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Abstract

A rising wave of technologies and instruments are enabling more labs and clinics to make a variety 

of measurements related to tissue viscoelastic properties. These instruments include elastography 

imaging scanners, rheological shear viscometers, and a variety of calibrated stress-strain analyzers. 

From these many sources of disparate data, a common step in analyzing results is to fit the 

measurements of tissue response to some viscoelastic model. In the best scenario, this places the 

measurements within a theoretical framework and enables meaningful comparisons of the 

parameters against other types of tissues. However, there is a large set of established rheological 

models, even within the class of linear, causal, viscoelastic solid models, so which of these should 

be chosen? Is it simply a matter of best fit to a minimum mean squared error of the model to 

several data points? We argue that the long history of biomechanics, including the concept of the 

extended relaxation spectrum, along with data collected from viscoelastic soft tissues over an 

extended range of times and frequencies, and the theoretical framework of multiple relaxation 

models which model the multi-scale nature of physical tissues, all lead to the conclusion that 

fractional derivative models represent the most succinct and meaningful models of soft tissue 

viscoelastic behavior. These arguments are presented with the goal of clarifying some distinctions 

between, and consequences of, some of the most commonly used models, and with the longer term 

goal of reaching a consensus among different sub-fields in acoustics, biomechanics, and 

elastography that have common interests in comparing tissue measurements.

Keywords

viscoelastic models; tissue; elastography; magnetic resonance elastography; optical coherence 
elastography; biomechanics; rheology

kevin.parker@rochester.edu. 

HHS Public Access
Author manuscript
Phys Med Biol. Author manuscript; available in PMC 2021 April 13.

Published in final edited form as:
Phys Med Biol. ; 64(21): 215012. doi:10.1088/1361-6560/ab453d.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



1. Introduction

There has been a robust proliferation of techniques that can estimate tissue stiffness and 

viscoelastic properties using advanced imaging techniques (Parker et al., 2011; Li and Cao, 

2017; Zvietcovich et al., 2017). Many of these techniques employ shear waves in tissue, in 

the frequency range of 10 – 1000 Hz and so the abundance of new data from shear wave 

propagation forces a re-examination of rheological models of the viscoelasticity of tissues. 

Put another way, many investigators now have measurement tools to track shear waves in 

tissues, and would like to incorporate the simplest, most accurate, and meaningful 

viscoelastic model available that can capture the essential time domain and frequency 

domain characteristics of the behaviors they observe, while extracting the most meaningful 

parameters for diagnostic value. However, which model should one choose given the large 

range of available choices that have been developed over a century of biomechanics and 

related fields (Fung, 1981a; Lakes, 1999a; Bilston, 2018; Nyborg, 1975)?

While different models have been compared in the past (Klatt et al., 2007; Catheline et al., 
2004; Sinkus et al., 2007; Urban et al., 2011; Zhou and Zhang, 2018), our study takes into 

account a larger set of advanced viscoelastic models as well as a growing body of 

viscoelastic studies of the liver to build a consistent rationale for model selection. In the case 

of determining the shear modulus, most commonly applied measurement methodologies 

may provide only a handful of points through which many models can be fit. Furthermore, 

even though the shear wave speed or modulus is known to vary strongly with frequency, 

often only one value is reported. Which approach is best?

In addressing these common problems, the three authors as independent researchers have 

reached similar conclusions and offer a synoptic perspective as a first step towards a possible 

larger consensus on appropriate viscoelastic models for shear wave elastography in soft 

tissues. To argue this, we consider experimental data from tissues over a range of conditions. 

Then we examine some of the simplest (but inappropriate) models, working up in 

complexity and then generalizing over multiple scales to a very useful simplification. 

Fractional derivative models and consequent power law behavior are seen to possess a 

desirable combination of simplicity and utility and are recommended for general use.

It is necessary to define the terms and focus of this work. By “soft tissues”, we mean 

macroscopically homogeneous and isotropic normal tissues such as the liver, prostate, 

thyroid, and possibly others such as the brain. We consider only small strain, linear models 

and exclude guided waves in structures. This excludes from consideration muscle, tendon, 

arterial walls, cornea, bone, and large strain conditions. These require additional 

considerations and are beyond the scope of this work.

Nonetheless, within the scope of soft tissues lie some of the major successes of elastographic 

imaging techniques, notably the quantification of liver stiffness relevant to staging of fibrosis 

(Cosgrove et al., 2013; Barr et al., 2015). To further improve the role of elastography, a 

multicenter study, QIBA, the Quantitative Imaging Biomarker Alliance, is examining the 

consistency of different approaches to clinical measurements of the shear modulus with 

ultrasound (Palmeri et al., 2015; RSNA/QIBA, 2012; Hall et al., 2013). Agreement on 
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appropriateness of models for these soft tissues would be a significant first step in creating a 

common and coherent framework for comparing results from a variety of sources. 

Accordingly, this paper is organized to make a coherent argument starting with “ground 

truth” from experimental measures of extended time domain and frequency domain 

viscoelastic behaviors of tissue. Then we consider some popular simple models, and the 

pathway towards more realistic rheological models for soft tissues.

Furthermore, since the viscoelastic nature of tissues implies that the real and imaginary 

elastic moduli and therefore absorption and shear wave speed are strong functions of 

frequency, the relationships between these four parameters are reviewed in Appendix 1. 

However, different notations add to the confusion and different interpretations about model 

applicability. Because these differences in notations from allied branches of science have 

diverged, we introduce a glossary of terms in Appendix 2. Issues with fitting data to different 

models include the usual case in which only a few points are measured over a narrow 

frequency range. To address these challenges within a coherent framework, we begin with 

viscoelastic tissue measurements taken by different methodologies over a wide range of 

frequencies.

2. Tissue behavior from published results

2.1 Selection criteria

There are a great many estimates of soft tissue biomechanical properties, covering a wide 

range of measurement techniques, sample conditions, and results. Elastography techniques 

that utilize shear waves commonly excite the waves by external sources applied to the 

surface, or by acoustic radiation force push pulses within the organ of interest. Our focus 

here is on characterizing the tissue properties that govern the tissue displacements and shear 

wave propagation from any source.

For our purposes, we have sought out measurements that satisfy the following conditions:

• The published estimates are crossed checked by independent measures.

• The estimates cover a decade or more in time or frequency.

• The estimates are obtained for more than one sample.

• The data are presented in graphic or tabular form.

• We also assume that the data have been corrected for any extra artifacts of the 

shear generation and detection processes.

We included data from several measurement methods including dynamic mechanical testing, 

resonance, magnetic resonance elastography (MRE), and shear wave elastography (SWE) 

which involve wave propagation.

2.2 Published data

In this section, we illustrate the wide range of data types in the literature including time and 

frequency data sets as well as those utilizing rheological parameters and shear wave 
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velocities. Some common parameters and their inter-relationships are given in Appendices 1 

and 2.

One early reference on liver properties is Liu and Bilston (2000) who employed a number of 

measurements of linear, small strain (less than 1%) conditions. Their stress relaxation 

results, (see Figure 1) demonstrate a reasonably straight line on log-log scale over many 

decades of duration during the hold. The measured stress suggests a 1/ta power law behavior.

Another example, but measuring shear wave speed as a function of frequency, comes from 

Ormachea et al. (2016), where three different measurements were assessed for their 

compatibility: crawling waves (generated from external sources), single line tracking shear 

waves (generated from push pulses), and stress relaxation (time domain results curve fit 

through the Kelvin-Voigt fractional derivative (KVFD) model to frequency domain 

predictions). Their results are shown in Figure 2 on a log-log scale. Their general trend is 

also consistent with power law behavior over the shear wave propagation range of 40 – 400 

Hz.

A third example demonstrates estimates of shear modulus as a function of frequency, from 

viscometry and MRE results in bovine and human liver from Klatt et al. (2007; 2010). Their 

overall combined results are consistent with power law behavior between 2 and 70 Hz (see 

Figure 3).

Another example from Kiss et al. (2004) is shown in Figure 4. These investigators measured 

the complex Young’s modulus of groups of fresh bovine liver samples with and without 

thermal lesions using a rheometer. The instrument was considered to be accurate below 100 

Hz, the rightmost data points represent likely artifacts. These data were fit to a fractional 

derivative model (to be described in section 3, solid lines) with reasonable accuracy.

Finally, we draw a comprehensive perspective of broadband data for liver by drawing from 

five different sources and measurement methodologies. Figure 5 combines soft tissue data 

from Bilston (2018), Kiss et al. (2004), Klatt et al. (2010), Wex et al. (2013), and Chatelin et 
al. (2011) over four decades of frequency, and demonstrates that the shear elastic modulus 

follows a generally increasing power law across many decades of frequency. These power 

law relationships indicate structure extending across several decades of measurement scales.

3. Models of tissue response

In this section we review first the simplest and well known classical viscoelastic models. 

After considering their behavior the discussion moves on to more general and, we argue, 

more realistic models that can capture power law phenomena with only 2, 3, or 4 parameters 

depending on the degree of approximation that circumstances allow for.

3.1 Definitions

Because tissues are viscoelastic, simple elastic relationships between shear wave speed and 

elastic moduli, such as cs = μ/ρ (where cs is shear wave speed and ρ is density), no longer 

apply. Instead of responding immediately to a change in applied strain or stress, tissue 
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responds slowly or relaxes; therefore, moduli are functions of time or alternatively, 

frequency. Similarly a simple Hooke’s law in which stress (σ) is proportional to strain (ε), 

no longer applies. Here we introduce a modified viscoelastic Hooke’s law common in 

mechanical testing:

σIR t = σSR t * ∂ε t
∂t = ∂σSR t

∂t * ε t , (1)

where the stress response to a unit step in shear strain is called the stress relaxation response, 

σSR(t), and its Fourier transform is σSR ω . The Fourier transform of σIR(t) is a complex 

function σSR ω . Likewise, the stress response to an impulse in strain, more common in 

acoustics, is the elastic response to an impulse μ(t) = σIR(t), and its Fourier transform, the 

transfer function, is the dynamic modulus μ ω = iωσSR ω . Another example of stress 

relaxation is shown in Figure 1. The relationship of these moduli to other notations and shear 

wave propagation parameters can be found in Appendices 1 and 2.

3.2 Classical models

The classical linear viscoelastic models are the Zener, Kelvin-Voigt, and Maxwell models 

shown in Figure 6. The Zener model is called the standard linear solid model which has a 

single relaxation process. The Kelvin-Voigt and Maxwell models are both subsets of the 

Zener model. The responses for these models are the following (Holm, 2019b):

Zener: σ ω
ε ω = μe

1 + iωτε
1 + iωτσ

Kelvin‐Voigt:  σ ω
ε ω = μe + iωη

Maxwell: σ ω
ε ω = iωη

μe + iωη ,

(2)

in which

τσ = η
μ , τε = η 1

μ + 1
μe

≥ τσ . (3)

For instance, the Kelvin-Voigt model is a low-frequency approximation to the Zener model 

where the effect of the spring μ can be neglected as |ωη| ≪ μ. Likewise, the Maxwell model 

is a fluid model since when the frequency approaches zero its relaxation modulus (1/μ + 1/

iωη)−1 approaches zero. It is therefore a high-frequency approximation to the Zener model.

It is common to model the elastic response of tissue with one of these elementary models. 

For example, the Kelvin-Voigt model (Figure 6, middle) has been widely used as a model, 

and by inspection we can write its stress-strain response in the frequency domain as the sum 

of the two parallel elements:

μ ω = μe + iηω (4)

From this frequency response we see immediately that the low frequency response is a 

constant set by the spring, and the high frequency response is dominated by the viscous term 
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times frequency to the first power. However, tissue responses, as previewed in Figures 1 – 4, 

do not fit neatly into a ω0 (constant over frequency) or an ω1 power. Thus, curve-fitting to 

this function invariably forces the data into the transition zone between the two regimes, 

around ω0 = μe/η, however the extrapolation outside of this transition frequency is 

questionable. Furthermore, a major conceptual problem is that single relaxation time 

constant mechanisms are rare and found only in isolated conditions, such as certain ionic 

molecules in water (Ainslie and McColm, 1998; Blackstock, 2000). No one has 

demonstrated and identified a single relaxation time constant for soft tissues, in fact the 

opposite is true: the field of biomechanics largely abandoned this as overly simplistic many 

decades ago. See Fung (1981b), where he discusses continuous relaxation spectra across 

some extended range of relaxation time constants or frequencies and says: “I have the 

experience that the relaxation spectra… and associated properties…work very well in 

virtually all cases we know.” It is time for the same approach to be adopted in elastography 

as well. The multiple or continuously varying relaxation models build on the reality that 

tissue has a hierarchy of structures which can be measured at different temporal resolving 

powers or equivalently, bandwidths. For each measurement, some range of structure is 

averaged.

3.3 The multiple relaxation model

The multiple relaxation approach of Figure 7 is therefore one way to model tissue in small 

strains and shear wave propagation. It is a general approach that can model arbitrary 

frequency responses, but often it is found that the net effect of the multiple processes is a 

power law in the frequency domain. That is the link to the second approach: generalization 

of the viscoelastic models to fractional ones. Both approaches will be discussed here and we 

will show that over the limited frequency range over which one has measurements, the two 

approaches often cannot be distinguished from each other, however there is compelling 

natural evidence (see Figure 5) that can aid in model selection.

Many Zener models in parallel as in Figure 7 result in a relaxation modulus which is a Prony 

series in the time domain with real, positive coefficients:

σSR t = μe + ∑
n = 1

N − 1
μne−t/τn, (5)

where μe is the equilibrium modulus, the asymptotic value. The dynamic modulus is also a 

sum:

μ ω = μe + ∑
n = 1

N − 1 μniωτn
1 + iωτn

. (6)

This is the most general conventional model and it is called the Maxwell-Wiechert model. It 

is sometimes also called the generalized Maxwell or the generalized Kelvin-Voigt model and 

sometimes it is depicted in its conjugate form with a series combination of springs and 

dashpots in parallel. These models are all equivalent (Tschoegl, 1989a; Holm, 2019c). We 
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will show in later sections that a reasonable distribution of elements in Figure 7 and time 

constants τn leads naturally to fractional models.

3.4 Fractional models

The fractional models of linear viscoelasticity, the fractional Zener, fractional Kelvin-Voigt, 

and spring-pot models of Figure 8 are alternative models.

3.4.1 Frequency domain—The fractional Zener model (Figure 8, left) is related to the 

standard Zener model (Figure 6, left) by replacing the classical damper (iωη frequency 

response) with a fractional derivative damper ((iω)α·η frequency response where 0 < α ≤ 1). 

It can be shown that the fractional Zener model’s dynamic modulus is given by

μ ω = μe
1 + iωτε

α

1 + iωτσ
α , (7)

where the relationship between the two time constants of eqn (9) and the discrete 

components of the fractional Zener model in Figure 8 are:

τσα = η
μ ,    τεα = η 1

μ + 1
μe

≥ τσα . (8)

This four-parameter model has some possible simplifications. If the right side spring 

element (μ) is assumed to be much stiffer than the other elements (over the range of 

frequencies studied), then the forces and displacements are substantially transferred to the 

viscous spring-pot element, and so the model reduces to Figure 8, middle, which is the 

KVFD model. Going further, if the left side spring element (μe) is assumed to be negligible 

compared to the viscous spring-pot, then the model reduces to Figure 8, right.

Correspondingly, as these approximations are made, the dynamic moduli of the three models 

can be simplified as follows:

μ ω = μe
1 + iωτε

α

1 + iωτσ
α ≈ μe + iωη α ≈ iωη α . (9)

The first approximation is from the fractional Zener model to the fractional Kelvin-Voigt 

model. They both have the same low-frequency asymptote, μ 0 = μe. However the finite 

high-frequency asymptote of the Zener model, μ ∞ = μe τε/τσ
α, is not achieved by the 

fractional Kelvin-Voigt model. In fact, in the literature the Kelvin-Voigt family of models 

has been considered to be non-standard because they have an impulse in the relaxation 

modulus at time 0. For this reason, Tschoegl (1989b) states that such a model “appears to be 

physically unrealistic.” As this refers to a situation where the continuum assumption breaks 

down, the model may, despite this reservation, often be quite useful in practice. As an 

example, two parameters derived from the fractional Kelvin-Voigt model were found to be 

beneficial in discriminating between hepatic fibrosis and inflammation in patients with 

chronic liver disease in MRE (Sinkus et al., 2018).
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The last approximation, that of the spring-pot alone, cannot model the static, low frequency 

properties of the material as it is a fluid model. It is therefore a mid-frequency 

approximation, but quite useful over typical shear wave frequencies. For example, in two 

papers by Zhang et al. covering prostate and liver specimens (Zhang et al., 2007; Zhang et 
al., 2008) , the μ0 (or E0 in their notation) was found to be negligible, below 1 Pa as inferred 

from the mechanical stress relaxation test. Their highest recorded value was from one case 

of advanced prostate cancer with an E0 of 700 Pa. Thus, in many situations involving normal 

soft tissues and frequencies within the common elastography range (40 – 1000 Hz), the two-

parameter spring-pot may be sufficiently useful and justifiable.

Figure 9 shows that the fractional Kelvin-Voigt and the fractional Zener models follow each 

other at low frequencies, and that the spring-pot and the fractional Kelvin-Voigt models are 

the same at high frequencies. But for the intermediate frequencies from about 100 to 105 

(given by the ratio of the time constants in the fractional Zener model, which in this example 

is τε/τσ = 105), and in particular 101 – 104, all three models have more or less the same 

performance. This is an argument for why the theoretically correct fractional Zener model is 

too complex and that with only a band-limited set of measurements, the fractional Kelvin-

Voigt and even the spring-pot models are adequate if one wants to use fractional models. 

The same performance can also be achieved with a few relaxation processes. Finally, the 

simpler models of Figure 6 can be considered subsets of the fractional models. For example, 

the fractional Kelvin-Voigt model reduces to the Kelvin-Voigt model when α = 1.

3.4.2 Time domain behaviors—The stress relaxation response of the fractional 

Kelvin-Voigt model is:

σSR t = μe 1 + τα t−α

Γ 1 − α ,    τα = η
μe

. (10)

This is a power function with a singularity as t approaches 0. This anomaly is the time 

domain equivalent of the infinite dynamic modulus and the infinite phase velocity as 

frequency increases of the Kelvin-Voigt family of models.

The fractional Zener model’s relaxation modulus is given by a Mittag-Leffler function:

σSR t = μe + μe
τε
τσ

α
− 1 Eα − t/τσ

α . (11)

The Mittag-Leffler function, Eα, is a generalization of the exponential function and for α = 1 

it is the exponential function. The Mittag-Leffler function is well-behaved from the start, i.e. 

for all t ≥ 0, as can be seen in Figure 10.

The Mittag-Leffler function with a transformed argument can be approximated:
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eα t = Eα −tα
exp −tα

Γ 1 + α ≈ 1 − tα

Γ 1 + α ,    t 0

t−α

Γ 1 − α ,    t ∞
. (12)

The approximation for small time is a stretched exponential, while for large values of t the 

Mittag-Leffler function approaches a power law (Mainardi, 2014).

Combining the approximation of eqn (12) for large time with (11) gives (10), the fractional 

Kelvin-Voigt relaxation modulus, which is thus seen to be the large time approximation to 

the fractional Zener model.

3.5 Relaxation spectrum

In the decomposition of the relaxation modulus of eqn (5) the first term characterizes the 

left-hand spring directly across the terminals in Figure 7, and the sum is for all the series 

connected springs and dampers.

Let the sum of eqn (5) be decomposed into

σSR t = μe + σSR, τ t , (13)

and decompose the time-varying part.

3.5.1 Relaxation time-spectral function—The continuous generalization of the 

multiple relaxation model is:

σSR, τ t = σSR, τ 0 ∫
0

∞

Rσ τ e−t/τ dτ, (14)

where σSR,τ(0) is a non-negative constant and Rσ(τ) is a non-negative relaxation spectrum.

In (Gross, 1947; Caputo and Mainardi, 1971) as well as in (Mainardi, 2010b), it has been 

shown that for the fractional Zener model, the relaxation time-spectral function of eqn (14) 

is:

Rσ τ = 1
πτ

sin απ
τ /τσ

α + τ /τσ
−α + 2 cos απ

sin απ
πτσα

⋅ τα − 1   for   τ /τσ ≪ 1

sin απ
πτσ−α ⋅ τ−α − 1   for   τ /τσ ≫ 1

, (15)

and σSR,τ(0) = μe((τε/τσ)α−1). The exact result of (15) inserted back into (14) yields the 

relaxation function of the fractional Zener model of (11).

Now consider the result for τ/τσ ≪ 1, i.e. let Rσ(τ) ∝ τα−1, a power law distribution. One 

rationale for introducing this function is that the power law distribution is frequently found 

to describe multi-scale and fractal systems in biological systems (West et al., 1999; 
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Carstensen and Schwan, 1959). When inserted back into eqn (14), (including the constant 

μe) this yields the relaxation function of the fractional Kelvin-Voigt model of eqn (10). 

Similarly, the microchannel flow model (Parker, 2014; Parker et al., 2016; Parker et al., 
2018a) uses a continuous distribution of relaxation time constants, consistent with Figure 7, 

where the time constants are linked by Poiseuille’s Law to the flow within a fractal 

branching vasculature and fluid channels. Under appropriate assumptions, the result 

resembles the fractional Kelvin-Voigt or the spring-pot, Figures 8 middle and right.

3.5.2 Relaxation frequency-spectral function—An alternative decomposition is the 

frequency-spectral function decomposition is

σSR, τ t = ∫
0

∞

Sσ Ω e−stdΩ, (16)

where Ω = 1/τ represents relaxation frequencies within a distribution. It is given by the 

relaxation spectrum, which derives directly from the time-spectral function (Mainardi, 

2010a). For the fractional Zener model of eqn (15), this can be represented as (Nasholm and 

Holm, 2011):

Sσ Ω = σSR, τ 0 Rσ 1/Ω
Ω2 σSR, τ 0

sin απ
πτσ−α ⋅ Ωα − 1   for   Ωτσ ≪ 1

sin απ
πτσα

Ω−α − 1   for   Ωτσ ≫ 1
. (17)

The result may be simplified to describe a fractional Kelvin-Voigt model over a band-limited 

region, μ ω = μe + iω α, by letting the relaxation frequencies be spread evenly over the 

desired frequency range on a logarithmic axis:

Ωn = 1/τn = Δ ⋅ Ωn − 1 . (18)

The logarithmic spread of relaxation frequencies implies that dΩ ∝ Ω in eqn (16) (Nasholm, 

2013). Combining that with the asymptotic result for Ωτσ ≪ 1 from (17) implies that the 

effective individual elastic moduli should vary according to (Holm, 2019e):

μn ∝ Ωα . (19)

An example with four relaxation processes (N = 5) is shown in Figure 11. Here the ratio is Δ 

= 6 between the relaxation frequencies, from the starting value Ω1 = 20 to Ω4 = 4320. The 

relaxation frequencies are shown by stars in the figure. In the range from the lowest to 

almost the highest relaxation frequency, one cannot really distinguish the elastic modulus 

from that of a power law. This demonstrates that a multiple relaxation model can be just as 

good as a power law over such a limited frequency range.
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3.6 Fractional derivative wave models

The complex wave number in linear wave propagation is (Holm and Holm, 2017):

k2 ω = ρ0ω2

μ ω , (20)

where k has a real and imaginary part k = β − iα as described in more detail in Appendix 1. 

Each of the classical and multiple relaxation models considered in the previous sections 

prescribe a frequency dependence of the real and imaginary parts of μ ω , thus determining 

the complex behavior of wavenumber, k. From this, the real and imaginary parts of k are 

linked to the phase velocity and attenuation coefficient, respectively (Szabo and Wu, 2000; 

Szabo, 2014; Holm, 2019a). The physical basis for this wave-based propagation model is 

attenuation being power law absorption, which, for shear waves is αs(ω) = α0 |ω|y in which 

typically 0 ≤ y ≤ 2. Application of this model to data for shear and longitudinal wave 

absorption and dispersion for viscoelastic media was published by Szabo and Wu (2000), 

and earlier, for power law media (Szabo, 1994, 1995) including the cases where 0 ≤ y ≤ 1. 

The general relations are reviewed in Appendix 1. A power law model which relates the 

elastic constant and a viscosity through causality successfully describes the observed 

behavior of longitudinal pressure waves in soft tissue as well as many other fluids and 

materials (Nachman et al., 1990; Szabo, 1993, 1994, 1995; He, 1998; Szabo and Wu, 2000; 

Waters et al., 2000; Norton and Novarini, 2003). This model was applied to magnetic 

resonance elastography (MRE) by Sinkus et al. (2007). This power law model has been 

shown to be equivalent to the fractional Kelvin-Voigt model with y = α + 1 for 1 < y ≤ 2 and 

small values of ωτ. For large values of ωτ, the form is the same as the fractional Kelvin-

Voigt model but with y = 1 − α/2 (Holm and Sinkus, 2010; Holm, 2019d)

As in eqn (9), for a power law dynamic modulus μ ω ∝ ωα, the attenuation (the imaginary 

part of k) will mostly follow ωα+1. The phase velocity on the other hand will, to a first 

approximation, follow a constant plus a term which is proportional to cos(πα/2)ωα, 

meaning that there will be no dispersion in the special case of α = 1(Szabo, 1994; Szabo, 

2014; Holm, 2019d).

4. Recommendations

Let us assume that a research project has carefully measured some soft tissue, small strain 

response over a limited range of time or frequencies. For example the soft tissue can be 

measured in sinusoidal steady state shear wave excitation, transient shear wave excitation, or 

in a stress relaxation protocol. Which rheological model out of many should the researcher 

consider fitting the results into a meaningful framework? Our advice is to avoid classical 

single relaxation models, tempting and familiar as they may be, because the support for a 

single relaxation mechanism and its characteristic behavior over reasonable frequency spans 

is lacking. Conversely, the historical evidence and rationale for multiple relaxation 

mechanisms is strong and the associated models are simple yet remarkably predictive. The 

ladder of complexity in this class is straightforward as indicated in eqn (9), for a two-

parameter fit, the spring-pot, Figure 8 (left), can be considered for large values of ωτ. For a 

three-parameter fit, the KVFD model, Figure 8 (center), where μe is more significant, may 
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be more appropriate. For a more general approach, the four-parameter fractional Zener 

model, Figure 8 (left) is well-supported, and simplifications of this to the other two are 

straightforward. For completion we summarize the limits for the fractional Zener model 

here:

• The asymptotes of the shear wave phase velocity, cph, are (Holm, 2019d):

cpℎ

= c0 1 + 1
2cosπa

2 ωτε
α − ωτσ

α , ωτε
α ≪ 1

∝ ωα/2, ωτσ
α ≪ 1 ≪ ωτε

α .

= c0 τε/τσ
α/2, 1 ≪ ωτσ

α

(21)

• The asymptotes of the attenuation are:

αk

∝ ω1 + α, ωτε
α ≪ 1

∝ ω1 − α/2, ωτσ
α ≪ 1 ≪ ωτε

α,

∝ ω1 − α, 1 ≪ ωτσ
α

(22)

where αk is used for the imaginary part of the wavenumber in order to distinguish it from 

the model order, α. The upper of the asymptotic expressions, valid for (ωτε)α ≪ 1, may be 

important in practice. However, the middle range, second set of terms, are sometimes 

suitable for soft tissues in the common elastography range of 40 – 1000 Hz. In that case, 

phase velocity, group velocity, attenuation, and shear modulus are all described by only two 

parameters and are simply interrelated (Parker et al., 2018b).

The fractional Kelvin-Voigt model has τσ = 0 and therefore shares the two upper asymptotes 

with the fractional Zener model as the range of the middle asymptote will extend to infinite 

frequency.

Simplifications of these, especially where the spring elements are out of range compared to 

the fractional term, lead to the two simpler fractional models, the spring-pot and the 

fractional Kelvin-Voigt, as suitable for the range of data encountered in shear wave 

elastography. Compare the similarity of time domain behavior of Figure 10 to the data of 

Figure 1. Similarly, the same model behaviors plotted in the frequency domain in Figure 9 

compare favorably with the observed behavior in Figures 2 – 4. As indicated in the 

compilation of data in Figure 5, which extends over four decades of frequency, the 

measurements are more likely to be better described by the fractional models than the 

multiple relaxation approach illustrated in Figure 11, which fits over a limited bandwidth 

and deviates from power law behavior elsewhere.

5. Discussion

5.1 Calculus vs. rheology

We mention for the purpose of completion that it is not always necessary to have a well-

supported rheological model, particularly for very narrow bandwidth waves. From a 
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mathematical point of view, the result in calculus known commonly as the Taylor series or 

Maclaurin series expansion states that any well-behaved function around a particular point 

can be represented by a sum that includes first order and higher order derivatives. So, in 

principle, the dispersion of shear wave speed, c(ω), around a particular frequency ω0, can be 

approximated to first order as c(ω) = c(ω0) + (ω−ω0)dc/dω, and similar relations hold for 

other parameters such as the shear modulus and attenuation. This approximation will be 

valid over some limited bandwidth around ω0. For weakly attenuating materials such as pure 

gelatin phantoms, it could be been assumed that c is constant and attenuation increases 

linearly with frequency over some limited bandwidth. In this case the wave equation and 

Kramers-Kronig relations are not strictly satisfied, only as first order approximations 

(Blackstock, 2000).

5.2 Previous comparisons

While considerable effort has been expended towards obtaining repeatable measurements 

and determining good practices for shear wave elastography (RSNA/QIBA, 2012; Hall et al., 
2013; Palmeri et al., 2015) there is less agreement on which models are the most applicable. 

Because of variety of types of shear viscoelastic measurements, especially for wave-based 

methods, data extraction is not as straightforward as with mechanical and testing and MRE. 

Our goals in this work has been to take a broader perspective, based on available data and 

models, and provide recommendations for viscoelastic shear measurements of soft tissues 

such as the liver.

Here we briefly review shear model comparisons from the elastography field. The early 

study by Catheline et al. (2004) showed that the Kelvin-Voigt model was better fit to shear 

wave data than the Maxwell model for a phantom and bovine muscle in the 50 to 500 Hz 

range. Kiss et al. (2004) demonstrated good agreement between their fractional Kelvin-Voigt 

model and normal and thermally ablated canine liver and data obtained from a dynamic 

mechanical testing from 0.1 to 400 Hz. Klatt et al. (2007)) fit five models (Maxwell, Kelvin-

Voigt, Zener, Jeffreys, and fractional Zener) to four points of MRE data (25 to 63 Hz) and 

slightly favored the Zener model. Sinkus et al.(2007) in examining breasts and breast 

phantoms with MRE, also with 4 data points (65 to 100 Hz), found that the relationship 

between the real and imaginary shear wave G constants strongly supported a wave power 

law model not a Voigt model. Bercoff et al. (2004) presented a theory for shear wave 

generation accounting for diffraction induced by the acoustic radiation force method; 

therefore, they indicated that correction of attenuation data was necessary before utilizing a 

rheological model. Urban and Greenleaf (2009) applied a radial diffraction correction to 

their muscle fiber data (50 to 600 Hz) and found the power law model worked reasonably 

well and was similar to the Kelvin-Voigt model over the range of parameters for their 

experiments. Kumar et al. (2010) in their study of Maxwell, Kelvin-Voigt, and fractional 

Kelvin-Voigt models applied to measurements of Young’s modulus from polyacrylamide-

based phantoms found that only the fractional KV model matched their data. Urban et al. 
(2011) tested five models (Maxwell, generalized Maxwell, Zener, Kelvin-Voigt, and 

fractional Kelvin-Voigt) and a finite element program against time domain data for a sphere 

embedded in viscoelastic phantoms; however, the differences among the models for this time 

domain experiment were slight. Wex et al. studied preservation times of porcine liver and 
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obtained good agreement between the fractional KV model and rheometer data from 0.1 to 

10 Hz. Rouze et al. (2018) compared their shear wave measurements from viscoelastic 

phantoms, corrected for diffraction and other effects, to a power law model and found the 

absorption exponent to be close to 1 (y ~ 1) inconsistent with the Kelvin-Voigt model 

previously used (Rouze et al., 2016). Finally, Parker, et al. (2018b) in a follow-on shear wave 

study (see Figure 2) on beef liver using a variety of methods (from 40 to 380 Hz) found best 

agreement with the high frequency approximation of the fractional Kelvin-Voigt model with 

a power law of approximately 0.2.

5.3 Sensitivity of parameters

In fitting a model to data, there are two categories that influence confidence intervals. The 

first is the noise or errors in the basic measurements. Errors in estimates of the shear wave 

amplitudes, arrival times, peaks, and related measures will propagate into uncertainties in 

parameter fitting (Urban et al., 2009; Elegbe and McAleavey, 2013).

A second important category is the number of parameters that are being simultaneously 

estimated. It is generally true that there are many models for which more than two 

parameters are calculated simultaneously. In some of these problems the model equations 

are linear with respect to the parameters and for these the calculation procedure is available 

in any number of statistics texts (Draper and Smith, 1966) and is known as multiple linear 

regression. More generally, the joint confidence region for all the parameters becomes an 

ellipsoid in P dimensional space for P parameters (Scheffé, 1959). Because the confidence 

intervals of the P unknown parameters are dependent (Schwartz, 1980), one can be more 

confident with fewer parameters. This matches with the general sense of Occam’s razor, 

favoring the simplest explanation for a phenomenon. In the case of rheological models of 

tissue, this favors the simplest models of Figure 8, the fractional Kelvin-Voigt, and in some 

cases, the fractional spring-pot.

5.4 Phantoms

We make no specific recommendations for rheological models of tissue-mimicking 

phantoms, except to note that the composition of a phantom, its components and 

morphology and the manufacturing or “curing” steps employed, will all play a role in 

determining the complex modulus. For some phantoms (Sinkus et al., 2007; Kumar et al., 
2010; Coussot et al., 2009) and for the QIBA phantom studies (Rouze et al., 2018), the 

fractional Kelvin-Voigt model is suitable. Given all these factors, it is difficult to make any 

generalizations about phantoms or to prefer those models shown in Figures 7, 8, or 9. In fact, 

the oil-in-gelatin models of steatosis (fat accumulation in the liver) that were analyzed by 

Parker et al. (2018a) were found to have a reasonable fit to the theory of Christensen (1969) 

for composite materials. He applied a principle of minimum strain energy in a deformed 

elastic medium with specifically spherical inclusions. This work found simplifications for 

the effective shear modulus in the limiting case of the volume fraction of spheres being 

small or large; the asymptotic approach to volume fraction of zero or one. A more recent 

overview of different types of composites, inclusion shapes, and results are given in Chapter 

9 of Lakes (Lakes, 1999c). Composite materials are one class of possible types that may 
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require rheological models beyond those recommended in Section 4 for normal soft tissues. 

Case-by-case assessment is likely required and this subject is beyond the scope of this paper.

6. Conclusion

Nearly 2500 years ago, the Greek philosopher Heraclitus of Ephesus proposed a universal 

model of rheology: πάντα ῥεῖ (panta rhei) “everything flows” (Beris and Giacomin, 2014) 

and, in fact, soft tissues under shear stress will deform in characteristic ways. We argue that 

single relaxation models, simple as they may be and familiar from our first exposure to 

stress and strain lectures, are not appropriate for modeling the response of soft tissues to 

small strains in the common range of elastography techniques. Instead, multiple relaxation 

models are recommended. These can take numerous equivalent forms in the time domain or 

frequency domain, from discrete series representing several parallel elements, to power law 

behaviors with as few as two parameters. In particular, the fractional Zener model is 

compact and meaningful, in the sense that its parameters can be linked to mathematical steps 

that summarize a superposition of relaxation mechanisms from a power law distribution, one 

of the most common behaviors observed in the natural world (Newman, 2005) across many 

phenomena. For soft tissue, the multi-scale nature of the tissue, extending from molecular 

chains to cellular walls to fluid channels, connective tissues, and larger structures such as 

arterial walls, likely combine to form the extended relaxation spectra. However, further 

research is needed to isolate and quantify the contributions in specific tissues.

The question of tissues in pathological states also requires further investigation at this time; 

we make no assertion that the fractional Zener and KVFD models will hold for all tissues 

affected by advanced diseases or for anisotropic tissues such as muscles and tendons. This is 

another rich area needing further study, motivated by the useful empirical changes in shear 

wave speed with pathology that have been noted in elastography studies (Barr et al., 2015).
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APPENDIX 1:: Shear wave speed and attenuation

The simplest way to view the interrelationship between rheological models and shear wave 

speed and attenuation is by considering one-dimensional shear wave propagation in a linear, 

isotropic, homogeneous, infinite medium. In summary, using the complex exponential to 

represent a plane wave at frequency ω, the solution to the lossless wave equations for a 

disturbance traveling in the +x direction is

u x = Ae−i kx − ωt , (23)

where u(x) is displacement, A is an amplitude, i is the imaginary unit, and k is the 

wavenumber. Furthermore,
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k = ω
c (24)

and

cs = μ
ρ ≅ E0

3ρ , (25)

where cs is the wave speed, ρ is the density, μ is the shear modulus, and E0 is the Young’s 

modulus, the approximation μ = E0/3 valid for nearly incompressible materials. Additional 

details can be seen in Graff (1975b), or summarized for elastography in Parker et al. (2011). 

The important point is that in this purely elastic, lossless propagation, there is only one 

velocity c for all frequencies and no distinction in speeds observed between monochromatic 

narrowband and broadband shear wave disturbances.

The situation changes when some loss mechanism enters the wave equation, usually through 

the constitutive equations of the material that is supporting the shear waves. In this case, the 

speed cs changes with frequency (a phenomenon called “dispersion”) and the concept of 

group velocity is introduced, related to the slope, or derivative, of phase velocity cp. An 

excellent treatment is given in section 1.6.1 of Graff (1975a).

Lossy or viscoelastic materials like tissues can be characterized by their stress-strain 

relations leading to complex E(ω) and μ(ω) (Lakes, 1999b). In the viscoelastic case, the 

solution to the lossy wave equation still resembles eqn (23), but now k is complex: its real 

component is still related to ω/cp and its imaginary component defines an exponential decay 

with distance. Accordingly, we write a general form for complex, frequency-dependent shear 

modulus (Lakes, 1999b; Zhang and Holm, 2016):

μ* ω = μd ω + iμi ω , (26)

where μ* is the complex modulus, μd is the dynamic modulus, and μi is the loss modulus. So 

the propagation constant

k = ω
μd ω + jμi ω

ρ

= β − iα = ω
cp

− iα,
(27)

and the wave now propagates as

u x = Ae−αxei ωt − βx

= Ae−αxeiω t − x
ω/β .

(28)

The latter form emphasizes that this is a rightward (+x) propagating wave with speed of cp = 

ω/β. Now sorting through the real and imaginary parts of eqn (27) and denoting

μ = μd
2 ω + μi2 ω , (29)

we find that:
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β = ω ρ
μ

1
2 1 + μd ω

μ
1/2

. (30)

The phase velocity is a function of frequency

cp = μ
ρ

1
2 1 + μd ω

μ
−1/2

, (31)

and the attenuation coefficient has a leading term directly proportional to the first power of 

frequency (even though more complicated dependencies on frequency remain hidden in μd):

α = ω ρ
μ

1
2 1 − μd ω

μ
1/2

. (32)

Particular forms of these for some tissue models can be found in Carstensen and Parker 

(2014), and these simplify for power law behaviors (see eqn (21) and (22), Parker et al. 
(2018b), and Holm (2019d)). Equations (9), (31), (32) provide a bridge of equivalency 

between the mechanical and wave parameters.

In more general terms, the constraints of causality impose specific inter-relationships 

between attenuation and phase velocity as a function of frequency. These can be captured in 

the form of Kramers-Kronig relations (Szabo, 1993, 1994, 1995; Szabo and Wu, 2000; 

Waters et al., 2000; Cobbold, 2007), and through Hilbert transform relations (Bracewell, 

1965).

APPENDIX 2:: Glossary

Symbol Name Comments

E0 Young’s modulus Standard linear elastic solid stiffness, related to shear wave 
speed (squared).

E(ω) Complex modulus Viscoelastic and frequency-dependent stiffness measured by 
sinusoidal excitation in rheology; imaginary term related to 
loss, attenuation. Sometimes called dynamic modulus.

E′ (ω) Storage modulus Real part of E(ω).

E″(ω) Loss modulus Imaginary part of E(ω).

μ(ω), G(ω) Complex shear modulus Related to shear wave speed (squared); real and imaginary 
parts termed “storage” and “loss” moduli, respectively. 
Approaches E(ω)/3 for an incompressible elastic media.

cs Shear wave speed In an elastic medium

cp Shear wave phase velocity Related to μ(ω) and E(ω) by eqn (31).

αk Shear wave attenuation Loss, related to μ(ω) and E(ω) by eqn (32).

βk Shear wave dispersion Dispersion related to the real parts of μ(ω) and E(ω).

σSR (t) Stress relaxation vs. time Standard step response test; can be Fourier-transformed and 
curve-fit to estimate E(ω) and μ(ω).

σIR (t) Impulse response of tissue in shear Idealized linear response; the time derivative of the step 
response. Its Fourier transform is μ(ω).

σSR ω Fourier transform of σSR (t) Stress relaxation modulus.
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Symbol Name Comments

σIR ω iω ⋅ σSR ω = μ ω Impulse response is the derivative of step response.

iω Fourier transform of d/dt operator First temporal derivative operator.

α Fractional exponent Exponent used in fractional Kelvin-Voigt and Zener models.

(iω)α Fourier transform of fractional 
derivative

important in fractional derivative and power law models; can 
be derived from multiple relaxation models

y Power law exponent Exponent used in power law models.

η Viscosity Viscosity parameter used in viscoelastic models.

τ Relaxation constant Relaxation parameter used in fractional Kelvin-Voigt, Zener 
and multiple relaxation models (τ = η/μ).

ρ Density Density used in wave equations and models.
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Figure 1. 
Stress relaxation results from two liver samples. Vertical axis: measured stress, horizontal 

axis time in seconds after step compression, on a log-log scale. The behavior is consistent 

with a power law relaxation. Reprinted from Biorheology, vol. 37, Liu and Bilston, “On the 

viscoelastic character of liver tissue: experiments and modelling of the linear behavior,” pp. 

191–201 (2000).
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Figure 2. 
Shear wave speed cs(f) data extracted from Ormachea et al. (2016) from bovine liver 

samples, including estimates derived from crawling waves (CWS), single tracking line shear 

wave estimators (STL), and curve-fit based on stress relaxation results (MM). The nearly 

linear (on log-log scale) combined results are consistent with the concept of power law 

behavior.
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Figure 3. 
Storage modulus E′(ω) : The experimental data and the fitted functions according to the 

spring-pot model are represented by symbols and lines, respectively. The data obtained by 

the rheometer tests and the in vivo examinations represent mean values. The error bars 

correspond to the standard deviation. Rheometer data were separately fitted once within the 

entire displayed frequency range and secondly within the dynamic range of multifrequency 

MRE. Reprinted from Biorheology, vol. 47, Klatt et al., “Viscoelastic properties of liver 

measured by oscillatory rheometry and multifrequency magnetic resonance elastography,” 

pp. 133–141 (2010).
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Figure 4. 
Magnitude of Young’s modulus E0(f) = 3μ(f) in fresh bovine samples and those altered by 

diathermy. Data from a rheological instrument are shown in symbols, and theoretical fits to a 

fractional derivative model is shown as solid lines. Reprinted from Physics in Medicine and 
Biology, vol. 49, Kiss et al., “Viscoelastic characterization of in vitro canine tissue,” pp. 

4207–4218 (2004).
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Figure 5. 
Compilation of soft tissue data from different publications (see text for specific references). 

Vertical axis, estimates of shear modulus in Pa for liver tissues. Horizontal axis, frequency of 

measurement. The general trend shows increasing values on a log-log plot extending over 

four decades of frequency; a power law would be represented as a straight line in log-log 

space.
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Figure 6. 
Classical models (left to right): Zener, Kelvin-Voigt, Maxwell, with constants μ, μe, η and 

associated time constants τσ and τε.
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Figure 7. 
Maxwell-Wiechert model.
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Figure 8. 
Fractional Zener and Kelvin-Voigt models, and spring-pot model.
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Figure 9. 
Dynamic modulus for the three fractional models where τ = τε is a characteristic time 

constant. The spring μ is set to 10 Pa for fractional models consistent with a low value often 

estimated in studies. The spring is increased to 700 Pa in the linear model to demonstrate the 

transition and asymptotes inherent in that model.
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Figure 10. 
Stress relaxation response (or relaxation moduli) of the classical Zener model with an 

exponential time response (solid line) and for the fractional Zener model for α = 0.2 (dashed 

line), which asymptotically approaches a power law function.
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Figure 11. 
Power law dynamic response with power α = 0.2 (fractional spring-pot) from Figure 8 and 

the sum of a constant + four relaxation processes where the relaxation frequencies are spread 

evenly in log-frequency. The characteristic time constant is τ = τε.
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