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Radiographic evaluation of the lower extremities based 
on long-leg radiographs (LLRs) is performed in various 

degenerative, congenital, and posttraumatic clinical con-
texts to assess alignment, joint orientation, and leg length. 
Malalignment is considered a major contributing factor to 
knee osteoarthritis (1,2), whereas pediatric lower-limb de-
formities interfere with normal gait and motoric develop-
ment and predispose individuals to premature degeneration 
(3). As corrective osteotomy and total knee arthroplasty are 
planned on LLRs (4,5), their exact radiographic evaluation 
is a prerequisite for accurate surgical management.

In clinical practice, LLRs are routinely acquired using 
digital radiography of both lower extremities while the 
patient is in a weight-bearing, upright, standing position. 
Alignment is usually quantified by defining distinct ana-
tomic landmarks (4). Traditionally, the hip-knee-ankle an-
gle (HKAA) as the medial angle between the femoral and 

tibial mechanical axes is used as a well-validated measure 
of overall alignment (6–8). Although the tibial mechanical 
and anatomic axes are usually identical (4), this is not true 
for the femur. Femoral mechanical and anatomic axes devi-
ate by a mean 6°, whereas larger ranges of 2.5°–8.8° have 
also been reported (9). The femoral anatomic-mechanical 
angle (AMA) as an orientational measure of femoral align-
ment is central in assessing femoral deformities (4) and in 
achieving optimal coronal alignment after total knee ar-
throplasty (9,10).

Although lower-extremity assessment based on LLRs 
is highly standardized, widely available, and commonly 
performed in clinical practice and related research, its use 
is still debated regarding accuracy and reproducibility. 
Measurement accuracy is affected by loading (11), flexion 
(12), rotation (13), image quality (4), software assistance 
(14,15), and reader experience (16,17). Consequently, 
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Purpose:  To develop and validate a deep learning–based method for automatic quantitative analysis of lower-extremity alignment.

Materials and Methods:  In this retrospective study, bilateral long-leg radiographs (LLRs) from 255 patients that were obtained between 
January and September of 2018 were included. For training data (n = 109), a U-Net convolutional neural network was trained to 
segment the femur and tibia versus manual segmentation. For validation data (n = 40), model parameters were optimized. Following 
identification of anatomic landmarks, anatomic and mechanical axes were identified and used to quantify alignment through the hip-
knee-ankle angle (HKAA) and femoral anatomic-mechanical angle (AMA). For testing data (n = 106), algorithm-based angle measure-
ments were compared with reference measurements by two radiologists. Angles and time for 30 random radiographs were compared by 
using repeated-measures analysis of variance and one-way analysis of variance, whereas correlations were quantified by using Pearson r 
and intraclass correlation coefficients.

Results:  Bilateral LLRs of 255 patients (mean age, 26 years 6 23 [standard deviation]; range, 0–88 years; 157 male patients) were 
included. Mean Sørensen-Dice coefficients for segmentation were 0.97 6 0.09 for the femur and 0.96 6 0.11 for the tibia. Mean 
HKAAs and AMAs as measured by the readers and the algorithm ranged from 0.05° to 0.11° (P = .5) and from 4.82° to 5.43° (P , 
.001). Interreader correlation coefficients ranged from 0.918 to 0.995 (r range, P , .001), and agreement was almost perfect (intraclass 
correlation coefficient range, 0.87–0.99). Automatic analysis was faster than the two radiologists’ manual measurements (3 vs 36 vs 35 
seconds, P , .001).

Conclusion:  Fully automated analysis of LLRs yielded accurate results across a wide range of clinical and pathologic indications and is 
fast enough to enhance and accelerate clinical workflows.

Supplemental material is available for this article.
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mance across a wide spectrum of indications, age groups, and 
morphologic characteristics in the clinical routine.

Overall, 255 patients with 255 bilateral LLRs were included. 
To realize strict separation of training, validation, and testing 
data, patients were randomly assigned to the training set (n = 
109; 42.7%), validation set (n = 40; 15.7%), and test set (n = 
106; 41.6%). The training set was used to train the neural net-
work on image segmentation and algorithm-based postprocess-
ing, whereas the validation set was used to determine optimal 
model-framework conditions. The yet-unseen test set was sub-
ject to the optimized image-segmentation model followed by 
quantitative postprocessing routines.

Radiograph Acquisition
LLRs were obtained by using two state-of-the-art digital ra-
diographic systems: Philips Digital Diagnost (version 4.1.9, 
Philips Healthcare) and Siemens Ysio Max (version VF10F, 
Siemens Healthineers), both equipped with standard x-ray 
tubes, high-frequency inverter-type x-ray generators, and 
digital flat-panel detectors (size, 43 3 43 cm). Acquisition 
protocols were standardized, and each patient was placed on 
a weight-bearing platform with the patella oriented anteriorly 
against a motorized vertical detector stand at a source-to-im-
age distance of 300 cm. Depending on patient size, a series of 
two or three separate overlapping radiographs were acquired 
and automatically stitched.

Manual Reference Measurements
Each of two clinical radiologists (M.P. and F.M., radiologists-
in-training, both with 3 years of experience) performed manual 
reference measurements on the 106 bilateral LLRs within the 
test set.

For the unassisted reference measurements, HKAA was de-
termined by using the in-house picture archiving and communi-
cation system (iSite, Philips Healthcare) and its standard image-
analysis toolbox (ie, centerline, ruler, circle, and angle measures). 
The following anatomic landmarks were identified by both 
readers: the center of femoral head, femoral intercondylar point 
(apex of femoral notch), tibial interspinous point (midpoint of 
the tibial spines), and tibial midplafond point (midpoint of the 
outer edges of the malleoli along the tibial plafond). The line 
along the center of the femoral head and the femoral intercon-
dylar point was defined as the femoral mechanical axis. The line 
along the tibial interspinous point and the tibial midplafond 
point was defined as the tibial mechanical axis. The HKAA was 
measured at the intersection of both mechanical axes on the me-
dial side and given as deviation from straight alignment (180°) 
(6–8). Accordingly, negative angles indicated varus alignment, 
whereas positive angles indicated valgus alignment. In healthy 
adults, the HKAA ranges from 1.0°–1.5° varus (7,8,22), even 
though it is variable during childhood (6).

For the software-assisted reference measurements, femoral 
AMA was determined by using a dedicated U.S. Food and Drug 
Administration–approved and landmark-based software package 
(mediCAD Classic, Knee 2D, version 6.0; Hectec) that features 
digital analysis of alignment and joint orientation. Centers of 

inter- and intrareader reliability is variable with excellent (5,18) 
and poor-to-moderate reliability (16,17,19).

In this era of much-sought standardization of image analy-
sis, there is an as yet unmet clinical need for standardized and 
reproducible automatic analysis of alignment based on LLRs. 
Recent advances in machine learning may provide the suit-
able technical framework (20,21). Hence, this study aimed to 
develop, train, and validate a deep learning–based diagnostic 
support system to automatically analyze lower-extremity align-
ment by quantification of HKAA and AMA in a clinical study 
sample and in reference to manual reference measurements. 
Our hypotheses were that LLRs may be automatically and 
quantitatively evaluated by using this algorithm and that the 
measurements thus obtained would be as equally precise and 
accurate as manual reference measurements at a fraction of the 
associated time demand.

Materials and Methods

Study Design
This retrospective study was conducted in accordance with lo-
cal data-protection regulations. Following approval by the lo-
cal ethical committee (Reference No. 028/19), the requirement 
to obtain individual informed consent was waived. Included 
patients underwent LLR at our institution between January 
2018 and September 2018. During that period, a total of 486 
patients underwent weight-bearing bilateral LLR in their lower 
extremities. For methodologic coherence, 231 of these patients 
were excluded because only one lower extremity had been im-
aged (n = 217) or only segmental views of the hips, knees, or 
ankles were available (n = 14) (Fig 1). No further exclusion 
criteria were defined and, accordingly, radiographs with an in-
correct orientation (eg, off-center patellae, suboptimal image 
quality, or ill-positioned gonad shields or scales) were not ex-
cluded. Similarly, patients with orthopedic hardware, skeletal 
dysplasia, or other skeletal abnormalities or unusual lower-ex-
tremity shapes were included to assess the algorithm’s perfor-

Abbreviations
AMA = anatomic-mechanical angle, HKAA = hip-knee-ankle angle, 
LLR = long‐leg radiograph

Summary
Fully automatic analysis of long-leg radiographs was reliable and fast, 
was as accurate as clinical radiologists’ manual assessment, and was 
also feasible in a clinical environment.

Key Points
	n Radiologists’ manual reference measurements of lower-extremity 

alignment (ie, the hip-knee-ankle angle [HKAA] and femoral 
anatomic-mechanical angle [AMA]) were strongly correlated 
with automatic measurements (HKAA: r = 0.994–0.995; AMA: 
r = 0.918–0.993 [P , .001]) and displayed almost perfect inter-
reader agreement (intraclass coefficients: HKAA, 0.99; AMA, 
0.87–0.89).

	n Automatic assessment was completed within 3–7 seconds, depend-
ing on computational power, compared with 35–164 seconds by 
radiologists’ manual measurements (P , .001).

http://radiology-ai.rsna.org
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Figure 1:  Flowchart to indicate patient numbers after manual search of the database and after application of inclusion and exclu-
sion criteria.

a 1 3 1 convolution in the decoder was used. Figure 2 gives 
details of the network topologic characteristics.

Images were preprocessed by coarsely splitting each bilateral 
LLR into right and left images. To standardize inputs, each of the 
split images was resized to a resolution of 1024 3 256 pixels and 
rescaled to intensity values ranging from 21 to 1 1. Training 
proceeded by feeding the images of the training set into the neu-
ral network; calculating the loss function by comparison with the 
ground truth segmentation; and calculating weight updates by 
employing gradient descent with Adam, a widely used algorithm 
for gradient-based optimization of objective functions (25), and 
a learning rate of 0.001. We used the focal loss as proposed by 
Lin et al (26) to increase stability and account for imbalances be-
tween foreground and background classes and the softmax clas-
sifier to determine the most likely class for each pixel (ie, tibial 
bone, femoral bone, or background) (27). To avoid overfitting 
(model correspondence too close with that of the training set), 
data augmentation in line with standard procedures was used 
(28). To this end, images were randomly mirrored along the cra-
niocaudal axis, rotated by an angle randomly chosen from the 
interval (210°, 10°), and randomly zoomed by a factor rang-
ing from 0.8 to 1.2, with subsequent cropping to the original 
image size of 1024 3 256 pixels. Training was performed on a 
state-of-the-art graphics processing unit (GeForce RTX 2080 Ti; 
NVIDIA) with a batch size of 1.

Automatic Determination of Lower-Extremity Alignment
Femoral and tibial anatomic and mechanical axes were auto-
matically determined based on the segmentation masks. First, 
the center of the femoral head was determined by fitting a 
circle to the mediocranial aspect of the segmentation outline 
of the femoral head. Second, anatomic axes were identified by 
performing least-squares fitting on the bone-shaft contours. 
Third, joint-surface lines of the knee and ankle joints were de-

the femoral head, apices of the greater trochanter, medial and 
lateral femoral condyles and epicondyles, the talus, and the an-
kle joint line were marked as indicated by the software. Among 
other angles and measures (14), the software issues the AMA as 
the angle between the anatomic and mechanical femoral axes, 
whereas it does not issue the HKAA. Secondary correction of 
marked points was not possible.

For methodologic coherence, the radiologic reference 
measurements were performed in well-controlled study con-
ditions by using diagnostic monitors and dedicated work-
stations with both radiologists blinded to demographic and 
clinical information. For each radiologist, time demand for 
bilateral HKAA and AMA measurements was determined on 
30 randomly chosen LLRs.

Manual Segmentation
The femoral and tibial bone contours of the bilateral LLRs 
of the training and validation data were manually segmented 
as ground truth. M.P. performed the segmentations by using 
ITK-SNAP 3.8 software (semiautomatic segmentation; Cog-
nitica) (23). Consequently, 298 lower extremities consisting 
of one femur and tibia each were included from 149 datasets. 
Segmentation outlines were reviewed by D.T. and S.N. (clini-
cal radiologists, both with 8 years of experience) and modified, 
if necessary.

Training of Automated Segmentation based on the Neural 
Network
For automatic segmentation of the femoral and tibial bone 
contours, we used a U-Net convolutional neural network as 
suggested by others (24). More specifically, the network archi-
tecture had a depth of 6, starting at 16 filters per convolu-
tion and doubling with each downsampling layer. Moreover, 
instance normalization and bilinear upsampling followed by 
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Results

Patient Characteristics
Overall, bilateral LLRs of 255 patients from all age groups 
(mean age, 26 years 6 23 [standard deviation]; range, 0–88 
years; 157 male patients) were included. Consequently, bilat-
eral LLRs were randomly divided into training (n = 109), vali-
dation (n = 40), and test (n = 106) data (Table 1). Orthopedic 
hardware was present in 38% (41 of 109), 28% (11 of 40), and 
34% (36 of 106) of the training, validation, and test datasets. 
Unusual morphologic characteristics, defined as moderate-to-
severe leg length discrepancy (.2 cm), substantial bone de-
fects, excessive varus or valgus morphotypes with anatomic 
axis deviations of at least 10° valgus or less than 0° varus, bone 
tumors or tumorlike lesions, and skeletal dysplasia (ie, grossly 
abnormal bone shapes) were present in 37% (40 of 109), 45% 
(18 of 40), and 36% (38 of 106) of the training, validation, 
and test datasets, respectively.

Segmentation Performance
Correspondence between automatic and manual segmenta-
tions were evaluated on the validation set, as manual segmen-
tations were not available for the test set. Mean Sørensen-Dice 
coefficients of 0.97 6 0.09 for femora and 0.96 6 0.11 for 
tibias were determined, indicating excellent correspondence 
between manual and automatic segmentations.

Interreader Agreement and Comparisons with Artificial 
Intelligence Algorithm
On the test set, quantitative evaluation of alignment revealed 
high interreader agreement. Table 2 and Figure E1 (supple-
ment) show quantitative details of the HKAA and AMA mea-

termined by fitting straight lines 
to the articulating joint surfaces 
of the segmentation outlines. 
Fourth, the knee-joint center 
was defined as the mean of the 
center points along the joint-
surface lines of the femoral 
condyles and the tibial plateau, 
whereas the center of the ankle 
was defined as the center of the 
distal tibial joint-surface line 
after eliminating both malleoli 
from the segmentation outlines. 
The anatomic reference points 
and axes were then used to au-
tomatically calculate the HKAA 
and AMA. Figure 3 gives an 
overview of the successive image 
postprocessing steps.

A detailed description of the 
algorithm is available in Appen-
dix E1 (supplement), and the en-
tire algorithm is publicly available 
on GitHub (https://github.com/
MSK-Rad/whole-leg-radiographs/
tree/v0.1.0).

The total time demand for complete postprocessing of a 
single bilateral LLR was determined on a dedicated workstation 
with a state-of-the-art graphics processing unit (Intel Core i7–
9700K at 3.60 GHz, Intel; GeForce RTX 2080 Ti, NVIDIA) 
and on a consumer-grade laptop (Intel Core i5–8259U at 2.3 
GHz, Intel; no dedicated graphics processing unit) and com-
pared with manual reference measurements.

Statistical Analysis
Statistical analyses were performed by J.S., D.T., and S.N. by 
using the Python libraries statsmodels and NumPy, GraphPad 
Prism software (version 8.4), and R software (version 4.0.2; 
R Foundation for Statistical Computing). The diagnostic 
performance of the algorithm-based image analysis was com-
pared against the manual measurements. A priori, the nor-
mal distribution of HKAA and AMA values was assessed by 
using the D’Agostino and Pearson omnibus normality test. 
Although normality was confirmed in each group for HKAA 
(ie, radiologist 1 vs radiologist 2 vs artificial intelligence algo-
rithm) (P . .05), normality was not ascertained for the AMA 
(P  .003). Consequently, groupwise comparisons of the 
HKAA were performed by using repeated-measures analysis 
of variance, whereas groupwise comparisons of AMA were 
performed based on the Friedman test as the former’s non-
parametric equivalent. Measurement times were compared by 
using one-way analysis of variance. Correspondence of man-
ual and automatic segmentation outlines (in the validation 
set) was quantified by using the Sørensen-Dice coefficient. 
Interreader agreement was quantified by using the intraclass 
correlation coefficient. Significance was indicated by a P value 
less than or equal to .05.

Figure 2:  Graphic view of the neural network topologic characteristics of the deep learning model applied to realize 
segmentation of femoral and tibial bone contours (right) from bilateral long-leg radiographs (left). By using a U-Net convo-
lutional neural network architecture, the global information contained in the radiograph was compressed to a more compact 
representation. Fine-grained details were then fed back during upsampling by using skip connections. Upsampling was per-
formed by using bilinear interpolation, and the rectified linear unit (ReLU) was used as an activation function. Normalization 
layers used instance normalization because of the small batch size.

http://radiology-ai.rsna.org
https://github.com/MSK-Rad/whole-leg-radiographs/tree/v0.1.0
https://github.com/MSK-Rad/whole-leg-radiographs/tree/v0.1.0
https://github.com/MSK-Rad/whole-leg-radiographs/tree/v0.1.0
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to 0.993, respectively (P , .001 
each) (Table 3). Similarly, in-
traclass correlation coefficient 
scores ranged from 0.98 to 0.99 
for the HKAA and from 0.86 
to 0.89 for the AMA, indicat-
ing almost perfect agreement 
between readers and methods 
(Table 3).

Algorithm-based Assessment of 
Alignment
Figures 5 and 6 show algorithm-

based assessment of alignment in example cases with a wide 
variety of clinical indications, both without (Fig 5) and with 
orthopedic hardware components (Fig 6). Algorithm-based 
quantification of alignment proved robust in the presence of 
bone screws and plates, intramedullary nails, prostheses, ill-
positioned protective radiographic shielding equipment, scales, 
open epiphysial plates, incomplete bone maturation, or eccen-
tric joint positions. Yet segmentation accuracy was adversely af-
fected by orthopedic hardware, extremity configuration, joint 
degeneration, bone and soft-tissue structure, and image quality 
(Figs E2, E3 [supplement]).

Measurement Times
The time demand was significantly different between readers and 
the artificial intelligence algorithm. Complete postprocessing of 

surements. No differences were found for the HKAA (radi-
ologist 1, 0.05° 6 4.41; radiologist 2, 0.11° 6 4.44; artificial 
intelligence algorithm, 0.10° 6 4.32; P = .5), whereas signifi-
cant differences were found for the AMA (radiologist 1, 5.43° 
6 1.43; radiologist 2, 4.82° 6 1.20; artificial intelligence 
algorithm, 5.13° 6 1.36; P , .001). Mean interreader differ-
ences and differences of measured angles as a function of their 
means are given in Figure 4. For the HKAA, mean differences 
ranged from 20.05° (radiologist 1 vs radiologist 2) to 0.01° 
(radiologist 2 vs artificial intelligence algorithm), whereas for 
the AMA, mean differences ranged from −0.31° (radiologist 
2 vs artificial intelligence algorithm) to 0.61° (radiologist 1 vs 
radiologist 2). Interreader correlations were strong and highly 
significant, both for the HKAA and the AMA, with correla-
tion coefficients ranging from 0.981 to 0.995 and from 0.918 

Figure 3:  Original and processed bilateral long-leg radiographs in a 16-year-old male patient after guided correction of both lower extremities by means of temporary 
femoral hemiepiphysiodesis. A, Original bilateral long-leg radiograph. B, Exemplary display of the manual reference measurements. For illustrative purposes, the femoral 
anatomic-mechanical angle (AMA) for the right lower extremity (dashed line) and the hip-knee-ankle angle (HKAA) for the left lower extremity (solid line) were determined by 
using the in-house picture archiving and communication system. C, Automatically determined segmentation outlines of the femoral (red) and tibial (green) bones. D, Automati-
cally determined anatomic landmarks (the apical circumference of the femoral head [yellow], the center of the femoral head [blue], the centers along the tibial and femoral 
joint surfaces around the knee joint [orange and green], and the center of the distal tibia [red]). E, Automatically determined mechanical (blue) and anatomic (orange) axes of 
the femur and tibia. These were used to automatically determine the AMA (right, 4.76°; left, 4.41°) and the HKAA (right, 4.40°; left, 0.57° [both varus]).

Table 1: Demographic Data for Patients Included in the Training, Validation, and Test 
Sets

Parameter All Patients Training Set Validation Set Testing Set

No. of patients 255 109 40 106
No. of male patients* 157 (61.6) 74 (67.9) 22 (55) 61 (57.5)
Mean age (y)† 26 6 23 (0–88) 29 6 24 (0–82) 24 6 22 (1–84) 24 6 22 (0–84)

Note.—Mean data are 6 standard deviation.
* Data in parentheses are percentages.
† Data in parentheses are range.
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a single bilateral LLR took 3 seconds on a dedicated workstation 
and 7 seconds on a consumer-grade laptop, whereas manual ref-
erence measurements took longer (radiologist 1 and radiologist 
2: HKAA, 36 seconds 6 6 and 35 seconds 6 6, respectively 
[P , .001]; AMA, 164 seconds 6 72 and 126 seconds 6 10, 
respectively [P , .001]).

External Validation of the Algorithm’s Performance
The algorithm’s performance was assessed on consecutive 
LLRs from an external institution (n = 50). Overall, the 
mean HKAA and AMA values were largely comparable be-
tween the readers and methods, suggesting that the algo-
rithm performs equally well on external data (Appendix E1 
[supplement]).

Discussion
In this study we aimed to develop an algorithm for the au-
tomatic assessment of lower-extremity alignment. The most 
important findings of this study are that the fully automated 
and algorithm-based analysis of lower-extremity alignment 
proposed herein yields accurate and reliable measurements 
across a wide range of morphologic configurations, irrespective 
of the presence of orthopedic hardware, and that these mea-
surements are performed within a fraction of the time that is 
usually needed for manual measurements, suggesting that this 
algorithm is suitable for integration into clinical workflows.

Machine learning is an important technologic field that may 
impact musculoskeletal radiologists and their referring health 
care providers by improving image quality, workflow efficiency, 

Table 2: Details of Manual and Automatic Measurements of Lower-Extremity Alignment

Angle Radiologist 1 Radiologist 2 Algorithm P Value

HKAA 0.05 6 4.41 (211.70 to 11.60) 0.11 6 4.44 (212.00 to 12.00) 0.10 6 4.42 (212.07 to 11.47) .5
AMA 5.43 6 1.43 (1.40–11.10) 4.82 6 1.20 (0.10–9.40) 5.13 6 1.36 (1.14–11.03) ,.001

Note.—Data are mean 6 standard deviation; data in parentheses are range. Groupwise comparisons were performed by using 
repeated-measures analysis of variance for the HKAA and the Friedman test for the AMA. Significant interreader differences 
were found only for the AMA. AMA = anatomic-mechanical angle, HKAA = hip-knee-ankle angle.

Figure 4:  Comparative evaluation of manual and automatic assessment of lower extremity alignment based on the hip-knee-ankle angle (HKAA) and the femoral 
anatomic-mechanical-angle (AMA). Bland-Altman plots display the agreement of both radiologists’ manual reference measurements (radiologist 1 and radiologist 2) and 
the algorithm-based measurements of both measures. Upper and lower rows detail pairwise comparisons for the HKAA and AMA, respectively, between both radiologists 
(left column), radiologist 1 and the algorithm (middle column), and radiologist 2 and the algorithm (right column). Note that differences of measured angles are more strongly 
discretized because of the finite accuracy with which the HKAA and AMA were measured manually. diff = difference, SD = standard deviation.

http://radiology-ai.rsna.org
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and possibly diagnostic accuracy or reproducibility (21). With 
ever-growing increases in the use of diagnostic medical imaging 
at large (29) and demands for quantification of findings (21), 
machine learning techniques must be integrated into clinical 
workflows, ideally relieving the radiologists from tedious work 
while increasing precision and efficiency and reducing subjectiv-
ity and variability secondary to fatigue or differences in reader 
experience. The automatic analysis of LLRs lends itself to such 
clinical use. Recently, computer-aided quantification of leg-
length discrepancy in a pediatric population was presented by 
Zheng et al (30). By using a standard network architecture that 

determines bone lengths based on automatically obtained seg-
mentation outlines, leg lengths were automatically determined 
in 1 second. Even though this algorithm achieved a Sørensen-
Dice coefficient of 0.94, indicating high concordance between 
manual and automatic segmentation outlines, its unsupervised 
clinical application is questionable because patients with unusual 
extremity shapes, orthopedic hardware, and scales were excluded 
(31% of all initially included patients). Still, 5% of automatic 
segmentations were considered improper (30), thereby high-
lighting the challenge of balancing robustness with precision 
and performance. However, as a tool that assists in the radiologic 

Table 3: Interreader Correlations and Agreement of Manual and Automatic Measure-
ments of Lower-Extremity Alignment

Parameter

r Value ICC

Radiologist 2 Algorithm Radiologist 2 Algorithm

HKAA
  Radiologist 1 0.981 (,.001) 0.994 (,.001) 0.98 (0.98, 0.99) 0.99 (0.99, 1.00)
  Radiologist 2 NA 0.995 (,.001) NA 0.99 (0.99, 1.00)
AMA
  Radiologist 1 0.918 (,.001) 0.993 (,.001) 0.86 (0.82, 0.89) 0.89 (0.86, 0.92)
  Radiologist 2 NA 0.918 (,.001) NA 0.87 (0.83, 0.90)

Note.—Data are given as the Pearson correlation coefficient r (P value) and as ICCs (95% CIs) for 
the HKAA and the femoral AMA. AMA = anatomic-mechanical angle, HKAA = hip-knee-ankle 
angle, ICC = interclass coefficient, NA = not applicable.

Figure 5:  Algorithm-based quantitative analysis of lower-extremity alignment in representative patients reflective of the spectrum of clinical 
indications. A, Female adult patient with bilateral medial compartmental osteoarthritis of the knee joints. B, Male adolescent patient with bilat-
eral valgus deformity. C, Female adult patient with valgus deformity and morbid obesity. D, Female child with dysplasia of the right hip, pelvic 
obliquity, and leg-length discrepancy. Although the algorithm-based identification of the mechanical (blue) and anatomic axes (orange) was 
robust and not affected by joint degeneration, A, incomplete bone maturation, B, D, eccentric projection of both patellae, B, C, excess skin 
folds, C, displaced gonad shields, C, or open epiphysial plates, D, segmentation outlines were rendered focally imprecise. Corresponding 
original radiographs and segmentation outlines are detailed in Figure E2 (supplement). Units of scales, if present, are centimeters.
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workflow by image pre-evaluation for the radiologist to be con-
firmed, such algorithms might become indispensable for future 
high-throughput handling of large image volumes.

In our study, mean Sørensen-Dice coefficients were slightly 
higher at 0.97 for the femur and 0.96 for the tibia; more im-
portantly, these levels of concordance were achieved without us-
ing such wide-ranging exclusion criteria as the ones in the work 
by Zheng et al (30). We therefore consider our algorithm to 
be of true clinical value because of its exposure to a wide spec-
trum of clinical-pathologic indications that demonstrated its 
performance.

With our algorithm, automatic segmentation was not perfect 
and was challenged by orthopedic hardware, extremity shape and 
position, joint degeneration, bone texture and structure, and im-
age quality. Nonetheless, quantification of alignment in terms of 
the HKAA and AMA proved fairly robust, most likely because 
segmentation inaccuracies were slight and primarily present in 
underrepresented configurations (eg, prostheses), anatomic and 
mechanical axes were still accurately identified if large parts of the 
femur and tibia were correct, and the long distances between the 
anatomic landmarks limited the relevance of ill-placed coordinates 
and resultant quantification errors. Yet more refined quantifica-
tion of joint-level metrics relevant in the analysis of the deformity 
underlying the malalignment of the extremity, such as the me-
chanical lateral distal femoral angle, among others (4), necessitates 

improved segmentation robustness and accuracy. This may be 
realized by implementing active shape models, increasing data 
diversity, and controlling image quality. Active shape models are 
a priori–defined bone-shape models that are iteratively deformed 
to fit any bone shape (31) and increase the chances of plausible 
segmentation (32). Because machine learning depends on suffi-
ciently variable data to generalize well, more diverse training data 
with as-yet inaccurate segmentations (ie, joint degeneration or 
orthopedic hardware) may enhance segmentation performance. 
Control of image quality in terms of technical parameters (resolu-
tion and contrast) and extremity position (patella and extremity 
position) may also optimize performance. Although technically 
problematic images characterized by inaccurate digital stitching, 
underexposure, or increased noise may be identified easily, quality 
control and measurement accuracy in a busy radiologic practice 
may be more challenging with aberrant extremity positions and 
rotations. Avoiding erroneous quantification (13) by repeating 
radiography necessarily has to be balanced against increased radia-
tion exposure. Future approaches that identify the patella relative 
to the femur may help realize consistent extremity position and 
image quality. As expected, manual reference measurements were 
time-consuming and required up to more than 2 minutes per 
measurement. For this study alone, each radiologist spent more 
than 1 hour (unassisted) and 3.5–5 hours (software assisted) on 
relatively simple measurements. Ideal study conditions may have 

Figure 6:  Algorithm-based quantitative analysis of lower-extremity alignment in representative patients reflective of the spectrum of clinical 
indications. A, Male adolescent patient after guided correction of bone growth through bilateral temporary femoral hemiepiphysiodesis plates, 
medial malleolar screws, and subtalar arthroereisis. B, Female adult patient after uncemented total hip and knee replacement of the right lower 
extremity and advanced medial osteoarthritis of the left lower extremity. C, Male adult patient after femoral osteotomy and intramedullary os-
teosynthesis to induce callus distraction in the shortened femur. D, Female adult patient after posttraumatic surgical reconstruction of the proximal 
and distal tibia with a range of metallic osteosynthetic materials (ie, bone screws, bone plates, and metallic remnants) still visible. Although the 
algorithm-based quantification of lower-extremity alignment is robust despite orthopedic hardware, A–D, or the radiographic reference equip-
ment, B, segmentation outlines are focally imprecise. Corresponding original radiographs and segmentation outlines are detailed in Figure E3 
(supplement). Otherwise, image details are as described in Figure 5.

http://radiology-ai.rsna.org
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decreased interreader variability as compared with studies that 
derive reference measurements from clinical-routine radiologic 
reports. Surprisingly, interreader agreement was lower in software-
assisted measurements than in unassisted measurements. First, rel-
atively short femoral distances render ill-placed coordinates more 
relevant. Second, defining the femoral-shaft axis manually may 
be prone to variability, even when assisted, especially in bowed 
configurations. It is against this background that the significant 
groupwise differences of AMA measurements must be considered, 
even though, by and large, AMA measurements were consistent 
between readers. Consequently, the substantial user input neces-
sary to quantify the AMA brings about considerable residual vari-
ability (15,33).

External validation of the algorithm’s performance demon-
strated its generalizability, thereby underscoring the algorithm’s 
potential clinical applicability in other institutions. Nonetheless, 
it requires more comprehensive validation and training for clini-
cal use so that the algorithm prospectively improves radiologists’ 
workflow efficiency and productivity. Its implementation may 
involve forwarding acquired images (LLRs) to a dedicated cen-
tral platform where they undergo analysis (automatic quantifica-
tion of alignment) and feeding the annotated results back to the 
radiologist for final checking and signing.

This study had limitations. First, unilateral LLRs were excluded 
for the sake of methodologic coherence, thereby limiting data di-
versity. The entire dataset was secondarily tilted to the younger 
population because local patient management is heavily centered 
on unilateral LLRs. Because of their a priori exclusion, older pa-
tients after joint replacement or internal fixation were underrep-
resented. Second, the algorithm did not consider additional joint-
level metrics for enhanced assessment of the deformity underlying 
lower-extremity malalignment, which requires improved segmen-
tations. Third, reproducibility of the manual reference measure-
ments (ie, test-retest reliability) was not assessed.

In conclusion, fully automated analysis of LLRs yields accurate 
results across a wide range of clinical and pathologic indications 
and is fast enough to enhance and accelerate clinical workflows.
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