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Acute intracranial hemorrhage (ICH) occurs in various 
compartments within the cranial vault as a result of 

traumatic and nontraumatic causes. Non–contrast-en-
hanced CT has high sensitivity for the detection of ICH 
and remains the most commonly used initial test for most 
brain imaging (1), largely because of its rapid acquisition 
and general broad availability. Although the etiology, dis-
tribution, and associated secondary effects of ICH vary 
widely, rapid and accurate detection of ICH is critical to 
directing appropriate management or triaging of patients 
suspected of having ICH. Because of the algorithmic na-
ture of acute care, the rapid classification of patients as 
positive or negative for ICH often determines an early 
decision point in their treatment, for example, the use 
of thrombolytic therapy in ischemic infarcts. Clinically 
valuable binary classification of patients using a sensitive 
imaging test lends itself well to machine learning algo-
rithms, which is likely why these algorithms are among 
the first clinically applicable and commercially available 
devices to come to fruition in clinical application of ma-
chine learning in medical imaging.

Algorithms for the detection of ICH on non–con-
trast-enhanced CT images have recently reported very 
high accuracy on validation datasets, with areas under 
the receiver operating characteristic curve reaching as 
high as 0.99 with 98% sensitivity and 99% specificity 
(2–6) and with a reduction in median time to diagnosis 
(2). However, the outputs of these algorithms require 
application of common sense, contextual awareness, 
and judgment in their interpretation to be applied 
safely and effectively for patient care. Additionally, the 
generalizability of these models to broader populations 
is unknown, and the best practices for integration 
of these algorithms into real-time workflows remain 
undefined. Because report turnaround time is an im-
portant component of the imaging-to-treatment time, 
efficiencies introduced to expedite the interpretation 
of non–contrast-enhanced CT have the potential to 
improve patient outcomes (7).

With an ever-increasing volume of cross-sectional 
imaging and increasing clinical workload for radiolo-
gists (8), machine learning implementations have the 
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Purpose:  To determine how to optimize the delivery of machine learning techniques in a clinical setting to detect intracranial hemor-
rhage (ICH) on non–contrast-enhanced CT images to radiologists to improve workflow.

Materials and Methods:  In this study, a commercially available machine learning algorithm that flags abnormal noncontrast CT examina-
tions for ICH was implemented in a busy academic neuroradiology practice between September 2017 and March 2019. The algorithm 
was introduced in three phases: (a) as a “pop-up” widget on ancillary monitors, (b) as a marked examination in reading worklists, and 
(c) as a marked examination for reprioritization based on the presence of the flag. A statistical approach, which was based on a queuing 
theory, was implemented to assess the impact of each intervention on queue-adjusted wait and turnaround time compared with histori-
cal controls.

Results:  Notification with a widget or flagging the examination had no effect on queue-adjusted image wait (P . .99) or turnaround 
time (P = .6). However, a reduction in queue-adjusted wait time was observed between negative (15.45 minutes; 95% CI: 15.07, 
15.38) and positive (12.02 minutes; 95% CI: 11.06, 12.97; P , .0001) artificial intelligence–detected ICH examinations with repri-
oritization. Reduced wait time was present for all order classes but was greatest for examinations ordered as routine for both inpatients 
and outpatients because of their low priority.

Conclusion:  The approach used to present flags from artificial intelligence and machine learning algorithms to the radiologist can reduce 
image wait time and turnaround times.
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on the radiologists’ ancillary monitor with a list of detected 
examinations from the prior 24 hours that the tool flagged as 
positive for ICH as well as key images uploaded into the pic-
ture archiving and communication system (PACS). In phase 
2, a yellow flag labeled “AI” was added to the worklist to no-
tify the radiologist of a finding in addition to a notification 
by the widget. In phase 3, positive examinations detected by 
the tool were reprioritized to the top of the worklist, catego-
rized as “Acute AI,” and moved just under examinations with 
stroke protocol, in addition to being marked with the “AI” 
flag as in phase 2 and a notification generated by the widget 
(Fig 1, B). Visual examples of the appearance of the screens 
in phases 1, 2, and 3 are shown in Figure 2. The AI tool 
generated results in near real time after the examination ar-
rived in the PACS. The processing time of the AI tool did not 
affect report turnaround time during any phase because the 
processing occurred prior to the examination being marked 
as ended and populating the reading worklist. No other 
substantial changes were made that could affect report turn-
around time during the study period, including hardware, 
software, PACS, reading rooms, and staffing personnel. We 
then analyzed the effect of the AI tool for each phase on both 
the wait time and reprioritization during all three phases as 
well as its effect on reading time.

Patient Data Collection
All non–contrast-enhanced CT examinations performed be-
tween September 20, 2017, and March 31, 2019, and their 
corresponding reports were available for analysis. Phase 0 
data from September 20, 2017, to March 31, 2018, were 
used as control data for comparison with data obtained in 
each subsequent phase following integration of this AI tool 
into the neuroradiology workflow for the detection of ICH 
at non–contrast-enhanced CT (AIDoc, New York, NY). Data 
were matched for each phase with the corresponding quar-
ter, 1 year prior to implementation of this new tool to ad-
dress potential seasonal variation. For each process step, time 
stamps were extracted from the electronic medical record 
(Epic Radiant, Verona, Wis) and the dictation system (Nu-
ance Powerscribe, Burlington, Mass). End-of-examination 
time was defined as the time stamp corresponding with the 
technologist marking the examination ended in the electronic 
medical record. The primary study end point was the wait 
time, which was defined as the interval between end-of-ex-
amination time stamp and initial report creation time stamp. 
The secondary end point was the reading time, which was 
defined as the time between the first report creation and first 
report submission. Using these time stamps, we examined the 
relationship between the AI tool and the time a study spent 
in the worklist or wait time. Examinations performed outside 
of normal working hours were excluded to reduce confound-
ing variables that could not be controlled for in the analysis, 
such as, for example, different faculty and trainee coverage 
models after hours and on weekends or variability in outpa-
tients being scanned on some weekend days. Additionally, ex-
aminations identified as outliers because of technical factors 

potential to improve radiologist productivity and accuracy. 
The adoption of artificial intelligence (AI) and machine learn-
ing algorithms is dependent on the demonstration of a tan-
gible effect on patient care and an improvement in radiologist 
workflow. Thus, in this study, we aimed to assess whether (a) 
the introduction of an algorithm for the detection of ICH at 
noncontrast CT would affect turnaround times and (b) if the 
impact on turnaround time was dependent on the manner in 
which information was presented in the radiologist workflow.

Materials and Methods

Experimental Design
This study of the impact of an AI tool on radiologist reading 
workflow was approved by the institutional review board at 
the authors’ institution. A high-level process diagram illus-
trating the existing radiologist reading workflow is shown in 
Figure 1, A. As each imaging examination is marked com-
pleted by the technologist, it is placed on the radiologist’s 
worklist or queue with the most recently completed exami-
nation placed at the bottom of the list. Examinations with 
higher priority (typically based on the imaging order prior-
ity as defined by the referring physician) are placed higher 
in the list regardless of the time of insertion. The existing 
workflow included the following worklist prioritization lev-
els (high to low): (i) stroke protocol, (ii) emergency depart-
ment, (iii) inpatient highest order priority as selected by the 
ordering provider (STAT), (iv) inpatient urgent, (v) inpa-
tient routine, (vi) outpatient STAT, (vii) outpatient urgent, 
and (viii) outpatient routine.

To examine the effect of the manner of presentation of the 
finding to the radiologist, we presented positive findings from 
the AI tool in three ways. In phase 1, a notification widget 

Abbreviations
AI = artificial intelligence, ICH = intracranial hemorrhage, PACS 
= picture archiving and communication system, STAT = highest 
order priority as selected by the ordering provider

Summary
Implementation of an algorithm for the detection of intracranial 
hemorrhage on non–contrast-enhanced head CT studies into the 
clinical workflow reduced wait time, and thus overall turnaround 
time, when specifically used to prioritize examinations.

Key Points
	n Active reprioritization of the worklist significantly reduced the 

wait time for examinations with artificial intelligence (AI)–identi-
fied presence of intracranial hemorrhage (ICH) compared with 
those without AI (12.01 minutes per study during phase 3 vs 
15.75 minutes per study during baseline, P , .0001).

	n An ancillary widget and worklist flag indicating ICH, as indicated 
by an acute AI detection tool and integrated into the radiologist 
workflow, had no significant impact on examination wait time 
(16.09 minutes per study during phase 1, 14.88 minutes per study 
during phase 2, 15.76 minutes per study at baseline).

	n Queuing models provide a framework for the analysis of the im-
pact of AI tools and other tools on diagnostic radiologist workflow.
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Statistical Analysis
By directly observing the wait time and queue size of a study, 
we sought to minimize those confounding effects that could 
affect the report turnaround time, such as reading room con-
gestion. We propose a linear model to investigate the associa-

or additional reconstructions were excluded if a time stamp 
error resulted in an erroneous reading time or waiting time 
of less than 0 or greater than 6 hours. Also, studies without 
an assigned order priority were excluded as they could not be 
appropriately assigned to an analysis group.

Figure 1:  A, High-level process diagram illustrates the radiologist reading workflow. As each imaging examination was completed, it was placed 
on the radiologist’s worklist or queue, with the most recent examination placed at the bottom of the list. Examinations with higher priority (typically based 
on the order priority: STAT [highest order priority as selected by the ordering provider], urgent order priority, routine order priority) are placed higher in 
the list regardless of the time of insertion. B, Overview of data collection phases. Data were collected during a control interval (phase 0) and with the 
three approaches as described in the methods.

Figure 2:  Screenshots show the visual display of an artificial intelligence finding in a production reading environment. Left panel: phase 1 with widget only. Center panel: 
phase 2 with yellow flag in a worklist. Right panel: phase 3 with yellow flag and reprioritization in a worklist.

http://radiology-ai.rsna.org
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is not directly considered. The effect of the priority is conveyed 
through the calculation of Qi and Qijk as they only count exami-
nations with higher priority.

The proposed model also indicates that the effect of the AI 
tool interacts with the queue size. This was done because AI 
ICH prediction is essentially an additional triage algorithm 
that increases the priority of the AI ICH–positive examina-
tion. Thus, AI ICH–positive examinations would be marked 
and moved up in the queue; therefore, the wait time would be 
reduced for these specific examinations. On the other hand, if 
there are no examinations in the queue, there should be no dif-
ference in wait time regardless of the AI ICH result. We used 
analysis of covariance to test the difference among ajk (compar-
ing slopes).

tion between the number of examinations in the 
queue and the wait time. The first proposed 
model is as follows:

yi 5 ajkQi 1 ei ,

where yi is the wait time for examination i; Qi is 
the queue size, as the number of equal or higher 
priority examinations already in the queue ac-
cording to existing prioritization rules when 
examination i arrives plus any additional higher 
priority examinations arriving during examina-
tion i’s wait time; and ei summarizes all unex-
plained variability by the model. j and k are indi-
cators of the AIDoc implementation phase and 
AI ICH prediction for examination i, such that

0 : phase 0
1: phase1 
2 : phase 2
3: phase 3

j
j
j
j

=
 =
 =
 =

and

1: AI ICH positive
0 : AI ICH negative

k
k
=

 =
.

Because the AI tool was not implemented during phase 0, a00 = 
a01. The validity of these models was assessed by scatterplot and 
r2, where r2 was interpreted as a percentage variability explained 
by the model.

Of note in the proposed model, there is no intercept term. 
This is intentional in the case that, if there are no examinations 
in the queue and no examination was being read, the wait time 
of an incoming examination would be zero. Second, the exami-
nation priority (STAT, urgent inpatient, urgent outpatient, etc) 

Table 1: Characteristics of the Cohorts in Each Phase

Characteristic Phase 0 Phase 1 Phase 2 Phase 3

No. of examinations 2296 359 1495 2546
AI ICH negative 2296 (100) 317 (88.3) 1342 (89.8) 2258 (88.7)
AI ICH positive … 42 (11.7) 153 (10.2) 228 (11.3)
Order ED 701 (30.5) 119 (33.1) 473 (31.6) 1028 (40.4)
Order inpatient STAT 525 (22.9) 76 (21.2) 337 (22.5) 575 (22.6)
Order inpatient urgent 119 (5.2) 20 (5.6) 103 (6.9) 131 (5.1)
Order inpatient routine 310 (13.5) 52 (14.5) 177 (11.8) 271 (10.6)
Order outpatient STAT 130 (5.7) 23 (6.4) 71 (4.7) 113 (4.4)
Order outpatient 

urgent
41 (1.8) 6 (1.7) 41 (2.7) 41 (1.6)

Order outpatient 
routine

470 (20.5) 63 (17.5) 293 (19.6) 387 (15.2)

Note.—Data are numbers, with percentages in parentheses. AI = artificial intelligence, ED = emer-
gency department, ICH = intracranial hemorrhage, STAT = highest order priority as selected by the 
ordering provider.

Figure 3:  Median wait time and reading time prior to interventions. ER = emergency room, IP = 
inpatient, OP = outpatient, R = routine, STAT = highest order priority as selected by the ordering provider, 
UR = urgent order priority.

http://radiology-ai.rsna.org
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when appropriate. A P value of less than .05 was 
considered to represent statistical significance.

Results

Cohort Priority and Phase Characteristics
Table 1 shows the characteristics of the groups for 
each phase of the study. In the case of multiple 
examinations with different linked procedures 
(eg, CT brain and cervical spine) performed 
in the same patient and read concurrently, we 
grouped them into one study and assigned the 
highest priority within those examinations. We 
then excluded examinations in which at least 
one examination linked with the study was per-
formed after hours or on a weekend. A total of 
6.73% (483 of 7179) of examinations were ex-
cluded for technical factors, which resulted in a 
total of 6696 examinations used in the subse-
quent analyses. As shown in Table 1, prevalence 
of AI ICH prediction and order priorities were 
comparable among the different cohorts. Me-
dian wait time and reading time for each order 
priority at baseline are shown in Figure 3, which 
indicates that the major bottleneck in report 
turnaround time was the wait time in examina-
tions with lower-order priorities.

Effect on Wait Time for Each Phase
A linear relationship between queue size and wait time was ob-
served for all priorities (Fig 4) with r2 of 0.67. No difference 
in queue size adjusted wait time (Table 2, Fig 5) was found 
between AI ICH–positive and AI ICH–negative examinations 
during phase 1 and 2 (Bonferroni adjusted P . .99 and .99) 
or between AI ICH–positive examinations during phase 1 and 
2 and examinations during baseline (adjusted P . .99 and P 
= .6). However, a reduction in wait time between AI ICH–
positive (12.01 minutes; 95% CI: 11.06, 12.97) and negative 
(15.45 minutes; 95% CI: 15.07, 15.83; P , .0001) exami-
nations, as well as baseline (15.75 minutes; 95% CI: 15.39, 
16.11; P , .0001), was observed in phase 3.

Effect on Read Time for Each Phase
After adjustment, median read time when AI ICH was posi-
tive was 8.48 minutes (95% CI: 7.59, 9.48) and 6.98 minutes 
(95% CI: 6.48, 7.51) when AI ICH was negative (Table 3, Fig 
6). However, different phases during the AI implementation 
period (phases 1, 2, and 3) were not significantly different and 
thus were not included during the stepwise procedure. Other 
factors that independently affected reading time included or-
der priority and whether the reader was a trainee or faculty 
(Table 3). Reading times for emergency department examina-
tions were shorter than those of inpatient STAT (adjusted P 
, .0001), inpatient urgent (adjusted P = .004), inpatient rou-
tine (adjusted P , .0001), and outpatient routine (adjusted 
P , .0001). Reading times of examinations first reported by 

To compare reading times, a log-linear model was used to test 
the effect of AI ICH during each implementation phase after ad-
justing for priority, trainee or faculty, and implementation phase. 
A stepwise selection algorithm was used to select from all main 
and two-way interaction terms.

All analyses were performed in SAS 9.4 (SAS Institute, Cary, 
NC). Bonferroni adjustment was used for multiple comparison 

Figure 4:  Scatterplot of wait time versus queue size for all phases of the study. A linear relationship 
between queue size and wait time was observed. A regression line indicating the wait time as a function 
of queue size has been added. Neither the widget (phase 1) nor the flagging (phase 2) had an effect 
compared with the control. Flagging with reprioritization (phase 3) demonstrated a greater reduction in 
wait time as queue size increased. AI = artificial intelligence, ICH = intracranial hemorrhage.

Table 2: Effect of Phase on Queue-adjusted Wait Time

Phase and Label
Queue-adjusted Wait Time 
(min) 

Phase 0
  Baseline 15.75 (15.39, 16.11)
Phase 1
  AI ICH negative 16.83 (15.82, 17.83)
  AI ICH positive 16.09 (13.29, 18.89)
Phase 2
  AI ICH negative 15.11 (14.66, 15.56)
  AI ICH positive 14.88 (13.92, 15.84)
Phase 3
  AI ICH negative 15.45 (15.07, 15.83)
  AI ICH positive 12.01 (11.06, 12.97)

Note.—Data in parentheses are 95% CIs. Artificial intelligence 
(AI) intracranial hemorrhage (ICH)–positive examinations in 
phase 3 had lower queue-adjusted wait times than AI ICH–nega-
tive examinations in phase 3 (adjusted P , .0001) and examina-
tions in baseline (adjusted P , .0001).

http://radiology-ai.rsna.org
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trainees were 68% longer than reading times by 
faculty (P , .0001). However, this effect would 
depend on the specific workflow used in the 
training environment. Table 4 shows the esti-
mated median read time for each phase and AI 
ICH status.

Discussion
Our study shows that the presence of a pop-
up widget or flagged examinations in the read-
ing worklist had no measurable impact on the 
wait time and that active reprioritization of the 
worklist significantly reduced the wait time for 
examinations with AI-identified presence of 
ICH, particularly when those examinations were 
not STAT or urgent priority. We have shown 
that the major bottleneck for report turnaround 
time is the amount of time an examination waits 
in the worklist, and in this study, we consider 
queue size for each incoming examination in a 
reading room workflow. We observed that more 
than 90% of the report turnaround time can be 
contributed to wait time for examinations with 
the lowest priority (routine) and more than 60% 
for STAT examinations (highest priority) on av-
erage. AI-based automatic prioritization appears 
to have significant potential to reduce report 
turnaround time in targeted populations because 
of its effect on wait time.

Triaging incoming patients has previously been based on 
the assessment of the ordering provider’s pretest probability or 
patient location. A variety of worklist prioritization approaches 
have been discussed in the literature, including manual priori-
tization of shortest tasks, grouping similar tasks (9), expanding 
prioritization to a nine-point scale assigned by technologists 
(10), automatically sorting and distributing examinations ac-
cording to a patient’s medical acuity and other factors (11), and 
automatically prioritizing acute stroke protocol head CT exami-
nations (12). However, new technologies such as AI may allow 
the radiologist to dynamically modify workflows to improve pa-
tient care based on a posttest prediction algorithm (13).

An important consideration to rapidly assess the impact of 
AI and other tools in improving workflow is the development of 
models that can reflect the multiple factors that influence out-
come measures such as wait time and report turnaround time. 
Many factors substantially confound the measurement of these 
times, including the number of examinations with the same pri-
ority already in the worklist, the number of radiologists read-
ing examinations, and case difficulty. This wide variety of fac-
tors leads to a large amount of unexplained variability and the 
distribution of report turnaround time reflecting a mixture of 
multiple distributions. Additionally, when the disease prevalence 
is low, even nonparametric tests, such as the Mann-Whitney U 
test, are likely not testing the difference in median (due to the 
equal variance and/or spread assumption not being satisfied). 
Researchers often rely on large sample sizes and hope the group 

Table 3: Estimated Median Read Time

Variable and Level Median Read Time (min)

AI ICH*
  Positive 8.48 (7.59, 9.48)
  Negative 6.98 (6.48, 7.51)
Priority†

  ER 6.20 (5.7, 6.7)
  IP STAT 8.01 (7.36, 8.72)
  IP urgent 8.1 (7.11, 9.22)
  IP routine 8.61 (7.75, 9.56)
  OP STAT 7.4 (6.3, 8.7)
  OP urgent 7.5 (5.93, 9.47)
  OP urgent 8.33 (7.56, 9.18)
Reader‡

  Trainee 10.00 (9.21, 10.87)
  Faculty 5.92 (5.49, 6.37)

Note.—Analysis was performed on log-transformed data, and 
values in the table were transformed back to minute per exami-
nation. Data in parentheses are 95% CIs. AI = artificial intel-
ligence, ER = emergency room, ICH = intracranial hemorrhage, 
IP = inpatient, OP = outpatient, STAT = highest order priority 
as selected by the ordering provider. 
*The presence of AI ICH correlated with an increased reading 
time by 21% (P = .002).
† Reading time for emergency department examinations was 
significantly shorter than that of IP STAT (adjusted P , .0001), 
IP urgent (adjusted P = .004), IP routine (adjusted P , .0001), 
and OP routine (adjusted P , .0001).
‡ Trainee readers had increased reading time by 68% compared 
with faculty readers (P , .0001).

Figure 5:  Impact of interventions on queue-adjusted wait time. Mean line-adjusted wait time is 
shown for all examinations during each phase regardless of initial priority. Note that delivery of the AI 
information in phases 1 and 2 did not change mean line-adjusted wait time, whereas reprioritization in 
phase 3 significantly reduced wait time. AI = artificial intelligence, ICH = intracranial hemorrhage.

http://radiology-ai.rsna.org
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means will approximate a normal distribution by the central 
limit theorem. For example, all previously mentioned studies 
either relied on a case-control design (2) or large datasets with 
10 000 to well over 1 000 000 examinations (10–12,14).

Diagnostic performance of the same algorithm used in our 
study has been independently assessed by Ojeda et al (15) with 
7112 noncontrast head CT studies from two institutions. A 
sensitivity of 95% and specificity of 99% was reported. Assum-
ing similar performance of the algorithm in our study, and with 

11% observed AI ICH–positive examinations, the positive pre-
dictive value can be estimated as 92%, and the negative predic-
tive value can be estimated at 99% (thus 8% [34 of 423] of 
the AI ICH–positive examinations were incorrectly prioritized, 
whereas 1% [39 of 3917] of AI ICH–negative examinations 
were incorrectly unprioritized). Thus, on average, fewer than one 
examination was misclassified either way per day. The impact of 
a false-positive result deprioritizing other examinations is small, 
if not negligible, and would appear to the reading radiologist as 
an algorithm erring on the side of caution. An overly sensitive 
algorithm with poorer performance may substantially impact a 
radiologist’s workflow, though this effect was not observed dur-
ing our implementation of this algorithm. False-negatives occur 
very infrequently, follow existing prioritization rules within the 
worklist, and thus have a negligible impact.

Our study had several limitations. First, examinations other 
than non–contrast-enhanced CT scans were read by the radi-
ologists from other worklists, which were not included in this 
dataset. This resulted in underestimation of the queue size and 
overestimation of the queue-adjusted wait time. Second, com-
mercial AI software is in rapid evolution, and the AI tool was 
not locally retained. Third, outlier, after hours, and weekend 
examinations were excluded from this analysis; thus, the im-
pact of AI on outliers should be analyzed separately, as it was 
not included in this study. Last, we did not have a concur-
rent control group. However, we did examine the adjusted wait 
times for ICH-negative examinations (for all postimplementa-
tion phases) and baseline examinations (phase 0), which were 
all very similar.

Table 4: Median Read Time for Different Phases and AI 
ICH Results

Phase and Label Median Read Time (min)

Phase 0
  Baseline 4.84 (4.62, 5.07)
Phase 1
  AI ICH negative 5.34 (4.83, 5.9)
  AI ICH positive 8.58 (6.64, 11.07)
Phase 2 
  AI ICH negative 5.88 (5.57, 6.22)
  AI ICH positive 8.92 (7.78, 10.22)
Phase 3
  AI ICH negative 5.59 (5.07, 6.17)
  AI ICH positive 6.23 (4.07, 9.54)

Note.—Data in parentheses are 95% CIs. AI = artificial intel-
ligence, ICH = intracranial hemorrhage.

Figure 6:  Independent variables that affect reading time. Mean reading time 
is shown for each combination of, A, examination priority and patient location, B, 
presence or absence of artificial intelligence intracranial hemorrhage flag, and, C, 
faculty or trainee primary reader. AI = artificial intelligence, ICH = intracranial hem-
orrhage, IP = inpatient, OP = outpatient, R = routine, STAT = highest order priority as 
selected by the ordering provider, UR = urgent order priority.

http://radiology-ai.rsna.org
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In conclusion, our analysis demonstrated that the introduc-
tion of an algorithm for the detection of ICH at non–contrast-
enhanced CT, when specifically used to prioritize examinations, 
reduced wait time and thus overall turnaround time.
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