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Abstract

Natural killer (NK) cells, the primary effector cells of the innate immune system, utilize multiple
strategies to recognize tumor cells by (1) detecting the presence of activating receptor ligands,
which are often upregulated in cancer; (2) targeting cells that have a loss of major
histocompatibility complex (MHC); and (3) binding to antibodies that bind to tumor-specific
antigens on the tumor cell surface. All these strategies have been successfully harnessed in
adoptive NK cell immunotherapies targeting cancer. In this review, we review the applications of
NK cell therapies across different tumor types. Similar to other forms of immunotherapy, tumor-
induced immune escape and immune suppression can limit NK cell therapies’ efficacy. Therefore,
we also discuss how these limitations can be overcome by conferring NK cells with the ability to
redirect their tumor-targeting capabilities and survive the immune-suppressive tumor
microenvironment. Finally, we also discuss how future iterations can benefit from combination
therapies with other immunotherapeutic agents.
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A lymphocyte of the innate immune response, natural killer (NK) cells are phenotypically
defined by the absence of CD3 and the presence of CD56 on their surface [1,2].
Functionally, they resemble CD8+ cytotoxic T cells [3]. NK cells derive their name from
their ability to spontaneously Kill their targets without the need for a prior encounter of the
antigen, as they have readily available lytic granules that can activate within minutes [4],
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unlike their T cell counterparts. NK cell targets include stressed, virally infected, and
transformed cells [5].

The ability of NK cells to target tumor cells makes them attractive effector cells for cancer
immunotherapy approaches. When encountering their targets, NK cells mediate lysis
through several mechanisms as follows:

a. Fas ligand on the surface of NK cells binds to its target death receptor on the
malignant cell, leading to programmed cell death.

b. Preformed granules within their cytoplasm (containing the cytotoxic proteins
perforin and granzyme B) [6,7] form pores on the surface of the malignant cell
upon their release [7-12].

C. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), induced by
IFN-y, binds to tumor receptors (eg, DR4, DR5, TRID, TRAIL-R4, and OPG)
[13], resulting in apoptosis of the cancer cell [14].

In addition, NK cells are the main effector cell participating in antigen-dependent cell-
mediated cytotoxicity (ADCC) by recognizing 1gG antibodies bound on the tumor cell
surface [15], and they release proinflammatory cytokines, such as IFN-y.

Although multiple cytolytic mechanisms suggest redundancy, a preference for distinct NK
cell killing strategies appears to predominate [16]. Transformed NK cells, like the cell line
NK92, favor lytic granule-mediated cytotoxicity. In contrast, primary NK cells mainly rely
on Fas ligand (FasL)-mediated apoptosis [17] since lytic granules become depleted in
primary cells, which necessitates that they rely on upregulated Fas ligand to mediate killing
[18].

NK cells are also polyfunctional and capable of secreting multiple cytokines that help
orchestrate immune responses. Besides the expression of FasL and TRAIL and secretion of
perforin and granzyme B, NK cells produce IFN-y during activation. This cytokine helps
shape a subsequent antitumor immune response, exerts antiproliferative effects on malignant
cells, and activates macrophage killing of phagocytosed tumor cells [10,19,20]. NK cells
also secrete TNF-a upon binding of multiple receptors [21] and are known to cooperate with
IL-12 to increase the secretion of IFN-y [22]. Both IFN-y and TNF-a act to stimulate
dendritic cell (DC) maturation upon NKp30 receptor binding [23]. Hence, IFN-y, TNF-a
FasL, and perforin/granzyme B all play a part in NK cell tumor surveillance [9,24,25].

NK cells express a complex array of receptors, including the cytokine receptors (IL-2R,
IL-12R, IL-15R, IL-18R, IL-21R) [26], which allow them to respond to cytokines secreted
by cells they typically interact with including T cells, dendritic cells, macrophages, and bone
marrow stromal cells. NK cells also express chemokine receptors, including:

i CXCRL1 allowing colocalization with DCs, T cells, and neutrophils
ii. CXCR2 allowing colocalization with neutrophils

iii.  CXCR3 allowing colocalization with T cells
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iv. CXCR4, CCRS5, allowing colocalization with immature dendritic cells and
proinflammatory monocytes, Th1 T cells, and cytotoxic T cells [27]

Notably, however, various groups have reported different patterns of chemokine receptor
expression on NK cells [28,29]. In addition, NK cells express the activating (KIR2DL4,
KIR2DS1, KIR2DS2, KIR2DS3, KIR2DS4, KIR2DS5, KIR3DS1, NKG2C, NKG2E,
NKG2D, NCRs, NKp30, NKp44, NKp46, NKp80, DNBAM-1, 2B4) and inhibitory
(KIR2DL1, KIR2DL2/3, KIR2DLS5, KIR3DL1, KIR3DL2, NKG2A, LILR, KLRG1)
receptors [4,30] discussed in the sections below.

The NK-mediated killing of tumor targets is the result of the net signal from the ligation of
activating and inhibitory receptors within the NK cell synapse [31]. NK cells express several
inhibitory and activating receptors [32]. The study of NK cell receptors was key to the
understanding of these innate effectors; the basic biology underlying this immune cell was
only understood once their various activating and inhibitory receptors (and their properties)
became known [22]. Understanding the biology of these receptors is also critical to
harnessing the potential of these cells for cancer immunotherapy.

NK cells are predominantly controlled by inhibitory receptors that prevent activation
(typically by activating receptor signaling)—a “fail-safe” to protect healthy cells from
unwanted Killing [4]. Dominance of inhibitory receptors occurs because they cluster more
rapidly than activating receptors, and their blockade of activating receptors occurs early in
the signal cascade [33]. There is evidence that this inhibition may be localized: only
preventing activation by co-clustered receptors [34]. Activation of NK cells relies on an
absence of inhibitory receptor engagement and concomitant engagement of multiple
activating receptors [22]. Except for CD16, no other receptor can sufficiently activate NK
cells by itself [34]. Consequently, activation and subsequent killing by NK cells is a
coordinated effort, resulting in more signaling from activating receptors and less signaling
from inhibitory receptors (see Figure 1) [34].

TARGETING THE MALIGNANT CELL: AUTOLOGOUS NK CELLS AND
ACTIVATING LIGANDS ON TUMOR CELLS

NK cell-activating receptors include activating killer immunoglobulin-like receptors (KIRs)
[35]; NKG2D [36]; the natural cytotoxicity receptors (NCRs) NKp46, NKp44, and NKp30
[37]; the nectin and nectin-like receptors CD226, TIGIT, CRTAM, and CD96 [38]; and
NKp80 [39]. These receptors recognize MHC, NKG2D ligands (MICA, MICB, ULBP),
NCR ligands (heparan sulfate glycosa-minoglycans, B7-H6, galectin-3, NKp44L), nectin
and nectin-like proteins, and activation-induced C-type lectin, respectively.

In contrast to inhibitory receptors (discussed in the section on non-self-recognition below),
where the receptors themselves have immunoreceptor tyrosine-based inhibitory motifs, most
activating receptors need to associate with immunoreceptor tyrosine-based activation motif
(ITAM)-containing proteins [34]. Two of the most understood ITAMs are DAP10 (which
associate with NKG2D) and DAP12 (which associate with activating KIRs).
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Phosphorylation of these ITAMs leads to signaling through molecules such as PLC 2, Vavl,
PI3K, Syk, and Ras [34,40].

Ligands for these receptors are upregulated in cancer cells (see Figure 1) [41]. Among
activating receptors, NKG2D ligands are perhaps the best understood: they are upregulated
during cellular stress (characteristic of malignant transformations) [42] and are otherwise
absent in healthy tissue. MICA/MICB expression has been observed in several malignancies
—including myeloma, leukemia, cervical cancer, and glioma [43]. UL16-binding proteins
(ULBPs), initially identified for their ability to bind the UL16 protein expressed by
cytomegalovirus-infected cells, bind strongly to NKG2D and DAP10, triggering multiple
cascades that lead to NK cell activation and cytotoxicity [44]. ULBP1 to ULBP6 are
expressed in several cancers, including multiple leukemias [45-54], colorectal cancer [55],
Ewing sarcoma [56], gastric cancer [57], non-small-cell lung cancer [58], melanoma [59],
nasopharyngeal cancer [60], cervical cancer [61], pediatric brain tumors [61], and
osteosarcoma [62].

Mechanisms involved in upregulating ligand expression in malignancy vary, but events
associated with tumorigenesis play a prominent role. Cellular senescence signals parallel
expression of NKG2D ligands—following initiation of replicative senescence and DNA
damage, MICA and ULBP2 are upregulated [63]. Genomic damage is thought to increase
the presence of DNA in the cytoplasm, activating cyclic GMP-AMP synthase, which
consequently induces expression of NKG2D ligands [64].

NK cell ligand expression can also indirectly result from other responses to malignancy. For
example, increased protein production in cancer can lead to impaired folding, causing
endoplasmic reticulum stress [65]. Endoplasmic reticulum stress has been shown to
upregulate B7H6 mRNA and surface expression via proteins involved in the unfolded
protein response [66].

Of interest, these ligands are expressed by some cancer stem cell populations. There is
increasing evidence that NK cells preferentially target putative tumor-initiating populations,
which seem to preferentially upregulate MICA/B [67]. NK cells lyse cancer stem cells of
squamous cell carcinoma and glioblastoma in co-culture [68,69]. Stem cell differentiation is
associated with decreased susceptibility to NK cell attack [70]. This mechanism is not the
same across tumors, however; a recent study reports that leukemia stem cells can evade NK
cells because they lack NKG2D ligand expression [71].

Their prognostic value highlights the importance of NKG2D ligands in immune-mediated
rejection: a recent meta-analysis of 19 studies featuring more than 2500 patients and 10
different tumor types shows that patients with high MICA/B expression had significantly
longer overall survival than their low-expressing counterparts [72]. Conversely, NK cell
dysfunction appears to be a contributing factor for the development of malignancy since
several functional deficiencies in NK cells have been observed in hematologic malignancies
and solid tumors [73-75]. Harnessing autologous/patient-derived NK cells for
immunotherapy, therefore, requires stimulation and/or ex vivo manufacture in non-immune-
suppressed environments. Moreover, since NK cells comprise only 10% of circulating
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lymphocytes, obtaining sufficient autologous NK cells for clinical use is another reason why
in vitro expansion is required [76]. Initial efforts focused on IL-2 for the expansion of
“lymphokine-activated killer cells,” which were shown to be capable of killing tumors
otherwise resistant to isolated NK cells [77]. However, no clear benefit was observed in a
subsequent randomized phase 111 clinical trial [78].

Various manufacturing protocols for expanding autologous NK cells have since been
developed [76], and these products have shown success in preclinical studies [79,80]. For
example, patient-derived NK cells can be expanded 1000-fold in 3 weeks and can lyse breast
cancer cell lines as well as allogeneic and autologous patient-derived breast cancer cells.
These expanded NK cells also prevented tumor establishment in xenograft murine models
[79].

Transplanting these preclinical results to human clinical trials has revealed that over the past
5 years, clinical studies have shown that adoptively transferred NK cells are safe. However,
such studies have also reported very limited antitumor responses in patients with cancer,
although some anecdotal responses have been reported. In 1 such study, a patient with
inoperable nonsmall-cell lung cancer achieved tumor control after receiving multiple
infusions of ex vivo activated NK cells. However, it was difficult to determine the direct
therapeutic effect of the NK cells since the patient also received radiochemotherapy and
nivolumab in combination with the NK cells [81]. In contrast, in another phase | clinical
trial, ex vivo expanded autologous NK cells were administered intraventricularly to children
with recurrent medulloblastoma and ependymoma [82]. In this trial, no toxicities were
observed, but all except 1 patient still had progressive disease [82]. In another phase | trial,
autologous NK cells expanded with OK432, IL-2, and FN-CH296-induced T cells were
administered to patients with advanced or metastatic gastrointestinal cancer, and the results
reflected the previously published experience using LAK cells [83]. In this trial, NK cells
were successfully expanded between 500- and 4000-fold from patients who had previously
failed standard therapies and were infused without notable adverse events. While the infused
NK cell products expressed the appropriate markers and demonstrated tumor lytic abilities in
vitro, no clinical responses were observed [83]. In summary, over the past 2 decades, most
clinical trials published using autologous NK cells to treat various malignancies have failed
to demonstrate sustained antitumor effects in vivo [84-87].

Examples of active trials using autologous NK cells are listed in Table 1.

TARGETING NON-SELF: ALLOGENEIC NK CELLS AND ALTERNATIVE
CELL SOURCES

As previously discussed, the activation of NK cells relies on the balance between activating
and inhibitory receptors, where the engagement of NK cells through activating receptor
ligands dominates over any negative signals from self MHC. In cancer cells, MHC
expression is downregulated as tumors attempt to escape the cytotoxic T cell response,
thereby rendering them susceptible to NK cell-mediated lysis (ie, stimulated by the “missing
self”) [88]. Selective pressure from tumor-specific T cells drives defects in MHC
presentation by the tumor cells [89], so they are able to avoid recognition by T cells [90]. In
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tumor-bearing animals, MHC class I-negative tumor cells are often detected in immune-
competent mice. In contrast, in T cell immune-deficient mice, MHC class I-positive tumor
cells predominate [91]. Multiple mechanisms are responsible for MHC downregulation,
including loss of heterozygosity associated with tumor progression in solid tumors like head
and neck carcinomas (see Figure 1) [92].

It is difficult to ascertain whether MHC always remains downregulated in tumor cells since
cancer cells can also potentially upregulate MHC expression [93]. NK cells express
inhibitory receptors that recognize MHC class | on autologous cells [94]. These KIRs bind
to MHC and send negative signals to the NK cell that effectively abrogate activating signals.
This consequently inhibits NK cell lysis of the self MHC class I-expressing target
[32,40,94]. KIRs function through the recruitment of the SHP-1 phosphatase after
intracellular immunoreceptor tyrosine-based inhibitory motifs becomes phosphorylated
[95,96]. The phosphatase reverses phosphorylation of activation motifs, neutralizing
signaling from the activating receptors before propagating [34].

Allogeneic, HLA-mismatched NK cells circumvent the dominant inhibition from self MHC
and are an alternative approach to the use of patient-derived NK cells. The advantage of
using an allogeneic product is the off-the-shelf potential. In addition, the mismatch between
the effector NK cell and the tumor target does not lead to inhibitory receptor engagement,
and additional expression of activating receptor ligands on tumor cells engages activating
receptors in this setting. Further, any potential for inducing GVHD can be mitigated by
removing T cells from the final allogeneic NK cell product. In contrast to T cells, however,
NK cells are more intolerant of cryopreservation methods—they often require culture
following thaw—Ilimiting the sites where these cells can be used [97]. Ongoing efforts are
therefore under way to identify processes that can overcome this limitation [98].

Studies in the HLA-mismatched hematopoietic stem cell transplant setting provide the most
compelling evidence for the antitumor potency of allogeneic NK cells. The first of these
trials demonstrated alloreactivity from graft-derived NK cells against acute myelogenous
leukemia (AML) with no acute graft-versus-host disease (GVHD) and no effects on
engraftment. KIR-mismatched NK cells (in the graft-versus-host direction) improved the
probability of survival at 5 years in patients with AML (60% in patients who were infused
with alloreactive KIR-mismatched NK cells versus 5% in patients who did not receive
allogeneic NK cells) [99]. Since these seminal studies, KIR-ligand mismatch in
hematopoietic stem cell transplants is now considered predictive of a strong graft-versus-
leukemia effect in AML [100]. NK cell ability to reject cells with aberrant MHC class |
expression seems to correlate with the magnitude of the inhibitory response; this, in turn,
can be determined from the strength and number of inhibitory receptor to MHC class |
interactions [101,102].

Expanding this approach to the nontransplant setting (ie, administering haploidentical
related donor-derived NK cells after high-intensity cyclophosphamide and fludarabine
conditioning and subcutaneous IL-2) resulted in complete remissions in 5 out of 19 poor-
prognosis patients with AML [103]. In this study, 75% of those with a KIR/KIR-ligand
mismatch achieved remission, whereas only 13% of those without such a mismatch achieved
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a remission [103]. Surprisingly, despite their potent effects against non-self MHC-expressing
tumor cells, these NK cells appeared to spare healthy tissue [104], and it is believed that NK
cell elimination of host antigen-presenting cells contributes to the lack of GVHD [99].

Allogeneic NK cells can be activated ex vivo in several ways (reviewed in Fang et al. [76)].
Because healthy donor-derived NK cells are not subject to immune dysfunction from tumors
or drugs, they would theoretically be better mediators of cytotoxicity than patient-derived
NK cells. Allogeneic NK cells have been variously selected according to donors and
recipients, as seen in Figure 2. Strategies for selection of optimal NK cell donors relied on
experience seen in haploidentical stem cell transplant and were enumerated by Wang et al.
[105], and they have been classified by donor and recipient ligand-ligand mismatch
[105,106] (selected donors express a KIR ligand gene that is missing in the recipient),
receptor-ligand mismatch [105,107] (selected donors express a KIR receptor gene that is
missing in the recipient and whose corresponding ligand is missing in the recipient),
receptor-receptor mismatch [105,108] (selected donors express a KIR receptor gene that is
missing in the recipient), and licensed receptor-ligand mismatch [105,109] (selected donors
express a KIR receptor gene and the corresponding ligand, and this corresponding ligand is
absent in the recipient—based on the idea that for a KIR receptor to be active, it needs to be
licensed by interaction with its ligand first) or by haplotype B score [105,110] (selected
donors have the best score—calculated by the number of their KIR B alleles; the KIR B
haplotype has a variable amount of inhibitory receptors and more activating receptors than
KIR A haplotypes—the more closely the donors are to the haplotype, the more activating
they likely are [22]).

While most studies use healthy donor peripheral blood as a source of allogeneic NK cells,
exploring alternative donors and alternative sources of starting material has been the subject
of numerous studies [111-114]. These alternatives include umbilical cord blood-derived NK
cells [115], cell lines [116,117], and stem cell-derived NK cells [118-120].

Umbilical Cord Blood.

Stem Cells.

Cord blood (CB) appears to contain more naive NK cells than peripheral blood (PB) since
approximately 30% of all lymphocytes in CB are NK cells compared to 10% in PB [121].
Moreover, given recent purification and expansion techniques, the absence of CD3* T cell
contamination in cord blood reduces the likelihood of GVHD [122]. While CB NK cells
have lower expression of perforin/granzyme B and higher expression of inhibitory NKG2A
[123,124], which translates to a lower spontaneous killing of targets [125], these can be
overcome by ex vivo activation and expansion [126,127]. Cord blood NK cells have been
found to express the same number of activating receptors as their more mature peripheral
blood counterparts and produce comparable quantities of IFN-y and TNF-a [123,124].
Their broad availability from numerous cord blood banks around the world makes them
attractive donor cell sources for off-the-shelf NK cell approaches.

Progenitor cells can also be utilized to expand mature cytolytic NK cells. These progenitors
can be derived from (1) CD34* hematopoietic stem cells (HSCs) harvested from cord blood,
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bone marrow, or mobilized peripheral blood [128] or (2) induced pluripotent stem cells
(iPSCs, which involve the use of mature cells with reactivated stemness via overexpression
of pluripotency transcription factors [118]). NK cells derived from HSCs have demonstrated
activity against myeloma, pancreatic cancer, and ovarian cancer cells in vivo [129-132]. On
the other hand, iPSC-derived NK cells are derived from peripheral blood cells [133] whose
pluripotency has been reactivated following overexpression of transcription factors such as
Oct4, Sox2, cMyc, and KLF4 [118]. iPSC-derived cells show similar features to their HSC-
derived counterparts but are more accessible, homogeneous, and renewable [132].

Established NK Cell Lines.

The use of NK cell lines avoids the labor-intensive expansion protocols used to generate
sufficient NK cell numbers from autologous and allogeneic sources. Available NK cell lines
include NK-92 and NKG [117,134]. These lines are derived from patients with leukemia or
lymphoma [117] and provide an unlimited supply of homogeneous natural killer cell
populations that can be maintained at a lower cost than allogeneic and autologous
counterparts [135]. In particular, NK92 cell lines have been widely explored in multiple
preclinical and clinical studies [136-138]. NK92 cells lack inhibitory KIRs other than
KIR2DL4 and thus cannot recognize, and can in fact be inhibited by, HLA [139,140]. Unlike
PB- or CB-derived NK cells, NK92 cells do not express CD16 [117] and are unable to elicit
antibody-dependent cell cytotoxicity ADCC (see section below) unless modified to express
this Fc receptor. Because these are transformed cells, these cell lines must also be irradiated
before clinical use to prevent proliferation and persistence in their new host. Nevertheless,
preclinical studies of NK92 cells have demonstrated their use against different malignancies
and their combination of other immunotherapy modalities [136-138].

Adoptive transfer of ex vivo expanded allogeneic NK cells has been safely used as
immunotherapy for several hematologic malignancies and solid tumors. In the past 5 years,
several clinical trials have been reported as follows:

a. Haploidentical donor-derived NK cells were administered to children with
intermediate or high-risk acute myeloid leukemia (although showed no clinical
benefit) [141].

b. NK cell line lysate-activated haploidentical donor NK cells were infused to
patients with high-risk AML during their first remission and mediated durable
complete remissions in 3 patients [142].

C. Umbilical cord blood stem cell-derived NK cells were used to treat metastatic
colorectal cancer and showed antitumor efficacy irrespective of EGFR or RAS
status [143].

d. Allogeneic NK cells were administered to patients with unresectable liver cancer
combined with irreversible electroporation (use of electric fields to form pores in
cells, to induce cell death) [144] with observed effects seen, including decreased
circulating tumor cells and increased Karnofsky performance status [145].
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e Allogeneic NK cells administered to patients with refractory acute myeloid
leukemia induced increased leukemia control in patients who had an apparent
increase in NK cell density detected in bone marrow biopsy specimens [146].

f. CB-derived NK cells administered to patients with multiple myeloma undergoing
autologous stem cell transplants showed a very good partial response [147].

Overall, while these diverse trials have demonstrated a sound safety profile, the clinical
efficacy reported has been relatively limited, necessitating ongoing trials. Hence, additional
information detailing active clinical trials is shown in Table 2, and an overview of older
clinical trials is summarized in Cheng et al. [148,149].

Regardless of the source, it is increasingly evident that allogeneic NK cells are potentially
advantageous for adoptive immunotherapy of malignancy, because

i they may be used in an off-the-shelf setting,
ii. their low association with GVHD, and

iii.  they do not harbor the same inherent dysfunction as autologous patient-derived
NK.

COUPLING WITH ANTIBODIES: ANTIBODY-DEPENDENT CELL
CYTOTOXICITY

In recent years, several tumor-targeting antibodies have been developed the mediating
antitumor functions not just by direct induction of tumor death, but also through the
recruitment of NK cells that by antibody-dependent cell-mediated cytotoxicity (ADCC)
[150]. Studies have shown that ADCC plays an important role in tumor clearance.
Enhancing ADCC could, therefore, prove beneficial in a tumor setting [151-154].

ADCC specificity is dependent on the binding of the antibody to the tumor-associated
antigen on the target cell through the antigen-binding portion (Fab) of the antibody
[155,156]. Effector function is mediated by the constant region (Fc) of the antibody, which
binds to Fc receptors on cytotoxic effector cells [152]. Several factors influence ADCC
engagement, including the subclass/isotype, the glycoform, the density of target epitopes on
the tumor cell, and Fc receptor polymorphisms [157]. Antibody class strongly determines
ADCC, with IgG being the principal antibodies binding to Fc receptors that engage cell-
mediated cytotoxicity [158]. Among the 1gG antibodies, it is also clear that certain
subclasses are better than others. For example, comparisons of 2 anti-EGFR antibodies with
different subtypes show that 1gG1-isotype antibodies (cetuximab) are more potent at
activating NK cells than their 1gG2-isotype counterpart (panitumumab) [159]. There are
several classes of Fc receptors (la, lla-b-c, l11a-b) that differ in their ability to initiate an
activating cytotoxic response [160], with some mediating strong inhibitory signals like
FcgRIIb [160]. The critical role of NK cells in mediating ADCC stems from their lack of
inhibitory Fc receptor expression, while all other FcgR-expressing cells express both
activating and inhibitory Fc receptors [160]. NK cells mostly express FcgRIlla (CD16a) and
FcgRlIc (CD32c) at low levels. Both of these are activating receptors [160,161]. Certain

Transplant Cell Ther. Author manuscript; available in PMC 2021 April 13.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnue Joyiny

1duosnuen Joyiny

Sanchez et al.

Page 10

CD16 genotypes have differential abilities to elicit ADCC. Polymorphisms in the 158 aa
position alter affinity to the Fc portion of IgG—valine (V/V) at this position has a higher
affinity (and better ADCC) compared with phenylalanine (V/F and F/F) [162]. The value of
these polymorphisms in response to ADCC-eliciting antibodies remains under investigation,
although 1 trial in Thailand could not identify a correlation between these polymorphisms
and responses to rituximab in patients with large B cell lymphoma [163].

The ADCC activity of NK cells depends on CD16 (FcyRIIIA) binding to antibodies bound
to the antigen on target cell surfaces. Activation through CD16 is sufficient to provide NK
cell ADCC [164]. Following binding of target cell-bound antibody to CD186, the receptor
associates with FceRI y, resulting in activation of its component ITAMs, in conjunction with
phosphorylation of SLP-76 (a target of other activating receptors) [165]. In contrast to
activating receptors, CD16 binding is sufficient to activate resting NK cells [165]. The
metalloprotease ADAM17 also regulates CD16 expression. Following activation, the
ectodomain of CD16 is cleaved by ADAM17, an enzyme involved in ectodomain shedding
of neutrophils and other leukocytes [166].

Rituximab was the first monoclonal antibody (mAb) with ADCC activity approved for non-
Hodgkin lymphoma treatment in 1997; many other mAbs with ADCC have been
subsequently developed as therapy of solid tumors and hematologic malignancies [154].
Other mAbs mediating ADCC include trastuzumab (targeting Her2) against breast cancer
[167], cetuximab (targeting EGFR) against metastatic colorectal cancer or squamous cell
carcinoma [168], enoblituzumab (targeting B7-H3) against a wide range of solid tumors
[169], and hul4.18K322A (targeting GD2) against neuroblastoma [170].

More recently, attempts to improve ADCC have been explored, including combination
therapies (eg, antibody combinations and/or combining NK cells with antibodies) to prevent
immune escape and antibody engineering to improve binding. For example, a phase 111
clinical trial comparing the efficacy of combining pertuzumab and trastuzumab (with
docetaxel versus placebo/trastuzumab/docetaxel) showed improvements in overall survival,
maintained after more than a median of 8 years [171]. Combining trastuzumab and
pertuzumab to target breast cancer delayed therapy resistance, presumably maximizing
ADCC and improving inhibition of tumor growth. The 2 antibodies together enhanced the
recruitment of NK cells in xenograft models, demonstrating additive ADCC at subsaturation
doses [172]. In addition, Fc modifications have been used to improve the effector functions
of antibodies as well as to prolong their serum half-lives [173]. These chimeric antibodies
(eg, margetuximab) have been safely administered in patients with HER2-expressing solid
tumors eliciting clinical responses, including partial remissions in 12% and stable disease in
50% with tumor reductions occurring in 78% of evaluable responders [174]. Studies
evaluating the Fc-modified CD20 antibody have been particularly instructive. Obinutuzumab
is a glycoengineered antibody with reduced fucosylation on its Fc region, to increase its
affinity to CD16 [175]. It has demonstrated improved ADCC compared to rituximab in vivo
[176]. This modification also enabled this antibody to effectively bypass inhibitory KIRs;
thus, ADCC is not impaired by KIR/HLA interaction [177]. Moreover, combining
allogeneic NK cells and obinutuzumab demonstrated robust antitumor responses in vitro and
in preclinical in vivo ADCC models [178]. Several genotypes have shown enhanced ADCC
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responses, which may be particularly helpful when deciding the type of allogeneic cell to
use in combination approaches with antibodies. For example, patients with follicular
lymphoma with KIR2DL2 and KIR3DL1 genotypes showed improved outcomes after
receiving ADCC-mediating antibodies, suggesting that combining antibody therapies with
adoptively transferred NK cells expressing these KIRs may be a potentially beneficial
therapeutic approach [179]. Currently, there are several trials exploring combinations of NK
cells and ADCC-mediating antibodies, as shown in Table 3.

ENHANCING NK CELLS I: REDIRECTING ACTIVITY THROUGH CHIMERIC
ANTIGEN RECEPTORS

The apparent lack of robust antitumor activity reported in clinical trials using NK cells has
prompted multiple investigators to explore strategies to enhance NK cell function for
improved activity in vivo. Tumors can escape NK cell activity by downregulating activating
receptor ligands, and several pathways that result in downregulation of ligand expression
have been identified, including exosome release, proteolytic cleavage, internalization and
degradation, reduced stability of transcripts, decreased translation, alternative glycosylation
and lipidation, increased intracellular retention, misfolding, and alternative splicing [180].
Tumors can also escape NK cell activity by upregulating MHC, thereby engaging their
inhibitory receptors [93].

To overcome some of these limitations, genetic modification of NK cells with chimeric
antigen receptors (CARS) has been explored to enhance NK cell function by conferring more
potent signaling and targeting. Chimeric antigen receptors are artificial receptors that feature
an extracellular domain derived from the variable regions of an antibody, to confer targeting
capabilities, coupled to intracellular domains that signal like activating receptors. Currently,
CAR-modified NK cell therapeutics under investigation include (1) CAR-transduced
primary NK or NK-92 cell targeting CD3 and CD5 for the treatment of T cell lymphoblastic
leukemia [181,182], (2) CS-1 and CD138 CAR NK cells for myeloma [183], CD19-CAR-
transduced NK cells for the treatment of CD19* B cell lymphoid malignancies
(NCT030563390 and NCT04245722), (4) EGFR-CAR NK92 cells targeting brain
metastasis in breast cancer [184], (5) HER2 and EGFR CAR-transduced NK cells for brain
metastases [184] or HER2-positive glioblastoma (NCT03383978), (6) GPA7-CAR NK cells
for melanoma [185], (7) HER2 CAR-transduced NK cells for breast cancer [186], (8) WT-1-
CAR NK cells for the treatment of Wilms tumor [150], and finally, (9) ROR-1 [187] and/or
GD2 CAR-transduced NK cells for the treatment of neuroblastoma or neuroectodermal
tumors [188]. See Tables 1 and 2 for examples of other trials.

The first larger-scale (n = 11) phase I/11 clinical trial using CAR-NKs was published in early
2020, in which Liu et al. [189] evaluated a novel CD19-CAR construct that expressed IL-15
and transduced CB-derived NK cells as an off-the-shelf therapy for the treatment of patients
with either refractory or relapsed chronic lymphocytic leukemiaor non-Hodgkin lymphoma.
Allogeneic off-the-shelf cord blood donors were originally chosen using a partial (4/6) HLA
match, but the lack of GVHD prompted the investigators to transition to KIR-ligand
mismatched products for the last 2 patients. Patients received lymphodepleting
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chemotherapy with fludarabine and cyclophosphamide, followed by CB-derived CD19-
CAR-IL15 NK cells. Seven of the 11 patients were in complete remission at a median
follow-up of 13.8 months (range, 2.8 to 20.0). The absence of CRS, neurotoxicity, and
GVHD, combined with encouraging clinical responses, therefore, demonstrated the potential
safety and efficacy of CAR-NK cell therapy [189].

Despite these promising clinical results, CAR design improvements are continually being
evaluated to enhance NK cell function. Signaling domains of adaptor molecules associated
with activating NK receptors have been used to mimic physiologic NK signaling better. For
example, the DAP12 intracellular domain exhibited enhanced cytotoxicity against prostate
cancer stem cells compared with a CAR-NK relying on a CD3(C domain in a preclinical
model [190]. DAP12 is heavily involved in the signaling of activating receptors such as
NKp44 and NKG2C. Further, DAP10 is another signaling molecule that activates NK cells
associating with NKG2D [191], and evaluating a novel NKG2D-DAP10-CD3( construct
showed increased specificity and activation against solid tumor-derived cell lines, including
osteosarcoma, prostate carcinoma, and rhabdomyosarcoma [192]. Finally, another strategy
to enhance costimulatory activation and NK signaling is via CD244 (2B4), a signaling
lymphocyte activation molecule-related receptor. Studies have shown that CD244 has robust
costimulatory roles in NK effector cells targeting CD19 or GD2, indicating that antigen-
specific CD244-C-expressing NK cells may have great potential to boost signaling in NK
cells retargeted to tumor cells [193]. In summary, multiple gene engineering approaches
utilizing CAR constructs are being evaluated on the NK cell platform and have been
comprehensively reviewed (see Patel et al. [194] and Rezvani [195]).

ENHANCING NK CELLS Il: PROTECTION FROM TUMOR-INDUCED IMMUNE
SUPPRESSION

Establishing effective NK therapeutics also requires overcoming the negative effects of the
tumor microenvironment (TME). While TGF-g secretion is widely employed as a potent
tumor immune evasion mechanism, multiple other factors within the TME can directly or
indirectly affect NK cell function, proliferation, and/or maturation in vivo.

However, as discussed above, TGF-gplays a prominent role in tumorigenesis. Increased
TGF-gexpression by tumor cells is associated with metastasis in several cancers, including
breast, prostate, and colorectal cancer [196-199], and there is a strong link between TGF-4
production and metastatic spread. TGF-g s also secreted by the immune, endothelial, and
smooth muscle cells in the surrounding tumor stroma [200,201]. TGF-gis also a prominent
and critical component of the immune-suppressive environment maintained by the tumor.
Elevated TGF-g levels in the tumor microenvironment have an adverse effect on antitumor
immunity and inhibit host immune surveillance [200]. This suppressive cytokine [200,201]
abrogates the secretion of critical Thl cytokines, such as IFN-, and impairs NK cell
cytolytic activity and proliferation in vitro and in vivo [202,203]. TGF-g also inhibits
activating receptors such as NKG2D and is shown to impact ADCC [204-206]. Enhancing
resistance to TGF-g s, therefore, of interest to several groups and takes many forms. One
approach involves the genetic modification of NK cells with artificial TGF-g receptors to
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confer TGF-gresistance to NK cells and T cells. Such approaches can enhance antitumor
immune responses against malignancies that rely on TGF-g-induced immune suppression as
a potent immune evasion strategy [207-209]. In several studies, a mutant receptor lacking the
kinase domain of the TGF-BRII receptor acts as a dominant-negative receptor since ligand
(TGF-p) binding is unable to elicit downstream receptor signaling [207]. Gene engineering
NK cells to express this dominant-negative receptor have demonstrated superior antitumor
efficacy in multiple preclinical models, including neuroblastoma [210], glioblastoma [211],
leukemia [212], and medulloblastoma [213].

Other ways to circumvent TGF-B-mediated NK cell immune suppression include SMAD3
suppression during expansion [214] and TGF-g signaling blockade with antagonistic drugs
such as galunisertib, which reverses downregulation of NKp30, NKp46, NKG2D, and
DNAML1 on NK cells [215]. Generation of TGF-g receptor 2-negative NK cells using
CRISPR-Cas9 RNP complexes enhanced in vivo activity of NK cells [215] and knockdown
of SMAD3, which increased cytotoxicity and IFN-y production in vitro and improved
antitumor effects of NK92 cells in mice [216]. TGF-B-specific antibodies have also been
used to enhance treatment of xenograft models of head and neck squamous cell carcinoma
with the anti-EGFR antibody cetuximab [217].

Outside of TGF-g, several additional TME mechanisms affect NK cell function, including
changes in metabolism and production of adenosine, hypoxia, lactate, and checkpoint
molecules. The majority of data to date focused on cellular metabolism, and immune cell
functioning is focused on T cells and macrophages in the TME [218,219], but some studies
are evaluating the role of the TME and metabolic effects on NK cell function. The TME
lacks glucose and glutamine, both of which are critical for optimal NK function [220].
Because glycolysis is increased in activated NK cells, changes in the expression of
metabolic enzymes such as fructose bisphosphatase 1 (eg, in lung cancer models [221]) can
limit NK viability in vivo. NK cell function is also affected by metabolism in models of
obesity, including murine and human models, where cytotoxicity, perforin, granzyme B, and
INF-y levels are lower in obese models [222]. Conversely, production of prostaglandin E2,
produced in the TME by multiple tumors, also can reduce NK function [223]. Further,
blocking of prostaglandin E2 has been shown to improve NK function in both metastatic
breast cancer [224] and gastric cancer preclinical models [225].

Adenosine is another factor known to decrease NK cell function directly but can also
increase the effects of immune-suppressive Tregs and myeloid-derived suppressor cells in
vivo [223]. Reductions in tumor growth and increased NK infiltration of tumors are
observed when adenosine effects are reduced by blocking CD39 and the A2A receptor
[226]. Hypoxia also causes dysfunction of NK cells infiltrating tumors by downregulation of
NKG2D, NKp44, NKp30, NKp46, granzyme B, and perforin [227-230]. Lactate is known to
cause acidosis and immunosuppression in the TME [231] with a direct effect on the cytolytic
activity of NK cells and downregulation of NKp46 expression [232,233]. Finally, immune
checkpoint pathways can also be utilized to improve NK cell function by targeting NK cell-
specific receptors (KIR, CD94/NKG2A) and targeting T cell and NK cell markers of
exhaustion (TIM-3, TIGIT, CD96, and LAG-3). However, there is still some controversy
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regarding the exact mechanisms that checkpoint inhibitors employ to enhance NK cell
function in vitro and in vivo [231,234].

CONCLUSIONS

The ability of NK cells to target cells without a priming event while showing little toxicity
against healthy cells makes them promising cells for tumor immunotherapy [235,236].
Therefore, these cells are being actively explored as off-the-shelf platforms. Numerous
malignancies have heterogeneous antigen expression with variable MHC expression and
have heterogeneous and often unknown targets, which makes identifying and targeting the
appropriate tumor antigens difficult. As we describe here, many avenues seek to harness NK
cells’ ability to target activating receptor-ligand expression on tumor cells, exploiting non-
self mismatch, and ADCC. Genetic modification of NK cells further allows investigators to
redirect their activity, increase their potency, and abrogate immune-suppressive
environments mediated by TGF-gto increase NK cell persistence and efficacy [237]. One
active area of research involves NK cell homing and tumor infiltration, and several strategies
to ensure effective NK cell homing to the tumor or potential sites for spread are under study.
For example, induction of chemokines such as chemerin and CXCR3 ligands has been
shown to improve NK cell infiltration and tumor killing in mice [238].

In summary, while NK cell therapies have elicited modest clinical benefits in the majority of
malignant settings, there is clearly promise with combination approaches [239] since these
cells interface with so many different components of the antitumor immune response,
including antibodies. Currently, combination therapies are under active investigation, for
example, combinations with CD47 blockade [240] or oncolytic viruses [241].
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Top left, in red: NK cells recognize tumor targets that lack MHC, as this prevents the
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inhibitory response mediated by KIR. Several tumors down-regulate MHC in response to T

cell immune pressure. The same pathway does not become activated in the setting of
allogeneic NK cells and is only engaged when NK cell effectors recognize self MHC.
Bottom, in blue: NK cell activating receptor ligands are expressed by numerous

malignancies [45-60,62,242-247], and these tumors engage NK-activating receptors, some
of which associate with ITAM-containing DAP10 and DAP12 to mediate NK cell activation

via proteins such as Vavl and PLC»2. Top right, in green: NK cells are the principal
effectors of ADCC, mediating tumor lysis in settings when antibodies targeting

overexpressed surface targets are used. Various antibodies have been developed to recruit
ADCC against tumor cells bearing targets such as Her2, CD20, EGFR, and/or CD52. These
antibodies bind to the CD16 receptor, which, in turn, is associated with ITAM-containing

proteins such as the TCR( chain—leading to NK cell activation.
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Figure2.
Donor selection relies on gene expression of KIR-related genes in both donor and recipient.

KIR ligand genes are shown as outlined rectangles, and KIR receptor genes are shown as
filled rectangles. The presence of a gene in the donor or recipient is shown, and ligand-
receptors pairs are shown in the same color. Selection is based on the presence of genes in
the donor and absence in the recipient (receptor-receptor and ligand-ligand), a haplotype B
score (see text for explanation), presence of matched receptor-gene pairs in the donor and
absence in the recipient (licensed receptor-ligand), and presence of receptor genes in the
donor and absence of ligand genes in the recipient (receptor-ligand).
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