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PET/CT has increased sensitivity and specificity for 
cancer imaging, providing functional and anatomic 

information simultaneously (1). The use of CT has been 
important for the attenuation and scatter correction 
(ASC), which are important quantitative imaging tech-
niques for PET (2). Without successful ASC, artifacts are 
introduced on reconstructed images, complicating clini-
cal interpretation and causing profound quantitative er-
rors. In addition, correlation with CT can be helpful in 
distinguishing cases of classic pitfalls of fluorodeoxyglu-
cose (FDG) PET and reducing false-positive and false-
negative results. At FDG PET, physiologic activity, be-
nign conditions, and inflammatory processes can mimic 
and/or mask disease owing to glucose metabolism that is 
not specific to malignancy (3,4).

In this sense, CT is often a useful component of PET/
CT for image interpretation. However, a substantial num-
ber of CT examinations are still performed exclusively for 
PET ASC, a process generally referred to as CT-based at-
tenuation correction, and these scans are redundant if 

diagnostic CT is performed after PET and/or if diagnostic 
CT images yield better anatomic information. Thus, if CT-
less ASC is feasible at PET/CT, the patient can be spared 
the additional radiation exposure from CT. Accordingly, 
removing CT for ASC has the potential to benefit certain 
subgroups of patients who may require repetitive PET/CT 
examinations (5,6), especially during childhood (7,8), in 
terms of their long-term health (9).

In addition to the potential risk related to the CT ra-
diation dose, there are technical limitations to CT-based 
correction that can cause or worsen artifacts. In the setting 
of attenuation correction, differences in respiratory motion 
between PET and CT scans can result in attenuation arti-
facts (eg, banana artifacts) that can cause a liver lesion to 
register over the lungs and mimic a lung nodule (4). In ad-
dition, high-density metallic implants with high CT num-
bers (or Hounsfield units) result in high PET attenuation 
coefficients that can lead to overestimation of the PET ac-
tivity in the corresponding region and consequently false-
positive PET findings (10). In terms of scatter correction, 
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Purpose:  To demonstrate the feasibility of CT-less attenuation and scatter correction (ASC) in the image space using deep learning for 
whole-body PET, with a focus on the potential benefits and pitfalls.

Materials and Methods:  In this retrospective study, 110 whole-body fluorodeoxyglucose (FDG) PET/CT studies acquired in 107 patients 
(mean age 6 standard deviation, 58 years 6 18; age range, 11–92 years; 72 females) from February 2016 through January 2018 
were randomly collected. A total of 37.3% (41 of 110) of the studies showed metastases, with diverse FDG PET findings throughout 
the whole body. A U-Net–based network was developed for directly transforming noncorrected PET (PETNC) into attenuation- and 
scatter-corrected PET (PETASC). Deep learning–corrected PET (PETDL) images were quantitatively evaluated by using the standardized 
uptake value (SUV) of the normalized root mean square error, the peak signal-to-noise ratio, and the structural similarity index, in ad-
dition to a joint histogram for statistical analysis. Qualitative reviews by radiologists revealed the potential benefits and pitfalls of this 
correction method.

Results:  The normalized root mean square error (0.21 6 0.05 [mean SUV 6 standard deviation]), mean peak signal-to-noise ratio 
(36.3 6 3.0), mean structural similarity index (0.98 6 0.01), and voxelwise correlation (97.62%) of PETDL demonstrated quantita-
tively high similarity with PETASC. Radiologist reviews revealed the overall quality of PETDL. The potential benefits of PETDL include 
a radiation dose reduction on follow-up scans and artifact removal in the regions with attenuation correction– and scatter correc-
tion–based artifacts. The pitfalls involve potential false-negative results due to blurring or missing lesions or false-positive results due to 
pseudo–low-uptake patterns.

Conclusion:  Deep learning–based direct ASC at whole-body PET is feasible and potentially can be used to overcome the current limita-
tions of CT-based approaches, benefiting patients who are sensitive to radiation from CT.
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pitfalls of this approach are illustrated through representative 
studies that were carefully selected on the basis of collabora-
tions with physicians.

Materials and Methods

Patients and Data Description
In this institutional review board–approved study, written 
consent was waived on the basis of the Health Insurance Por-
tability and Accountability Act Privacy Rule. We used clinical 
data-access software (mPower; Nuance Healthcare, Burling-
ton, Mass) to retrospectively collect whole-body FDG PET/
CT studies in our department. For this study, the first 120 
studies that appeared in our search of all cases acquired with 
a single scanner from February 2016 through January 2018 
were collected. We included 110 studies for training and test-
ing and excluded 10 studies that were from small children 
(eg, infants) or had substantial photopenic artifacts (eg, wash-
out artifacts in the bladder). The 110 studies were from 107 
patients because three patients underwent two studies dur-
ing this period. In terms of pathologic findings, 41 (37.3%) 
of the 110 studies showed metastases. FDG PET findings 
were in the head and/or neck for 32 (29.1%) studies; in the 
chest for 63 (57.3%) studies; in the abdomen or pelvis for 
60 (54.5%) studies; and in musculoskeletal regions for 31 
(28.2%) studies (Table E1 [supplement]). Thirty-eight of the 
110 studies were acquired in males, and 72 were acquired in 
females. The mean patient age was 58 years 6 18 (standard 
deviation) (range, 11–92 years); the mean patient weight, 
70.2 kg 6 18.2 (range, 38.6–129.3 kg); and the mean body 
mass index, 25.1 kg/m2 6 5.8 (range, 14.7–50.5 kg/m2).

FDG PET/CT Image Acquisition
All images were acquired by using a single Gemini TF 64 
time-of-flight scanner (Philips Healthcare; Best, the Nether-
lands) with a 15.3-cm axial field of view. The mean admin-
istered dose of FDG was 292.0 MBq 6 65.3 (standard de-
viation) (range, 161.9–458.8 MBq). The whole-body PET 
imaging session started 50–90 minutes after the FDG injec-
tion, and patients were scanned serially in multiple table posi-
tions, with positions ranging from the vertex to the midthigh 
or toes. The mean scanning duration for each table position 
was 84.5 seconds 6 11.8 (range, 45–90 seconds). Prior to 
each PET scan acquisition, a whole-body low-dose CT scan 
was obtained for ASC.

PET Image Reconstruction
The PET images were reconstructed by using a three-dimen-
sional, blob-based, time-of-flight, list-mode ordered-subsets 
expectation-maximization algorithm with default param-
eters (three iterations, 33 subsets, blob increment of 2.0375 
voxels, blob radius of 2.5 voxels, blob shape parameter alpha 
of 8.3689, relaxation parameter of 0.7, voxel size of 4 3 4 
3 4 mm). The image matrix size was 144 3 144 or 169 
3 169 pixels for a 576-mm or 676-mm transaxial field of 
view, respectively. The reconstruction for PETNC and PETASC 

overestimated scatter around the urinary bladder results in 
washout artifacts or photopenic regions, potentially negatively 
impacting PET image interpretations (11). This is another mo-
tivation for developing a strategy to overcome the limitations of 
CT-based ASC for PET. 

A CT-less ASC approach that could benefit patients by re-
ducing the radiation dose and described artifacts has recently 
been demonstrated. CT-less correction was developed mainly 
for PET/MRI because MRI cannot provide the photon attenu-
ation information needed for PET ASC. Accordingly, recent de-
velopments have been focused on generating pseudo-CT images 
from MR images. These developments were enabled with use 
of deep learning by using convolutional neural networks (12–
14). Furthermore, without using MR images, the prediction of 
pseudo-CT images from noncorrected PET (PETNC) (15–17) 
and the direct prediction of attenuation- and scatter-corrected 
PET (PETASC) images from PETNC (18–20) were demonstrated. 
These predictions can also be applied in PET/CT for CT-less 
ASC. Specifically, the direct prediction of PETASC from PETNC 
is performed in the image space—not in the sinogram or pro-
jection space—in an accelerated one-step process, without any 
intermediate step (18). However, in existing studies (19,20), the 
potential benefits and pitfalls of this direct technique were not 
evaluated with use of diverse clinical cases. Rather, these studies 
were focused mainly on technical demonstration of the model’s 
feasibility and overall quantitative accuracy.

Therefore, the aim of the current study was to investigate 
the technical and clinical aspects of CT-less ASC performed 
by using deep learning, illustrating the applicability of this ap-
proach to a diversity of clinical cases, an aspect not addressed in 
the previous studies (18–20). As with any deep learning tech-
nique, there is always a risk that it will miss important patterns 
or generate pseudopatterns when it is exposed to new test data 
with different characteristics. Hence, the potential benefits and 

Abbreviations
ASC = attenuation and scatter correction, FDG = fluorodeoxyglu-
cose, MIP = maximum intensity projection, NC = noncorrected, 
PETASC = attenuation- and scatter-corrected PET, PETDL = deep 
learning–corrected PET, PETNC = noncorrected PET, SUV = stan-
dardized uptake value

Summary
CT-less direct correction of attenuation and scatter in the image 
space is feasible with use of deep learning for whole-body PET, and 
the potential benefits and pitfalls of this approach in relation to clini-
cal translation are described.

Key Points
	n Deep learning–based direct correction can reduce the radiation 

dose by removing CT solely for attenuation and scatter correction, 
potentially benefiting patients who are more sensitive to radiation.

	n Deep learning–based correction can potentially overcome the cur-
rent limitations of CT-based correction, such as motion artifacts 
near the diaphragm and washout artifacts near the bladder.

	n The pitfalls of deep learning–based correction can potentially lead 
to false-positive or false-negative results because of the technical 
limitations related to deep learning, such as resolution loss and 
data dependency.
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where ŷij and yij denote the SUV at pixel (i, j) inside the body 
for the predicted (deep learning–corrected PET [PETDL]) and 
ground truth (PETASC) images, respectively. MAX is the peak 
intensity of the image, and MSE is the mean square error. C1 
and C2 are constants; mŷ, my, sŷ, sy, and sŷy are image statistics 
(mean and standard deviation) calculated in the patch centered 
at pixel (i, j) (21).

For statistical analysis, a joint histogram was used to show the 
distribution of voxel-based correlation between the PETDL and 
reference PETASC. In addition, the distribution of voxel-based er-
rors was shown on an error histogram.

Qualitative Analysis and Presentation by Clinical 
Radiologists
A nuclear medicine physician (S.C.B.) with 10 years of expe-
rience and a postgraduate year-5 radiologic resident (J.H.S.) 
supervised by a board-certified radiologist (S.C.B.) selected 
the representative and clinically informative studies encoun-
tered in routine clinical practice from overall maximum in-
tensity projection (MIP) images. The radiologist’s review was 
focused on identifying examples of potential advantages that 
could benefit patients and identifying recurring or clinically 
significant cases of pitfalls that could cause false-positive or 
false-negative results (3). Thus, the following categories of se-
lected studies were presented: (a) representative studies from 
a healthy individual, patients with metastases, and an obese 
patient to demonstrate the overall performance of the deep 
learning approach; (b) 2-month follow-up studies and studies 
obtained in radiation-sensitive children to show the potential 
benefits for patients; (c) studies with common attenuation or 
scatter artifacts to show another potential benefit of the deep 
learning approach as compared with conventional CT-based 
ASC; (d) studies showing high-uptake lesions and other pat-
terns generated by deep learning to demonstrate potential 
pitfalls that may lead to false-negative results; and (e) stud-
ies showing pseudo–low-uptake patterns generated by deep 
learning to illustrate potential pitfalls that may lead to false-
positive results.

Results

Quantitative Agreement between PETDL and PETASC  
Compared with the reference PETASC, the PETDL had an aver-
age normalized root mean square error of 0.21 6 0.05 (mean 
SUV 6 standard deviation) and a mean peak signal-to-noise 

included corrections for normalization, decay, dead time, 
and randomness; however, postfiltering was not applied.

Deep Learning Workflow and Model Training
A two-dimensional U-Net for CT-less direct ASC in the image 
space, without any intermediate step (Fig 1), was implemented, 
as described in the literature (18), by using Keras libraries (version 
2.2.0) with a TensorFlow (version 1.9.0) backend on an Ubuntu 
18.04 server with a single graphics processing unit (Tesla V100; 
Nvidia, Santa Clara, Calif ). The proposed model was modified 
to accept an input size of 160 3 160 pixels, considering the size 
of our whole-body PET data. PETNC images (without CT-based 
ASC) and PETASC images (with CT-based ASC) were used as 
paired input and output data for training. A parametric rectified 
linear unit was used instead of a rectified linear unit for activa-
tion to improve the performance of the model. Model training 
was performed by using the mean squared error (or L2 loss) and 
an RMSprop optimizer with a learning rate initialized by 0.001 
and a minibatch of 256. Data were split such that 90% of the 
data were used for training and 10% of the data were used for 
testing (10-fold cross-validation) (18).

Quantitative and Statistical Analysis
Normalized root mean square error, peak signal-to-noise ra-
tio, and structural similarity index values were used, as de-
scribed in a previous brain study (18), to evaluate the gener-
alized performance of our proposed model with whole-body 
PET data. For evaluation, pixel values were transformed 
to standardized uptake values (SUVs), where SUV = U/
(d/w); U is the image-derived uptake (in megabecquerels 
per milliliter), d is the injection dose (in megabecquer-
els), and w is the patient’s weight (in grams). In addition,

Figure 1:  Workflow of CT-less direct attenuation and scatter correction (ASC) 
using a deep convolutional neural network (DCNN) in the image space, com-
pared with conventional attenuation correction (AC) and scatter correction (SC) 
performed separately in the sinogram space. PETASC = attenuation- and scatter-cor-
rected PET, PETDL = deep learning–corrected PET, PETNC = noncorrected PET, Recon 
= reconstruction; w/o = without.

http://radiology-ai.rsna.org
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Figure 2:  (a) Joint histogram and (b) error histogram of PET voxels at PETDL. Note that the counts were log scaled (ie, log10 [counts]) to visualize small 
counts in a and normalized to show relative ratios in b. Dashed line = slope of 0.93 derived from the joint histogram through linear
regression. SUV = standardized uptake value.

Figure 3:  PETNC (left), 
PETASC (middle), and PETDL  
(right) maximum intensity 
projection (MIP) images 
in (a) a healthy patient, 
(b) a patient with widely 
metastatic cancer, (Fig 3 
continues)

http://radiology-ai.rsna.org
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ing images obtained in patients with a high body mass index, 
which might have substantial attenuation and scatter due to 
the longer penetration distances of photons. Some loss of reso-
lution (ie, blurring), which specifically affected small lesions 
with low uptake, was observed. Rotating MIP animations of 
corresponding studies are presented in Figure E1 (supplement).

Qualitative Assessment of PETDL Benefits
Figure 4 shows the MIP images from baseline and 2-month fol-
low-up studies (Fig 4a, 4b), as well as images in two adolescent 
patients (Fig 4c, 4d), highlighting the potential applications of 
PETDL to provide patients with a clinical benefit. As illustrated 
in Figures 4a and 4b, although PETASC and PETDL images look 
alike visually, at closer assessment of the PETDL images, as com-
pared with the corresponding PETASC images, the tumor was 
overestimated and streak artifacts were observed with PETDL (Fig 
4a), and a low-uptake small lesion was blurred out with PETDL 
(Fig 4b). Nevertheless, these artifacts and blurred lesions did not 

ratio of 36.3 6 3.0. The mean structural similarity index was 
0.98 6 0.01, demonstrating a high level of similarity between 
the PETDL and PETASC. The joint histogram showed a voxel-
wise correlation (mean correlation coefficient, 97.62% 6 1.16) 
between the PETDL and PETASC, with a slope of 0.93 and an R2 
value of 0.93 (Fig 2a). The error histogram consistently showed 
that 90% of voxelwise errors stayed within an SUV of 60.5 
(Fig 2b).

Qualitative Agreement between PETDL and PETASC 
Figure 3 illustrates the overall quality of PETDL on MIP im-
ages from four representative studies: an image in a healthy 
individual (Fig 3a), images in patients with widespread (Fig 3b) 
and sparse (Fig 3c) metastases, and an image in an obese pa-
tient (Fig 3d). Specifically, the two cases of metastases showed 
the adaptability of the proposed deep learning model for vari-
ous lesion locations and sizes throughout the body. The case of 
obesity showed the robustness of the model in terms of correct-

Figure 3 (contin-
ued):  (c) a patient 
with sparsely metastatic 
cancer, and (d) an obese 
patient demonstrate the 
overall quality of PETDL im-
ages. Rotating MIP anima-
tions of PETASC and PETDL 
are shown in Figure E1 
(supplement).

http://radiology-ai.rsna.org
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Figure 4:  The potential benefits of PETDL are illus-
trated on baseline and 2-month follow-up PETASC and 
PETDL maximum intensity projection (MIP) scans in (a, 
b) patients with cancer and (c, d) adolescents who 
are at higher risk for radiation-induced damage. Note 
the overestimated tumor and streak artifacts on the DL-
corrected images in a and the small blurred out low-
uptake lesion on the DL-corrected images in b. Rotating 
MIP animations of PETASC and PETDL are shown in Figure 
E2 (supplement). Blue arrows indicate FDG findings with 
very low uptake that are not seen in PETDL.

http://radiology-ai.rsna.org
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affect the clinical interpretation and were not detected on the 
adolescent studies (Fig 4c, 4d). Rotating MIP animations from 
Figure 4 are presented in Figure E2 (supplement).

Figure 5 illustrates the robustness of the deep learning 
model in terms of some of the classic pitfalls of CT-based 
ASC. In Figure 5a, attenuation artifacts that were due to a re-
spiratory mismatch between PET and CT, as observed on the 
PETASC image, are removed on the PETDL image. In Figure 5b, 
severe washout artifacts caused by overcorrected scatter near 
the bladder on the PETASC image are removed on the PETDL 
image. Note that the patient in Figure 5b was excluded from 
the training set because of significant photopenic artifact.

Qualitative Assessment of PETDL Pitfalls
Figure 6 shows the potential pitfalls of deep learning that 
might cause false-negative results. In general, PETDL recovered 
relatively high-uptake patterns correctly, with little blurring. 
However, a high-uptake lesion was totally missed (Fig 6a) or 
substantially blurred (Fig 6b). In addition, PETDL was not able 
to correct pathologic patterns accurately in Figures 6c and 6d.

In areas of low FDG uptake, there is potential to generate 
low-uptake pseudopatterns or lose existing low-contrast pat-
terns at PETDL (Figure E3 [supplement]), potentially causing 
false-positive or false-negative results. Specifically, in the cur-
rent study, the generation of pseudopatterns or loss of existing 

Figure 5:  Coronal PETNC (far left column), PETASC (second from left column), PETDL (third from left column), and PETDL − PETASC (far right column) images illustrate the potential 
benefits of PETDL in (a) a patient with attenuation artifacts at the liver dome (blue arrows) and (b) a patient with washout artifacts near the bladder, who was excluded from 
the training set because of significant photopenic artifact. The pixel units on the difference images (far right) are standardized uptake values. Red dashed lines indicate range 
of the bladder. Blue and red coloration indicate under- and overestimated voxels in PETDL compared to the reference PETASC. 

http://radiology-ai.rsna.org
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patterns tended to occur in structures of the lung, heart, and 
bowel, the boundaries of which were not clearly distinguished 
from neighboring organs. Rotating MIP animations of Figure 
E3 are presented in Figure E4 (supplement).

Discussion
In this retrospective study, we demonstrated the feasibility of 
CT-less direct ASC in the image space using deep learning for 
whole-body FDG PET, and investigated the potential bene-
fits and pitfalls of the proposed technique in terms of clinical 
translation. Our work is an extension of the prior technical 
innovation of using deep learning for direct ASC in the im-
age space (18). Although previous studies (18–20) have been 
focused on the technical feasibility and quantitative accuracy 

of CT-less ASC, in our study, we additionally examined the 
potential clinical effect of this technique by assessing various 
imaging studies encountered in routine clinical practice. There 
is always the risk that the trained model will miss important 
patterns or generate pseudopatterns when it is exposed to new 
test data with different characteristics that are not encountered 
in the training data. In this sense, our work in analyzing po-
tential benefits and pitfalls will better inform physicians who 
are interested in applying our deep learning–based approach to 
clinical practice. Technically, because scatter correction is the 
most time-consuming process of image reconstruction, our ac-
celerated deep learning–based correction will save a great deal 
of time, specifically for dynamic PET imaging that requires 
many image reconstructions for a large number of frames.

Figure 6:  The potential pitfalls of PETDL are illustrated on noncorrected (left), attenuation- and scatter-corrected (middle), and deep learn-
ing–corrected (right) maximum intensity projection (MIP) PET images with (a) a missing one of two lesions in the chest (zoomed-in red box vs 
blue box), (b) an underestimated lesion in the spine, and (Figure 6 continues)

http://radiology-ai.rsna.org
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It is difficult to answer questions related to the clinical accept-
ability of using deep learning–predicted images without qualita-
tive assessment by well-trained and experienced nuclear medicine 
physicians (22). Therefore, the clinical readers in this study had an 
important role in qualitative assessment, which yielded clinically 
important findings of this study. Because it was difficult to manage 
many clinical cases, it was reasonable to use representative clinical 
cases chosen by expert physicians to examine the potential clinical 
impact. However, visual assessment might allow observer-depen-
dent variations. To minimize this concern, we carefully selected 
various representative cases that were encountered in routine clini-
cal practice and related to the potential advantages and pitfalls of 
deep learning, providing both MIP images and rotating MIP ani-
mations for prospective readers to check.

The diagnostic value of the CT component of PET/CT is 
undeniable in some instances. CT can help to improve anatomic 

localization of a region of FDG uptake. It can also help resolve 
potential cases of FDG PET pitfalls (eg, brown fat) and help 
avoid false-positive diagnostic interpretations (3,4). Neverthe-
less, the CT-less correction technique may benefit patients in 
different clinical situations. First, the radiation dose reduction 
achieved by using CT-less correction can be particularly benefi-
cial to patients with cancer who need to undergo longitudinal 
follow-up scanning and/or dosimetric studies, which require 
multiple PET/CT scans over short time intervals (5,6).

In our literature review, the average effective radiation 
dose from whole-body CT performed in the context of 
whole-body PET/CT was found to be 7.22 mSv, which was 
higher than the radiation dose from whole-body PET alone 
(6.23 mSv) (23). In another study (24), radiation doses from 
CT studies performed for both ASC and diagnostic purposes 
were surveyed, and the average radiation doses were found to 

Figure 6 (continued):  (c, d) uncorrected pathologic structures in the chest (red vs blue dashed ellipse). A high-uptake lesion was 
missed in a and blurred in b, and the pathologic patterns were not corrected accurately on the PETDL images in b and c.

http://radiology-ai.rsna.org
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be 1.4 mGy and 9.9 mGy for CT-based ASC and diagnostic 
CT, respectively. In this case, if our CT-less deep learning ap-
proach replaced CT-based ASC repeatedly, the accumulated 
dose reduction would be comparable to the average dose of 
radiation from diagnostic CT (9.9 mGy) and thus beneficial 
for patients who need multiple follow-up scans. A specific 
dose calculation was beyond the scope of this study because 
the radiation dose from CT varies substantially. However, 
performing whole-body CT for ASC prior to each PET ses-
sion increases the cumulative radiation dose several-fold in 
relation to the total number of repetitions, specifically for 
dosimetric studies that may require repeated PET/CT scans 
over short time intervals. In addition, the long-term accu-
mulation of radiation might lead to a substantial increase in 
the lifetime cancer risk, especially in pediatric patients, who 
are at higher risk for radiation-induced damage (7,8). Dose 
reduction is particularly relevant for this specific patient pop-
ulation, especially if we consider their long-term health. For 
this reason, radiation dose reductions at PET/CT are more 
substantial in the targeted patient population (ie, pediatric 
patients with cancer), as these patients are frequently imaged 
during the course of ongoing treatment. Therefore, although 
the individual dose reduction per scan is modest, the cumula-
tive reduction could be quite substantial for many patients.

Furthermore, this dose reduction could be beneficial in 
total-body PET/CT examinations because the ultra–low-dose 
PET feature (25) could be retained by removing the extra 
radiation dose from the CT examination required for PET-
ASC. Low-dose CT techniques may render our deep learning 
technique redundant for a while; however, considering that it 
is not yet clear whether there is a threshold dose below which 
there is no risk (26), any reduction in radiation dose, even if it 
is small, could be valuable. In addition, deep learning–based 
correction can be used to robustly manage the attenuation 
and scatter that are frequent sources of artifacts and techni-
cal limitations in CT-based corrections (10,11). Altogether, 
this technique may have a useful role in situations in which 
there is companion diagnostic imaging (eg, CT or MRI) 
or when diagnostic imaging is not necessary (ie, dosimetric 
studies). Finally, our deep learning approach could be useful 
at PET/MRI, as our deep learning approach will be free of 
MRI-derived attenuation artifacts (27) and could save time 
for performing other MRI sequences during short PET pro-
tocols (90–150 seconds) by eliminating the need to perform 
MRI  to generate pseudo-CT images (20–40 seconds). Last, 
another important point is that PETNC is still useful for dis-
tinguishing artifacts embedded on PETACS images (10).

As with any technique, there are potential pitfalls and 
limitations to overcome in terms of clinical translation. First, 
blurring was recognized throughout the body in every case 
in our study. This is the technical limitation of a deep con-
volutional neural network for low-resolution images such as 
whole-body PET scans. It is known that minimizing the eu-
clidean distance (or L2 loss) between predicted and ground 
truth pixels throughout the training tends to cause blurry re-
sults (28). Small lesions (eg, lung nodules) potentially can be 
blurred out because of this limitation, which potentially can 

result in false-negative results. However, the blurring issue 
may be overcome by using generative adversarial networks 
(28) and a superresolution deep learning technique (29). 
Building and optimizing a new neural network is a substan-
tial task, and we plan to include further developments with 
generative adversarial networks and potentially include other 
promising neural networks. Without applying such advanced 
deep learning techniques, simply using PET images recon-
structed with a smaller pixel size can prevent the blurring, 
according to results of the previous brain study (involving a 
pixel size of 1 3 1 mm) (18), in which the blurring was not 
recognized. Although the whole-body PET images used in 
this study had a large pixel size of 4 3 4 mm owing to the 
low sensitivity of the conventional PET scanner, it would be 
feasible to reconstruct PET images with a smaller voxel size 
by using a highly sensitive total-body PET system.

Second, there is always a risk of missing low-uptake lesions 
or underestimating uptake in the correction of uptake pat-
terns that were not encountered in the training data, which 
might result in false-negative results. Although only 110 
studies were used for training and testing, the deep learning–
based ASC showed potential to correct most of the patho-
physiologic patterns that were barely shown in the training 
set. Nevertheless, the risk was recognized in this study and 
in a more recent study (20) involving 1150 cases (900 for 
training, 100 for validation,150 for testing). Although a more 
generalized model could be derived from large training sets, a 
new knowledge base might not be gained by simply increas-
ing the sample size, unless a normative large database is care-
fully constructed with annotations (eg, anatomy, pathologic 
condition, body mass index, sex, age, etc) that account for in-
tra- and interpatient variations and more diverse pathophysi-
ologic patterns, including many outlier studies.

Another potential risk is the generation of low-uptake 
pseudopatterns, which could potentially result in false-pos-
itive results. These pseudopatterns were recognized on sev-
eral images, specifically around the lung, heart, and bowel, 
which had low uptake levels and thus boundaries that were 
not clearly distinguishable from those of neighboring organs. 
However, the pseudopatterns did not change any clinical in-
terpretation, at least not in our data set, because the uptake 
levels were not clinically significant. Applying generative ad-
versarial networks to the proposed deep learning model may 
reduce the likelihood of generating illusions that are not pres-
ent at the ground truth (28).

Last, although we illustrated potential pitfalls that might 
cause false-positive and false-negative results, the error rates 
were not quantified in a human-observer study. However, radi-
ologist scoring to quantify error rates would be extremely time-
consuming and impractical and unlikely to change our core 
message about risk stratification to overcome potential false-
positive and false-negative results toward clinical translation.

On the basis of the limitations described, there is still 
room for further optimization and refinement of our deep 
learning technique. For future work, an advanced network 
design (eg, generative adversarial networks) and organ-spe-
cific training will be applied to improve the precision of the 
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quantitative SUV, specifically for treatment follow-ups. The 
reference studies (21,22) demonstrated that the performance 
of a universal whole-body model was inconsistent according 
to region (eg, high-uptake brain vs low-uptake lung). Thus, 
the use of organ-specific training may overcome the limita-
tion of our universal whole-body model, with organ-specific 
models adapted to large variations of uptake patterns among 
diverse organs. In addition, it will be important and necessary 
to develop a validation program, as there is no robust and effi-
cient method for validating deep learning technologies, such 
as automatic organ- or lesion-segmentation tools and auto-
matic quality-assessment frameworks, as good surrogates for 
the human visual system (21). Finally, it will also be impor-
tant to train physicians to differentiate the potential pitfalls 
of deep learning, just as they are trained to distinguish classic 
pitfalls of FDG PET by using CT and other modalities (3,4). 
“Reading through” the classic PET/CT artifacts is an impor-
tant skill set for radiologists and nuclear medicine physicians, 
but the deep learning method, with its set of pitfalls, may 
pose a challenge to the clinical community, and more subtle 
clinically significant changes may end up going undetected 
(22). In this sense, companion diagnostic anatomic imaging 
would have an important role in helping physicians avoid the 
potential pitfalls of deep learning, if this approach were to be 
used in clinical practice.

In this study, we demonstrated the feasibility of perform-
ing CT-less direct ASC in the image space by using deep 
learning and investigated the potential benefits and pitfalls of 
this correction approach. Although the results are promising, 
further studies with larger, more diverse, and outlier clinical 
cases are needed to establish the safety and consistency re-
quired for reliable interpretation in clinical translation.
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