uncertainty propagates to predictions. One
must also be wary of over-fit models (often nicer-looking fits of
the data) that may not be useful or predictive outside of the
scope in which they are fit.

Typically, the datasets are not as simple as D = D (T) so that
one can visually assess the reliability of the data-driven model. In
addition to rigorous verification of model accuracy, we should
also focus on interpreting these approximations. Either our
intuition needs to evolve to comprehend the information flow or
we need to visually express the data-driven models for human
interpretation. The interpretation is essential to generating
insights from data, identifying limiting mechanisms, and making
decisions. When combined with physics, the overall analysis
scheme offers both more accurate correlations and clearer
causality.*> Most of the examples discussed so far train ML on
explicit physics-based calculations (physics-informed map-
pings). An alternative is to modify the training process to
explicitly follow physics-based governing equations ™~ ** (which
should be referred to as physics-encoded mappings).

Materials discovery”” > is a promising ML application.
Atomic- or molecular-scale calculations are performed over a
wide range of compounds to map atomic/molecular variations
to macroscopically relevant properties. For example, electrolytes
with different solvent molecules can be analyzed to map
molecular structure to ionic conductivity.” Such structure-to-
property maps (@ in Figure 1) reliably compute properties for
new structures without having to do explicit physics-based
calculations once the map is built. For target property values,
these maps can be used in an inverse fashion to identify essential
structural attributes for the property targets.”*

1428

A seemingly different but philosophically equivalent applica-
tion is the calculation of effective properties from 3D
mesostructures. The traditional approach is to solve 3D species
conservation equations. ML can speed this up by mag}ging 3D
mesostructures to corresponding effective properties.3 >3 After-
ward, new 3D mesostructures of a similar type do not require 3D
physics calculations since the physics is implicitly captured in the
mapping. Taking this idea a step further, ML can streamline
electrode manufacturing—mesostructure—effective properties—
electrochemical performance mapping in a physically consistent
fashion (Figure 1). Such a mapping allows one to track the
influence of a processing step on performance and, in turn,
rationally design porous electrodes for the target performance.
Present-day electrode processing controls the bulk specifications
such as composition and porosity, but with advances in 3D
printing, in the future, we should be able to explicitly control
electrode arrangement by leveraging the aforementioned
structure—property—performance mapping.

An alternative to building such structure < property and
property < performance mappings (® and @ in Figure 1) is to
simultaneously resolve all scales using a suitable physics-based
approach. A new paradigm of exascale computing has been
introduced recently that aims to build computing solutions
catering to such expensive problems.’® Exascale computing is
ideally suited for simultaneously resolving multiple length scales,
such as performing DFT or ab initio calculations for length and
time scales approaching continuum behavior or simulating
electrochemical interactions of large 3D porous electrodes
(~100 ym thick and ~1000 X 1000 um?> cross-section) with
pore-scale resolution. Alternatively, an appropriate combination
of ML and physics-based simulations may offer a computation-
ally less expensive solution where physics-based simulations
work at different scales and these scales are coupled through ML.
For example, as discussed earlier, the force fields from a DFT
simulation can be machine learned and separately used in
Molecular Dynamics or Monte Carlo simulations. Such a
solution essentially replaces the hardware (e.g., exascale
computing) requirements with specialized software develop-
ment.

As these physics-based simulations produce larger and larger
datasets, their interpretation becomes challenging. ML can parse
through these datasets to identify relevant information that
should be visualized by the researchers. Consider a 3D
simulation of an intercalating porous electrode'**® where
multiple small-scale entities jointly reproduce a macroscopic
response. Given the sheer number of such entities, it is infeasible
(and unnecessary) to visually track each of them. Rather the
interest is in visualizing norms and outliers. For this electrode,
the representative particles are the ones whose lithiation follows
the macroscopic response (the norms) and those severely
lagging or leading (i, outliers). Unsupervised learning is
suitable to parse throuﬁh the simulation data and identify such
representative events.’ °”>* Alternatively, the dimensionality of
the data can be reduced to correlate the most essential
features.>”

An operational constraint in executing such a multiscale
investigative scheme is the development time of the physics-
based simulation for mesoscale interactions. Smaller (quantum,
atomic, molecular) and larger (porous electrode and above)
scales have relatively mature computational methods, while the
interactions at intermediate scales (mesoscale) range widely,
and consequently many methods exist, e.g., phase-field
modeling, discrete element method, kinetic Monte Carlo, etc.,
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each suitable for a specific set of interactions, with no off-the-
shelf simulation tool that can be directly applied to any new
material system. ML can speed up this development by (at least
partially) eliminating the overhead for manually learning a new
method. Not only can it sift through literature to suggest
solutions for a new problem, but it can iterate through multiple
simulations and automatically identify meaningful conditions.
The hope is to let the researcher focus on understanding
mechanisms and automate the tools used to probe these
mechanisms. A philosophically similar example is Sony’s
recently proposed music creation paradigm which allows the
artist to focus on creating the music without having to worry
about the required instruments.”” The hope is to let the
researcher focus on understanding mechanisms and automate
the tools used to probe these mechanisms.

The hope is to let the researcher focus
on understanding mechanisms and
automate the tools used to probe these
mechanisms.

While ML offers a new toolset for scientific discoveries, not all
ML can revolutionize electrochemical sciences. Any meaningful
ML implementation needs to help identify promising materials
or pinpoint mechanisms limiting material behavior so that the
development cycle for the electrochemical systems can be
shortened. Hence, we should focus on adopting and developing
ML that provides more insights than before or allows us to
pursue questions that have remained unanswered due to effort-
intensive existing approaches.
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