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Abstract

Natural killer (NK) cells, the primary effector cells of the innate immune system, utilize multiple 

strategies to recognize tumor cells by (1) detecting the presence of activating receptor ligands, 

which are often upregulated in cancer; (2) targeting cells that have a loss of major 

histocompatibility complex (MHC); and (3) binding to antibodies that bind to tumor-specific 

antigens on the tumor cell surface. All these strategies have been successfully harnessed in 

adoptive NK cell immunotherapies targeting cancer. In this review, we review the applications of 

NK cell therapies across different tumor types. Similar to other forms of immunotherapy, tumor-

induced immune escape and immune suppression can limit NK cell therapies’ efficacy. Therefore, 

we also discuss how these limitations can be overcome by conferring NK cells with the ability to 

redirect their tumor-targeting capabilities and survive the immune-suppressive tumor 

microenvironment. Finally, we also discuss how future iterations can benefit from combination 

therapies with other immunotherapeutic agents.
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A lymphocyte of the innate immune response, natural killer (NK) cells are phenotypically 

defined by the absence of CD3 and the presence of CD56 on their surface [1,2]. 

Functionally, they resemble CD8+ cytotoxic T cells [3]. NK cells derive their name from 

their ability to spontaneously kill their targets without the need for a prior encounter of the 

antigen, as they have readily available lytic granules that can activate within minutes [4], 
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unlike their T cell counterparts. NK cell targets include stressed, virally infected, and 

transformed cells [5].

The ability of NK cells to target tumor cells makes them attractive effector cells for cancer 

immunotherapy approaches. When encountering their targets, NK cells mediate lysis 

through several mechanisms as follows:

a. Fas ligand on the surface of NK cells binds to its target death receptor on the 

malignant cell, leading to programmed cell death.

b. Preformed granules within their cytoplasm (containing the cytotoxic proteins 

perforin and granzyme B) [6,7] form pores on the surface of the malignant cell 

upon their release [7-12].

c. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), induced by 

IFN-γ, binds to tumor receptors (eg, DR4, DR5, TRID, TRAIL-R4, and OPG) 

[13], resulting in apoptosis of the cancer cell [14].

In addition, NK cells are the main effector cell participating in antigen-dependent cell-

mediated cytotoxicity (ADCC) by recognizing IgG antibodies bound on the tumor cell 

surface [15], and they release proinflammatory cytokines, such as IFN-γ.

Although multiple cytolytic mechanisms suggest redundancy, a preference for distinct NK 

cell killing strategies appears to predominate [16]. Transformed NK cells, like the cell line 

NK92, favor lytic granule-mediated cytotoxicity. In contrast, primary NK cells mainly rely 

on Fas ligand (FasL)-mediated apoptosis [17] since lytic granules become depleted in 

primary cells, which necessitates that they rely on upregulated Fas ligand to mediate killing 

[18].

NK cells are also polyfunctional and capable of secreting multiple cytokines that help 

orchestrate immune responses. Besides the expression of FasL and TRAIL and secretion of 

perforin and granzyme B, NK cells produce IFN-γ during activation. This cytokine helps 

shape a subsequent antitumor immune response, exerts antiproliferative effects on malignant 

cells, and activates macrophage killing of phagocytosed tumor cells [10,19,20]. NK cells 

also secrete TNF-α upon binding of multiple receptors [21] and are known to cooperate with 

IL-12 to increase the secretion of IFN-γ [22]. Both IFN-γ and TNF-α act to stimulate 

dendritic cell (DC) maturation upon NKp30 receptor binding [23]. Hence, IFN-γ, TNF-α 
FasL, and perforin/granzyme B all play a part in NK cell tumor surveillance [9,24,25].

NK cells express a complex array of receptors, including the cytokine receptors (IL-2R, 

IL-12R, IL-15R, IL-18R, IL-21R) [26], which allow them to respond to cytokines secreted 

by cells they typically interact with including T cells, dendritic cells, macrophages, and bone 

marrow stromal cells. NK cells also express chemokine receptors, including:

i. CXCR1 allowing colocalization with DCs, T cells, and neutrophils

ii. CXCR2 allowing colocalization with neutrophils

iii. CXCR3 allowing colocalization with T cells
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iv. CXCR4, CCR5, allowing colocalization with immature dendritic cells and 

proinflammatory monocytes, Th1 T cells, and cytotoxic T cells [27]

Notably, however, various groups have reported different patterns of chemokine receptor 

expression on NK cells [28,29]. In addition, NK cells express the activating (KIR2DL4, 

KIR2DS1, KIR2DS2, KIR2DS3, KIR2DS4, KIR2DS5, KIR3DS1, NKG2C, NKG2E, 

NKG2D, NCRs, NKp30, NKp44, NKp46, NKp80, DNBAM-1, 2B4) and inhibitory 

(KIR2DL1, KIR2DL2/3, KIR2DL5, KIR3DL1, KIR3DL2, NKG2A, LILR, KLRG1) 

receptors [4,30] discussed in the sections below.

The NK-mediated killing of tumor targets is the result of the net signal from the ligation of 

activating and inhibitory receptors within the NK cell synapse [31]. NK cells express several 

inhibitory and activating receptors [32]. The study of NK cell receptors was key to the 

understanding of these innate effectors; the basic biology underlying this immune cell was 

only understood once their various activating and inhibitory receptors (and their properties) 

became known [22]. Understanding the biology of these receptors is also critical to 

harnessing the potential of these cells for cancer immunotherapy.

NK cells are predominantly controlled by inhibitory receptors that prevent activation 

(typically by activating receptor signaling)—a “fail-safe” to protect healthy cells from 

unwanted killing [4]. Dominance of inhibitory receptors occurs because they cluster more 

rapidly than activating receptors, and their blockade of activating receptors occurs early in 

the signal cascade [33]. There is evidence that this inhibition may be localized: only 

preventing activation by co-clustered receptors [34]. Activation of NK cells relies on an 

absence of inhibitory receptor engagement and concomitant engagement of multiple 

activating receptors [22]. Except for CD16, no other receptor can sufficiently activate NK 

cells by itself [34]. Consequently, activation and subsequent killing by NK cells is a 

coordinated effort, resulting in more signaling from activating receptors and less signaling 

from inhibitory receptors (see Figure 1) [34].

TARGETING THE MALIGNANT CELL: AUTOLOGOUS NK CELLS AND 

ACTIVATING LIGANDS ON TUMOR CELLS

NK cell-activating receptors include activating killer immunoglobulin-like receptors (KIRs) 

[35]; NKG2D [36]; the natural cytotoxicity receptors (NCRs) NKp46, NKp44, and NKp30 

[37]; the nectin and nectin-like receptors CD226, TIGIT, CRTAM, and CD96 [38]; and 

NKp80 [39]. These receptors recognize MHC, NKG2D ligands (MICA, MICB, ULBP), 

NCR ligands (heparan sulfate glycosa-minoglycans, B7-H6, galectin-3, NKp44L), nectin 

and nectin-like proteins, and activation-induced C-type lectin, respectively.

In contrast to inhibitory receptors (discussed in the section on non-self-recognition below), 

where the receptors themselves have immunoreceptor tyrosine-based inhibitory motifs, most 

activating receptors need to associate with immunoreceptor tyrosine-based activation motif 

(ITAM)-containing proteins [34]. Two of the most understood ITAMs are DAP10 (which 

associate with NKG2D) and DAP12 (which associate with activating KIRs). 
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Phosphorylation of these ITAMs leads to signaling through molecules such as PLCγ2, Vav1, 

PI3K, Syk, and Ras [34,40].

Ligands for these receptors are upregulated in cancer cells (see Figure 1) [41]. Among 

activating receptors, NKG2D ligands are perhaps the best understood: they are upregulated 

during cellular stress (characteristic of malignant transformations) [42] and are otherwise 

absent in healthy tissue. MICA/MICB expression has been observed in several malignancies

—including myeloma, leukemia, cervical cancer, and glioma [43]. UL16-binding proteins 

(ULBPs), initially identified for their ability to bind the UL16 protein expressed by 

cytomegalovirus-infected cells, bind strongly to NKG2D and DAP10, triggering multiple 

cascades that lead to NK cell activation and cytotoxicity [44]. ULBP1 to ULBP6 are 

expressed in several cancers, including multiple leukemias [45-54], colorectal cancer [55], 

Ewing sarcoma [56], gastric cancer [57], non-small-cell lung cancer [58], melanoma [59], 

nasopharyngeal cancer [60], cervical cancer [61], pediatric brain tumors [61], and 

osteosarcoma [62].

Mechanisms involved in upregulating ligand expression in malignancy vary, but events 

associated with tumorigenesis play a prominent role. Cellular senescence signals parallel 

expression of NKG2D ligands—following initiation of replicative senescence and DNA 

damage, MICA and ULBP2 are upregulated [63]. Genomic damage is thought to increase 

the presence of DNA in the cytoplasm, activating cyclic GMP-AMP synthase, which 

consequently induces expression of NKG2D ligands [64].

NK cell ligand expression can also indirectly result from other responses to malignancy. For 

example, increased protein production in cancer can lead to impaired folding, causing 

endoplasmic reticulum stress [65]. Endoplasmic reticulum stress has been shown to 

upregulate B7H6 mRNA and surface expression via proteins involved in the unfolded 

protein response [66].

Of interest, these ligands are expressed by some cancer stem cell populations. There is 

increasing evidence that NK cells preferentially target putative tumor-initiating populations, 

which seem to preferentially upregulate MICA/B [67]. NK cells lyse cancer stem cells of 

squamous cell carcinoma and glioblastoma in co-culture [68,69]. Stem cell differentiation is 

associated with decreased susceptibility to NK cell attack [70]. This mechanism is not the 

same across tumors, however; a recent study reports that leukemia stem cells can evade NK 

cells because they lack NKG2D ligand expression [71].

Their prognostic value highlights the importance of NKG2D ligands in immune-mediated 

rejection: a recent meta-analysis of 19 studies featuring more than 2500 patients and 10 

different tumor types shows that patients with high MICA/B expression had significantly 

longer overall survival than their low-expressing counterparts [72]. Conversely, NK cell 

dysfunction appears to be a contributing factor for the development of malignancy since 

several functional deficiencies in NK cells have been observed in hematologic malignancies 

and solid tumors [73-75]. Harnessing autologous/patient-derived NK cells for 

immunotherapy, therefore, requires stimulation and/or ex vivo manufacture in non-immune-

suppressed environments. Moreover, since NK cells comprise only 10% of circulating 
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lymphocytes, obtaining sufficient autologous NK cells for clinical use is another reason why 

in vitro expansion is required [76]. Initial efforts focused on IL-2 for the expansion of 

“lymphokine-activated killer cells,” which were shown to be capable of killing tumors 

otherwise resistant to isolated NK cells [77]. However, no clear benefit was observed in a 

subsequent randomized phase III clinical trial [78].

Various manufacturing protocols for expanding autologous NK cells have since been 

developed [76], and these products have shown success in preclinical studies [79,80]. For 

example, patient-derived NK cells can be expanded 1000-fold in 3 weeks and can lyse breast 

cancer cell lines as well as allogeneic and autologous patient-derived breast cancer cells. 

These expanded NK cells also prevented tumor establishment in xenograft murine models 

[79].

Transplanting these preclinical results to human clinical trials has revealed that over the past 

5 years, clinical studies have shown that adoptively transferred NK cells are safe. However, 

such studies have also reported very limited antitumor responses in patients with cancer, 

although some anecdotal responses have been reported. In 1 such study, a patient with 

inoperable nonsmall-cell lung cancer achieved tumor control after receiving multiple 

infusions of ex vivo activated NK cells. However, it was difficult to determine the direct 

therapeutic effect of the NK cells since the patient also received radiochemotherapy and 

nivolumab in combination with the NK cells [81]. In contrast, in another phase I clinical 

trial, ex vivo expanded autologous NK cells were administered intraventricularly to children 

with recurrent medulloblastoma and ependymoma [82]. In this trial, no toxicities were 

observed, but all except 1 patient still had progressive disease [82]. In another phase I trial, 

autologous NK cells expanded with OK432, IL-2, and FN-CH296-induced T cells were 

administered to patients with advanced or metastatic gastrointestinal cancer, and the results 

reflected the previously published experience using LAK cells [83]. In this trial, NK cells 

were successfully expanded between 500- and 4000-fold from patients who had previously 

failed standard therapies and were infused without notable adverse events. While the infused 

NK cell products expressed the appropriate markers and demonstrated tumor lytic abilities in 

vitro, no clinical responses were observed [83]. In summary, over the past 2 decades, most 

clinical trials published using autologous NK cells to treat various malignancies have failed 

to demonstrate sustained antitumor effects in vivo [84-87].

Examples of active trials using autologous NK cells are listed in Table 1.

TARGETING NON-SELF: ALLOGENEIC NK CELLS AND ALTERNATIVE 

CELL SOURCES

As previously discussed, the activation of NK cells relies on the balance between activating 

and inhibitory receptors, where the engagement of NK cells through activating receptor 

ligands dominates over any negative signals from self MHC. In cancer cells, MHC 

expression is downregulated as tumors attempt to escape the cytotoxic T cell response, 

thereby rendering them susceptible to NK cell-mediated lysis (ie, stimulated by the “missing 

self”) [88]. Selective pressure from tumor-specific T cells drives defects in MHC 

presentation by the tumor cells [89], so they are able to avoid recognition by T cells [90]. In 
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tumor-bearing animals, MHC class I-negative tumor cells are often detected in immune-

competent mice. In contrast, in T cell immune-deficient mice, MHC class I-positive tumor 

cells predominate [91]. Multiple mechanisms are responsible for MHC downregulation, 

including loss of heterozygosity associated with tumor progression in solid tumors like head 

and neck carcinomas (see Figure 1) [92].

It is difficult to ascertain whether MHC always remains downregulated in tumor cells since 

cancer cells can also potentially upregulate MHC expression [93]. NK cells express 

inhibitory receptors that recognize MHC class I on autologous cells [94]. These KIRs bind 

to MHC and send negative signals to the NK cell that effectively abrogate activating signals. 

This consequently inhibits NK cell lysis of the self MHC class I-expressing target 

[32,40,94]. KIRs function through the recruitment of the SHP-1 phosphatase after 

intracellular immunoreceptor tyrosine-based inhibitory motifs becomes phosphorylated 

[95,96]. The phosphatase reverses phosphorylation of activation motifs, neutralizing 

signaling from the activating receptors before propagating [34].

Allogeneic, HLA-mismatched NK cells circumvent the dominant inhibition from self MHC 

and are an alternative approach to the use of patient-derived NK cells. The advantage of 

using an allogeneic product is the off-the-shelf potential. In addition, the mismatch between 

the effector NK cell and the tumor target does not lead to inhibitory receptor engagement, 

and additional expression of activating receptor ligands on tumor cells engages activating 

receptors in this setting. Further, any potential for inducing GVHD can be mitigated by 

removing T cells from the final allogeneic NK cell product. In contrast to T cells, however, 

NK cells are more intolerant of cryopreservation methods—they often require culture 

following thaw—limiting the sites where these cells can be used [97]. Ongoing efforts are 

therefore under way to identify processes that can overcome this limitation [98].

Studies in the HLA-mismatched hematopoietic stem cell transplant setting provide the most 

compelling evidence for the antitumor potency of allogeneic NK cells. The first of these 

trials demonstrated alloreactivity from graft-derived NK cells against acute myelogenous 

leukemia (AML) with no acute graft-versus-host disease (GVHD) and no effects on 

engraftment. KIR-mismatched NK cells (in the graft-versus-host direction) improved the 

probability of survival at 5 years in patients with AML (60% in patients who were infused 

with alloreactive KIR-mismatched NK cells versus 5% in patients who did not receive 

allogeneic NK cells) [99]. Since these seminal studies, KIR-ligand mismatch in 

hematopoietic stem cell transplants is now considered predictive of a strong graft-versus-

leukemia effect in AML [100]. NK cell ability to reject cells with aberrant MHC class I 

expression seems to correlate with the magnitude of the inhibitory response; this, in turn, 

can be determined from the strength and number of inhibitory receptor to MHC class I 

interactions [101,102].

Expanding this approach to the nontransplant setting (ie, administering haploidentical 

related donor-derived NK cells after high-intensity cyclophosphamide and fludarabine 

conditioning and subcutaneous IL-2) resulted in complete remissions in 5 out of 19 poor-

prognosis patients with AML [103]. In this study, 75% of those with a KIR/KIR-ligand 

mismatch achieved remission, whereas only 13% of those without such a mismatch achieved 
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a remission [103]. Surprisingly, despite their potent effects against non-self MHC-expressing 

tumor cells, these NK cells appeared to spare healthy tissue [104], and it is believed that NK 

cell elimination of host antigen-presenting cells contributes to the lack of GVHD [99].

Allogeneic NK cells can be activated ex vivo in several ways (reviewed in Fang et al. [76)]. 

Because healthy donor-derived NK cells are not subject to immune dysfunction from tumors 

or drugs, they would theoretically be better mediators of cytotoxicity than patient-derived 

NK cells. Allogeneic NK cells have been variously selected according to donors and 

recipients, as seen in Figure 2. Strategies for selection of optimal NK cell donors relied on 

experience seen in haploidentical stem cell transplant and were enumerated by Wang et al. 

[105], and they have been classified by donor and recipient ligand-ligand mismatch 

[105,106] (selected donors express a KIR ligand gene that is missing in the recipient), 

receptor-ligand mismatch [105,107] (selected donors express a KIR receptor gene that is 

missing in the recipient and whose corresponding ligand is missing in the recipient), 

receptor-receptor mismatch [105,108] (selected donors express a KIR receptor gene that is 

missing in the recipient), and licensed receptor-ligand mismatch [105,109] (selected donors 

express a KIR receptor gene and the corresponding ligand, and this corresponding ligand is 

absent in the recipient—based on the idea that for a KIR receptor to be active, it needs to be 

licensed by interaction with its ligand first) or by haplotype B score [105,110] (selected 

donors have the best score—calculated by the number of their KIR B alleles; the KIR B 

haplotype has a variable amount of inhibitory receptors and more activating receptors than 

KIR A haplotypes—the more closely the donors are to the haplotype, the more activating 

they likely are [22]).

While most studies use healthy donor peripheral blood as a source of allogeneic NK cells, 

exploring alternative donors and alternative sources of starting material has been the subject 

of numerous studies [111-114]. These alternatives include umbilical cord blood-derived NK 

cells [115], cell lines [116,117], and stem cell-derived NK cells [118-120].

Umbilical Cord Blood.

Cord blood (CB) appears to contain more naive NK cells than peripheral blood (PB) since 

approximately 30% of all lymphocytes in CB are NK cells compared to 10% in PB [121]. 

Moreover, given recent purification and expansion techniques, the absence of CD3+ T cell 

contamination in cord blood reduces the likelihood of GVHD [122]. While CB NK cells 

have lower expression of perforin/granzyme B and higher expression of inhibitory NKG2A 

[123,124], which translates to a lower spontaneous killing of targets [125], these can be 

overcome by ex vivo activation and expansion [126,127]. Cord blood NK cells have been 

found to express the same number of activating receptors as their more mature peripheral 

blood counterparts and produce comparable quantities of IFN-γ and TNF-α [123,124]. 

Their broad availability from numerous cord blood banks around the world makes them 

attractive donor cell sources for off-the-shelf NK cell approaches.

Stem Cells.

Progenitor cells can also be utilized to expand mature cytolytic NK cells. These progenitors 

can be derived from (1) CD34+ hematopoietic stem cells (HSCs) harvested from cord blood, 
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bone marrow, or mobilized peripheral blood [128] or (2) induced pluripotent stem cells 

(iPSCs, which involve the use of mature cells with reactivated stemness via overexpression 

of pluripotency transcription factors [118]). NK cells derived from HSCs have demonstrated 

activity against myeloma, pancreatic cancer, and ovarian cancer cells in vivo [129-132]. On 

the other hand, iPSC-derived NK cells are derived from peripheral blood cells [133] whose 

pluripotency has been reactivated following overexpression of transcription factors such as 

Oct4, Sox2, cMyc, and KLF4 [118]. iPSC-derived cells show similar features to their HSC-

derived counterparts but are more accessible, homogeneous, and renewable [132].

Established NK Cell Lines.

The use of NK cell lines avoids the labor-intensive expansion protocols used to generate 

sufficient NK cell numbers from autologous and allogeneic sources. Available NK cell lines 

include NK-92 and NKG [117,134]. These lines are derived from patients with leukemia or 

lymphoma [117] and provide an unlimited supply of homogeneous natural killer cell 

populations that can be maintained at a lower cost than allogeneic and autologous 

counterparts [135]. In particular, NK92 cell lines have been widely explored in multiple 

preclinical and clinical studies [136-138]. NK92 cells lack inhibitory KIRs other than 

KIR2DL4 and thus cannot recognize, and can in fact be inhibited by, HLA [139,140]. Unlike 

PB- or CB-derived NK cells, NK92 cells do not express CD16 [117] and are unable to elicit 

antibody-dependent cell cytotoxicity ADCC (see section below) unless modified to express 

this Fc receptor. Because these are transformed cells, these cell lines must also be irradiated 

before clinical use to prevent proliferation and persistence in their new host. Nevertheless, 

preclinical studies of NK92 cells have demonstrated their use against different malignancies 

and their combination of other immunotherapy modalities [136-138].

Adoptive transfer of ex vivo expanded allogeneic NK cells has been safely used as 

immunotherapy for several hematologic malignancies and solid tumors. In the past 5 years, 

several clinical trials have been reported as follows:

a. Haploidentical donor-derived NK cells were administered to children with 

intermediate or high-risk acute myeloid leukemia (although showed no clinical 

benefit) [141].

b. NK cell line lysate-activated haploidentical donor NK cells were infused to 

patients with high-risk AML during their first remission and mediated durable 

complete remissions in 3 patients [142].

c. Umbilical cord blood stem cell-derived NK cells were used to treat metastatic 

colorectal cancer and showed antitumor efficacy irrespective of EGFR or RAS 

status [143].

d. Allogeneic NK cells were administered to patients with unresectable liver cancer 

combined with irreversible electroporation (use of electric fields to form pores in 

cells, to induce cell death) [144] with observed effects seen, including decreased 

circulating tumor cells and increased Karnofsky performance status [145].
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e. Allogeneic NK cells administered to patients with refractory acute myeloid 

leukemia induced increased leukemia control in patients who had an apparent 

increase in NK cell density detected in bone marrow biopsy specimens [146].

f. CB-derived NK cells administered to patients with multiple myeloma undergoing 

autologous stem cell transplants showed a very good partial response [147].

Overall, while these diverse trials have demonstrated a sound safety profile, the clinical 

efficacy reported has been relatively limited, necessitating ongoing trials. Hence, additional 

information detailing active clinical trials is shown in Table 2, and an overview of older 

clinical trials is summarized in Cheng et al. [148,149].

Regardless of the source, it is increasingly evident that allogeneic NK cells are potentially 

advantageous for adoptive immunotherapy of malignancy, because

i. they may be used in an off-the-shelf setting,

ii. their low association with GVHD, and

iii. they do not harbor the same inherent dysfunction as autologous patient-derived 

NK.

COUPLING WITH ANTIBODIES: ANTIBODY-DEPENDENT CELL 

CYTOTOXICITY

In recent years, several tumor-targeting antibodies have been developed the mediating 

antitumor functions not just by direct induction of tumor death, but also through the 

recruitment of NK cells that by antibody-dependent cell-mediated cytotoxicity (ADCC) 

[150]. Studies have shown that ADCC plays an important role in tumor clearance. 

Enhancing ADCC could, therefore, prove beneficial in a tumor setting [151-154].

ADCC specificity is dependent on the binding of the antibody to the tumor-associated 

antigen on the target cell through the antigen-binding portion (Fab) of the antibody 

[155,156]. Effector function is mediated by the constant region (Fc) of the antibody, which 

binds to Fc receptors on cytotoxic effector cells [152]. Several factors influence ADCC 

engagement, including the subclass/isotype, the glycoform, the density of target epitopes on 

the tumor cell, and Fc receptor polymorphisms [157]. Antibody class strongly determines 

ADCC, with IgG being the principal antibodies binding to Fc receptors that engage cell-

mediated cytotoxicity [158]. Among the IgG antibodies, it is also clear that certain 

subclasses are better than others. For example, comparisons of 2 anti-EGFR antibodies with 

different subtypes show that IgG1-isotype antibodies (cetuximab) are more potent at 

activating NK cells than their IgG2-isotype counterpart (panitumumab) [159]. There are 

several classes of Fc receptors (Ia, IIa-b-c, IIIa-b) that differ in their ability to initiate an 

activating cytotoxic response [160], with some mediating strong inhibitory signals like 

FcgRIIb [160]. The critical role of NK cells in mediating ADCC stems from their lack of 

inhibitory Fc receptor expression, while all other FcgR-expressing cells express both 

activating and inhibitory Fc receptors [160]. NK cells mostly express FcgRIIIa (CD16a) and 

FcgRIIc (CD32c) at low levels. Both of these are activating receptors [160,161]. Certain 
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CD16 genotypes have differential abilities to elicit ADCC. Polymorphisms in the 158 aa 

position alter affinity to the Fc portion of IgG—valine (V/V) at this position has a higher 

affinity (and better ADCC) compared with phenylalanine (V/F and F/F) [162]. The value of 

these polymorphisms in response to ADCC-eliciting antibodies remains under investigation, 

although 1 trial in Thailand could not identify a correlation between these polymorphisms 

and responses to rituximab in patients with large B cell lymphoma [163].

The ADCC activity of NK cells depends on CD16 (FcγRIIIA) binding to antibodies bound 

to the antigen on target cell surfaces. Activation through CD16 is sufficient to provide NK 

cell ADCC [164]. Following binding of target cell-bound antibody to CD16, the receptor 

associates with FcεRIγ, resulting in activation of its component ITAMs, in conjunction with 

phosphorylation of SLP-76 (a target of other activating receptors) [165]. In contrast to 

activating receptors, CD16 binding is sufficient to activate resting NK cells [165]. The 

metalloprotease ADAM17 also regulates CD16 expression. Following activation, the 

ectodomain of CD16 is cleaved by ADAM17, an enzyme involved in ectodomain shedding 

of neutrophils and other leukocytes [166].

Rituximab was the first monoclonal antibody (mAb) with ADCC activity approved for non-

Hodgkin lymphoma treatment in 1997; many other mAbs with ADCC have been 

subsequently developed as therapy of solid tumors and hematologic malignancies [154]. 

Other mAbs mediating ADCC include trastuzumab (targeting Her2) against breast cancer 

[167], cetuximab (targeting EGFR) against metastatic colorectal cancer or squamous cell 

carcinoma [168], enoblituzumab (targeting B7-H3) against a wide range of solid tumors 

[169], and hu14.18K322A (targeting GD2) against neuroblastoma [170].

More recently, attempts to improve ADCC have been explored, including combination 

therapies (eg, antibody combinations and/or combining NK cells with antibodies) to prevent 

immune escape and antibody engineering to improve binding. For example, a phase III 

clinical trial comparing the efficacy of combining pertuzumab and trastuzumab (with 

docetaxel versus placebo/trastuzumab/docetaxel) showed improvements in overall survival, 

maintained after more than a median of 8 years [171]. Combining trastuzumab and 

pertuzumab to target breast cancer delayed therapy resistance, presumably maximizing 

ADCC and improving inhibition of tumor growth. The 2 antibodies together enhanced the 

recruitment of NK cells in xenograft models, demonstrating additive ADCC at subsaturation 

doses [172]. In addition, Fc modifications have been used to improve the effector functions 

of antibodies as well as to prolong their serum half-lives [173]. These chimeric antibodies 

(eg, margetuximab) have been safely administered in patients with HER2-expressing solid 

tumors eliciting clinical responses, including partial remissions in 12% and stable disease in 

50% with tumor reductions occurring in 78% of evaluable responders [174]. Studies 

evaluating the Fc-modified CD20 antibody have been particularly instructive. Obinutuzumab 

is a glycoengineered antibody with reduced fucosylation on its Fc region, to increase its 

affinity to CD16 [175]. It has demonstrated improved ADCC compared to rituximab in vivo 

[176]. This modification also enabled this antibody to effectively bypass inhibitory KIRs; 

thus, ADCC is not impaired by KIR/HLA interaction [177]. Moreover, combining 

allogeneic NK cells and obinutuzumab demonstrated robust antitumor responses in vitro and 

in preclinical in vivo ADCC models [178]. Several genotypes have shown enhanced ADCC 
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responses, which may be particularly helpful when deciding the type of allogeneic cell to 

use in combination approaches with antibodies. For example, patients with follicular 

lymphoma with KIR2DL2 and KIR3DL1 genotypes showed improved outcomes after 

receiving ADCC-mediating antibodies, suggesting that combining antibody therapies with 

adoptively transferred NK cells expressing these KIRs may be a potentially beneficial 

therapeutic approach [179]. Currently, there are several trials exploring combinations of NK 

cells and ADCC-mediating antibodies, as shown in Table 3.

ENHANCING NK CELLS I: REDIRECTING ACTIVITY THROUGH CHIMERIC 

ANTIGEN RECEPTORS

The apparent lack of robust antitumor activity reported in clinical trials using NK cells has 

prompted multiple investigators to explore strategies to enhance NK cell function for 

improved activity in vivo. Tumors can escape NK cell activity by downregulating activating 

receptor ligands, and several pathways that result in downregulation of ligand expression 

have been identified, including exosome release, proteolytic cleavage, internalization and 

degradation, reduced stability of transcripts, decreased translation, alternative glycosylation 

and lipidation, increased intracellular retention, misfolding, and alternative splicing [180]. 

Tumors can also escape NK cell activity by upregulating MHC, thereby engaging their 

inhibitory receptors [93].

To overcome some of these limitations, genetic modification of NK cells with chimeric 

antigen receptors (CARs) has been explored to enhance NK cell function by conferring more 

potent signaling and targeting. Chimeric antigen receptors are artificial receptors that feature 

an extracellular domain derived from the variable regions of an antibody, to confer targeting 

capabilities, coupled to intracellular domains that signal like activating receptors. Currently, 

CAR-modified NK cell therapeutics under investigation include (1) CAR-transduced 

primary NK or NK-92 cell targeting CD3 and CD5 for the treatment of T cell lymphoblastic 

leukemia [181,182], (2) CS-1 and CD138 CAR NK cells for myeloma [183], CD19-CAR-

transduced NK cells for the treatment of CD19+ B cell lymphoid malignancies 

(NCT030563390 and NCT04245722), (4) EGFR-CAR NK92 cells targeting brain 

metastasis in breast cancer [184], (5) HER2 and EGFR CAR-transduced NK cells for brain 

metastases [184] or HER2-positive glioblastoma (NCT03383978), (6) GPA7-CAR NK cells 

for melanoma [185], (7) HER2 CAR-transduced NK cells for breast cancer [186], (8) WT-1-

CAR NK cells for the treatment of Wilms tumor [150], and finally, (9) ROR-1 [187] and/or 

GD2 CAR-transduced NK cells for the treatment of neuroblastoma or neuroectodermal 

tumors [188]. See Tables 1 and 2 for examples of other trials.

The first larger-scale (n = 11) phase I/II clinical trial using CAR-NKs was published in early 

2020, in which Liu et al. [189] evaluated a novel CD19-CAR construct that expressed IL-15 

and transduced CB-derived NK cells as an off-the-shelf therapy for the treatment of patients 

with either refractory or relapsed chronic lymphocytic leukemiaor non-Hodgkin lymphoma. 

Allogeneic off-the-shelf cord blood donors were originally chosen using a partial (4/6) HLA 

match, but the lack of GVHD prompted the investigators to transition to KIR-ligand 

mismatched products for the last 2 patients. Patients received lymphodepleting 
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chemotherapy with fludarabine and cyclophosphamide, followed by CB-derived CD19-

CAR-IL15 NK cells. Seven of the 11 patients were in complete remission at a median 

follow-up of 13.8 months (range, 2.8 to 20.0). The absence of CRS, neurotoxicity, and 

GVHD, combined with encouraging clinical responses, therefore, demonstrated the potential 

safety and efficacy of CAR-NK cell therapy [189].

Despite these promising clinical results, CAR design improvements are continually being 

evaluated to enhance NK cell function. Signaling domains of adaptor molecules associated 

with activating NK receptors have been used to mimic physiologic NK signaling better. For 

example, the DAP12 intracellular domain exhibited enhanced cytotoxicity against prostate 

cancer stem cells compared with a CAR-NK relying on a CD3ζ domain in a preclinical 

model [190]. DAP12 is heavily involved in the signaling of activating receptors such as 

NKp44 and NKG2C. Further, DAP10 is another signaling molecule that activates NK cells 

associating with NKG2D [191], and evaluating a novel NKG2D-DAP10-CD3ζ construct 

showed increased specificity and activation against solid tumor-derived cell lines, including 

osteosarcoma, prostate carcinoma, and rhabdomyosarcoma [192]. Finally, another strategy 

to enhance costimulatory activation and NK signaling is via CD244 (2B4), a signaling 

lymphocyte activation molecule-related receptor. Studies have shown that CD244 has robust 

costimulatory roles in NK effector cells targeting CD19 or GD2, indicating that antigen-

specific CD244-ζ-expressing NK cells may have great potential to boost signaling in NK 

cells retargeted to tumor cells [193]. In summary, multiple gene engineering approaches 

utilizing CAR constructs are being evaluated on the NK cell platform and have been 

comprehensively reviewed (see Patel et al. [194] and Rezvani [195]).

ENHANCING NK CELLS II: PROTECTION FROM TUMOR-INDUCED IMMUNE 

SUPPRESSION

Establishing effective NK therapeutics also requires overcoming the negative effects of the 

tumor microenvironment (TME). While TGF-β secretion is widely employed as a potent 

tumor immune evasion mechanism, multiple other factors within the TME can directly or 

indirectly affect NK cell function, proliferation, and/or maturation in vivo.

However, as discussed above, TGF-β plays a prominent role in tumorigenesis. Increased 

TGF-β expression by tumor cells is associated with metastasis in several cancers, including 

breast, prostate, and colorectal cancer [196-199], and there is a strong link between TGF-β 
production and metastatic spread. TGF-β is also secreted by the immune, endothelial, and 

smooth muscle cells in the surrounding tumor stroma [200,201]. TGF-β is also a prominent 

and critical component of the immune-suppressive environment maintained by the tumor. 

Elevated TGF-β levels in the tumor microenvironment have an adverse effect on antitumor 

immunity and inhibit host immune surveillance [200]. This suppressive cytokine [200,201] 

abrogates the secretion of critical Th1 cytokines, such as IFN-γ, and impairs NK cell 

cytolytic activity and proliferation in vitro and in vivo [202,203]. TGF-β also inhibits 

activating receptors such as NKG2D and is shown to impact ADCC [204-206]. Enhancing 

resistance to TGF-β is, therefore, of interest to several groups and takes many forms. One 

approach involves the genetic modification of NK cells with artificial TGF-β receptors to 
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confer TGF-β resistance to NK cells and T cells. Such approaches can enhance antitumor 

immune responses against malignancies that rely on TGF-β-induced immune suppression as 

a potent immune evasion strategy [207-209]. In several studies, a mutant receptor lacking the 

kinase domain of the TGF-βRII receptor acts as a dominant-negative receptor since ligand 

(TGF-β) binding is unable to elicit downstream receptor signaling [207]. Gene engineering 

NK cells to express this dominant-negative receptor have demonstrated superior antitumor 

efficacy in multiple preclinical models, including neuroblastoma [210], glioblastoma [211], 

leukemia [212], and medulloblastoma [213].

Other ways to circumvent TGF-β-mediated NK cell immune suppression include SMAD3 

suppression during expansion [214] and TGF-β signaling blockade with antagonistic drugs 

such as galunisertib, which reverses downregulation of NKp30, NKp46, NKG2D, and 

DNAM1 on NK cells [215]. Generation of TGF-β receptor 2-negative NK cells using 

CRISPR-Cas9 RNP complexes enhanced in vivo activity of NK cells [215] and knockdown 

of SMAD3, which increased cytotoxicity and IFN-γ production in vitro and improved 

antitumor effects of NK92 cells in mice [216]. TGF-β-specific antibodies have also been 

used to enhance treatment of xenograft models of head and neck squamous cell carcinoma 

with the anti-EGFR antibody cetuximab [217].

Outside of TGF-β, several additional TME mechanisms affect NK cell function, including 

changes in metabolism and production of adenosine, hypoxia, lactate, and checkpoint 

molecules. The majority of data to date focused on cellular metabolism, and immune cell 

functioning is focused on T cells and macrophages in the TME [218,219], but some studies 

are evaluating the role of the TME and metabolic effects on NK cell function. The TME 

lacks glucose and glutamine, both of which are critical for optimal NK function [220]. 

Because glycolysis is increased in activated NK cells, changes in the expression of 

metabolic enzymes such as fructose bisphosphatase 1 (eg, in lung cancer models [221]) can 

limit NK viability in vivo. NK cell function is also affected by metabolism in models of 

obesity, including murine and human models, where cytotoxicity, perforin, granzyme B, and 

INF-γ levels are lower in obese models [222]. Conversely, production of prostaglandin E2, 

produced in the TME by multiple tumors, also can reduce NK function [223]. Further, 

blocking of prostaglandin E2 has been shown to improve NK function in both metastatic 

breast cancer [224] and gastric cancer preclinical models [225].

Adenosine is another factor known to decrease NK cell function directly but can also 

increase the effects of immune-suppressive Tregs and myeloid-derived suppressor cells in 

vivo [223]. Reductions in tumor growth and increased NK infiltration of tumors are 

observed when adenosine effects are reduced by blocking CD39 and the A2A receptor 

[226]. Hypoxia also causes dysfunction of NK cells infiltrating tumors by downregulation of 

NKG2D, NKp44, NKp30, NKp46, granzyme B, and perforin [227-230]. Lactate is known to 

cause acidosis and immunosuppression in the TME [231] with a direct effect on the cytolytic 

activity of NK cells and downregulation of NKp46 expression [232,233]. Finally, immune 

checkpoint pathways can also be utilized to improve NK cell function by targeting NK cell-

specific receptors (KIR, CD94/NKG2A) and targeting T cell and NK cell markers of 

exhaustion (TIM-3, TIGIT, CD96, and LAG-3). However, there is still some controversy 
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regarding the exact mechanisms that checkpoint inhibitors employ to enhance NK cell 

function in vitro and in vivo [231,234].

CONCLUSIONS

The ability of NK cells to target cells without a priming event while showing little toxicity 

against healthy cells makes them promising cells for tumor immunotherapy [235,236]. 

Therefore, these cells are being actively explored as off-the-shelf platforms. Numerous 

malignancies have heterogeneous antigen expression with variable MHC expression and 

have heterogeneous and often unknown targets, which makes identifying and targeting the 

appropriate tumor antigens difficult. As we describe here, many avenues seek to harness NK 

cells’ ability to target activating receptor-ligand expression on tumor cells, exploiting non-

self mismatch, and ADCC. Genetic modification of NK cells further allows investigators to 

redirect their activity, increase their potency, and abrogate immune-suppressive 

environments mediated by TGF-β to increase NK cell persistence and efficacy [237]. One 

active area of research involves NK cell homing and tumor infiltration, and several strategies 

to ensure effective NK cell homing to the tumor or potential sites for spread are under study. 

For example, induction of chemokines such as chemerin and CXCR3 ligands has been 

shown to improve NK cell infiltration and tumor killing in mice [238].

In summary, while NK cell therapies have elicited modest clinical benefits in the majority of 

malignant settings, there is clearly promise with combination approaches [239] since these 

cells interface with so many different components of the antitumor immune response, 

including antibodies. Currently, combination therapies are under active investigation, for 

example, combinations with CD47 blockade [240] or oncolytic viruses [241].
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Figure 1. 
Top left, in red: NK cells recognize tumor targets that lack MHC, as this prevents the 

inhibitory response mediated by KIR. Several tumors down-regulate MHC in response to T 

cell immune pressure. The same pathway does not become activated in the setting of 

allogeneic NK cells and is only engaged when NK cell effectors recognize self MHC. 

Bottom, in blue: NK cell activating receptor ligands are expressed by numerous 

malignancies [45-60,62,242-247], and these tumors engage NK-activating receptors, some 

of which associate with ITAM-containing DAP10 and DAP12 to mediate NK cell activation 

via proteins such as Vav1 and PLCγ2. Top right, in green: NK cells are the principal 

effectors of ADCC, mediating tumor lysis in settings when antibodies targeting 

overexpressed surface targets are used. Various antibodies have been developed to recruit 

ADCC against tumor cells bearing targets such as Her2, CD20, EGFR, and/or CD52. These 

antibodies bind to the CD16 receptor, which, in turn, is associated with ITAM-containing 

proteins such as the TCRζ chain–leading to NK cell activation.

Sanchez et al. Page 27

Transplant Cell Ther. Author manuscript; available in PMC 2021 April 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
Donor selection relies on gene expression of KIR-related genes in both donor and recipient. 

KIR ligand genes are shown as outlined rectangles, and KIR receptor genes are shown as 

filled rectangles. The presence of a gene in the donor or recipient is shown, and ligand-

receptors pairs are shown in the same color. Selection is based on the presence of genes in 

the donor and absence in the recipient (receptor-receptor and ligand-ligand), a haplotype B 

score (see text for explanation), presence of matched receptor-gene pairs in the donor and 

absence in the recipient (licensed receptor-ligand), and presence of receptor genes in the 

donor and absence of ligand genes in the recipient (receptor-ligand).
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