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Abstract  
 
Rationale: Viral infection of the respiratory tract can be associated with propagating 
effects on the airway microbiome, and microbiome dysbiosis may influence viral disease.  

Objective: To define the respiratory tract microbiome in COVID-19 and relationship 
disease severity, systemic immunologic features, and outcomes. 

Methods and Measurements:  We examined 507 oropharyngeal, nasopharyngeal and 
endotracheal samples from 83 hospitalized COVID-19 patients, along with non-COVID 
patients and healthy controls.  Bacterial communities were interrogated using 16S rRNA 
gene sequencing, commensal DNA viruses Anelloviridae and Redondoviridae were 
quantified by qPCR, and immune features were characterized by lymphocyte/neutrophil 
(L/N) ratios and deep immune profiling of peripheral blood mononuclear cells (PBMC). 

Main Results: COVID-19 patients had upper respiratory microbiome dysbiosis, and 
greater change over time than critically ill patients without COVID-19.  Diversity at the 
first time point correlated inversely with disease severity during hospitalization, and 
microbiome composition was associated with L/N ratios and PBMC profiles in blood. 
Intubated patients showed patient-specific and dynamic lung microbiome communities, 
with prominence of Staphylococcus.  Anelloviridae and Redondoviridae showed more 
frequent colonization and higher titers in severe disease.  Machine learning analysis 
demonstrated that integrated features of the microbiome at early sampling points had 
high power to discriminate ultimate level of COVID-19 severity. 

Conclusions:  The respiratory tract microbiome and commensal virome are disturbed in 
COVID-19, correlate with systemic immune parameters, and early microbiome features 
discriminate disease severity.   Future studies should address clinical consequences of 
airway dysbiosis in COVID-19, possible use as biomarkers, and role of bacterial and 
viral taxa identified here in COVID-19 pathogenesis.  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 5, 2021. ; https://doi.org/10.1101/2021.04.02.21254514doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://doi.org/10.1101/2021.04.02.21254514
http://creativecommons.org/licenses/by-nc-nd/4.0/


 2 

 

Abstract Word Count: 250 

Keywords: SARS-CoV-2, coronavirus, 16S rRNA gene sequencing, Redondovirus, 

Anellovirus, respiratory microbiome 

 

Funding: This work was supported in part by the Penn Center for Research on 

Coronaviruses and Other Emerging Pathogens and NIH grant R33-HL137063 (R.G.C., 

F.D.B.). E.J.W. was supported by NIH grants AI105343, AI082630, the Allen Institute for 

Immunology and the Parker Institute for Cancer Immunotherapy.  J.R.G. was supported 

by the NIH (T32 CA009140) and a Cancer Research Institute-Mark Foundation 

Fellowship 

 

 

Further information and requests for resources and reagents should be directed to and 

will be fulfilled by the Lead Contacts, Frederic D. Bushman 

(bushman@pennmedicine.upenn.edu) and Ronald G. Collman 

(collmanr@pennmedicine.upenn.edu). 

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 5, 2021. ; https://doi.org/10.1101/2021.04.02.21254514doi: medRxiv preprint 

https://doi.org/10.1101/2021.04.02.21254514
http://creativecommons.org/licenses/by-nc-nd/4.0/


 3 

Introduction 

COVID-19, caused by the coronavirus SARS-CoV-2, is a global pandemic with 

severe morbidity and mortality, and unprecedented economic and social disruption. A 

striking feature of COVID-19 is the wide variance in clinical severity among infected 

people. Many factors correlate with COVID-19 disease severity, including age, gender, 

body mass index, prior comorbidities, immune responses and genetics (1-3), yet the 

determinants of infection outcome and pathogenic mechanisms are incompletely 

understood. Here we investigate the potential relationship between COVID-19 severity 

and the microbiome of the respiratory tract.  

The respiratory tract is the site of initial SARS-CoV-2 infection and the most 

common site of serious clinical manifestations. Infection of any mucosal surface occurs 

in the context of its endogenous microbiome, and bi-directional interactions between 

host and microbiota commonly contribute to infection and pathogenesis. For example, 

influenza predisposes to secondary bacterial infection in the respiratory tract, which is 

responsible for much of its morbidity and mortality (4-7). Conversely, prior disruption of 

the normal microbiome can influence susceptibility to or pathogenesis of respiratory 

viruses such as influenza and respiratory syncytial virus (8-10). Few studies have 

addressed the respiratory tract microbiome in COVID-19 or links to outcome, though 

early data report evidence of dysbiosis (11, 12). 

Here we investigated signatures of COVID-19 disease in the respiratory tract 

microbiome, analyzing 507 oropharyngeal, nasopharyngeal and endotracheal 

specimens from 83 hospitalized COVID-19 patients. We also collected 75 specimens 

from 13 critically ill patients hospitalized for other disorders. Bacterial community 

composition was assessed using 16S rRNA gene sequencing. Levels of commensal 

viruses of the human airway, specifically Anelloviridae and Redondoviridae, were 

quantified using qPCR. These small circular DNA viruses have been reported to vary in 
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abundance in association with disease states and/or immune competence (13-15), so 

we reasoned that they might report aspects of COVID-19 disease status. Finally, we 

queried the relationship between the airway microbiome and immune profiles in blood. 

Our analysis revealed dysbiosis of the upper and lower respiratory microbiome, 

differences between COVID-19 and non-COVID patients, associations with systemic 

inflammation, and microbial signatures distinguishing COVID-19 severity. 

 

Materials and Methods 

Subjects 

Following informed consent (IRB protocol #823392), samples were collected beginning a 

median of 4 days after hospitalization (generally within one week of hospitalization or 

identification of COVID+ status if post-admission). Oropharyngeal (OP) and 

nasopharyngeal (NP) swabs, and endotracheal aspirates (ETA) from intubated subjects, 

were obtained as previously described (16). Additional OP and NP swabs were obtained 

and eluted in viral transport media (VTM) for SARS-CoV-2 analysis as previously 

described (17). COVID-19 patients were classified clinically by maximum score reached 

during hospitalization using the 11-point WHO COVID-19 progression scale (18). Non-

COVID subjects were patients hospitalized in the intensive care unit (ICU) with a variety 

of underlying disorders. Healthy controls included 30 individuals who underwent OP and 

NP sampling and 12 subjects who underwent bronchoscopy and bronchoalveolar lavage 

(BAL) previously as described (16, 19, 20). 

 

16S rRNA gene sequencing and analysis 

DNA extraction, 16S rRNA gene PCR amplification using V1V2 primers, and 

Illumina sequencing was carried out as described (21, 22). NP, OP and BAL 16S rRNA 

gene V1V2 sequences of healthy controls were acquired previously using the Roche 454 
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GS-FLX platform (16, 19, 20), which we showed yields comparable results to and can be 

integrated with Illumina data (16). Processing using the QIIME2 pipeline, calculations of 

alpha-diversity, UniFrac distances, principal coordinate analysis (PCoA), and 

PERMANOVA testing are detailed in Supplemental Methods.  For analyses comparing 

groups with different numbers of samples per subject, PERMANOVA testing used 

specimens randomly subsampled 1000 times to one sample per patient and mean p 

values reported.   

 

Viral analysis  

Extracted DNA was amplified using Phi29 DNA polymerase and random hexamers, then 

subject to qPCR using primers/probes that target Redondoviridae (RV) and Anelloviridae 

as described (15, 23).  Levels of SARS-CoV-2 RNA were quantified in total RNA 

extracted from ETA or VTM and complete SARS-CoV-2 genome sequences were 

generated as recently reported (17). 

 

Clinical and immune data 

Clinical laboratory test results were extracted from the electronic medical record. Flow 

cytometric cellular immune profiling of PBMC was available on a subset of subjects as 

described (24). The unbiased Uniform Manifold Approximation and Projection (UMAP) 

approach was used to distill 193 individual immune components into two principal 

components (24). The microbiome unweighted UniFrac PCoA was compared with blood 

cellular UMAP analysis using Mantel's test and Procrustes analysis.  

 

Statistical analysis 

Nonparametric tests were used to compare two independent groups (Wilcoxon rank-sum 

test), two related groups (Wilcoxon signed-rank test) and multiple groups (Kruskal–
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Wallis test). Spearman’s rank-order correlation was used for non-parametric correlation 

analysis. Fisher’s exact tests were used to test difference between two categorical 

variables. P values are from two-sided comparisons. P values for multiple comparisons 

were corrected using the Benjamini–Hochberg FDR method. Random forest 

classification was implemented using the randomForest package (v4.6-14) in R. 

Decision trees were trained on data consisting of bacterial relative abundance at the 

genus level and small circular DNA viruses copy numbers (Redondoviridae or 

Anelloviridae) in samples from the first two time points as detailed in Supplemental 

Methods.  

 

Results 

Subjects, specimens and SARS-CoV-2 analysis 

The 83 COVID-19 patients (Tables 1, E1 and Figure S1) had a median age of 64 years 

(range 36-91) and included 39 women and 44 men. Fifty-six identified as Black (67%), 

20 White (24%), 3 Asian (4%) and 4 unknown/other race (5%). All but 5 had at least one 

underlying major organ system comorbidity. Forty (48%) required intubation and invasive 

mechanical ventilation, and 20 (24%) died. Each patients' clinical course was classified 

by maximal severity reached during hospitalization based on the WHO 11-point scale 

(18) in which hospitalized patients are level 4 or above, intubated subjects level 7 or 

above, and fatal outcomes are 10. Non-COVID critically ill patients (n=13) included a 

variety of underlying diseases, of whom 62% required intubation and 6 (46%) died. 

Upper respiratory tract (OP and NP) and lung (ETA) sampling was carried out serially, 

yielding a total of 582 specimens for microbiome analysis (507 COVID-19, 75 non-

COVID). Healthy volunteers provided NP and OP (n=30) and lung (BAL; n=12) 

specimens (16, 19, 20). 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 5, 2021. ; https://doi.org/10.1101/2021.04.02.21254514doi: medRxiv preprint 

https://doi.org/10.1101/2021.04.02.21254514
http://creativecommons.org/licenses/by-nc-nd/4.0/


 7 

 SARS-CoV-2 RNA levels were variable among subjects and sample types 

(Figure S2). As expected, SARS-CoV-2 RNA levels declined to undetectable over time 

in most patients, although several had persistently detectable RNA in ETA beyond 3 

weeks post-symptom onset. There was no association between SARS-CoV-2 RNA 

levels and WHO score or clinical outcomes (Wilcoxon rank-sum test). Complete SARS-

CoV-2 genome sequences were determined for 26 subjects as recently reported (17). All 

viral genomes were members of the B.1 lineage, which encodes the D614G variant in 

Spike and most also had the P314L variant in the RNA-dependent RNA polymerase 

(RdRp) located on ORF1b (25, 26).  

 

Respiratory tract bacterial dysbiosis in COVID-19 

 Bacterial communities were interrogated using primers targeting the V1V2 region 

of the 16S rRNA gene, which has been employed extensively for airway samples (21, 

22) (Figures 1, S3). Oropharyngeal and nasopharyngeal communities of COVID-19 

patients differed markedly from healthy subjects using the unweighted UniFrac metric, 

which compares samples based on bacterial presence-absence information (Figure 

1A,B; p<0.00001 both OP and NP). We then compared COVID-19 to non-COVID 

patients, and COVID-19 patients to each other based on maximal severity during 

hospitalization.  COVID-19 patients were grouped as WHO 4-6 (moderate/severe, non-

intubated), WHO 7-9 (critical/intubated) and WHO 10 (fatal) (Figure 1B,C). In both 

oropharynx and nasopharynx, there was significant separation between groups. In 

pairwise comparisons, all COVID-19 groups were significantly different from the non-

COVID group (FDR<0.01 OP, FDR<0.05 NP). Oropharyngeal swabs also showed 

separation between COVID-19 patients with moderate/severe (WHO 4-6) and 

critical/fatal (WHO 7-10) outcomes (FDR<0.06).  
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 We compared bacterial phyla that differed between groups, using repeated 

random subsampling to reduce bias associated with sicker patients being hospitalized 

longer and having more samples (Figure 2A,B). Across groups, COVID-19 patients had 

lower OP abundance of Proteobacteria than non-COVID patients, and a trend toward 

greater abundance of Bacteroidetes (FDR=0.008 and FDR=0.06, respectively; Kruskal 

Wallis). NP communities showed similar trends but did not meet the FDR threshold for 

statistical significance. Pairwise between-group comparisons are shown in Figure 2. 

We then assessed the first sampling time point and found that, among of COVID-

19 patients, decreased oropharyngeal Proteobacteria and Actinobacteria correlated with 

greater WHO score over the course of hospitalization (Spearman’s rho: -0.36 and -0.28 

respectively; FDR=0.008 and 0.05 respectively). At the genus level, patients with more 

severe disease had significantly lower relative abundances of Hemophilus, Actinomyces 

and Neisseria (FDR<0.05, Figure S4), all of which are abundant in the normal 

oropharyngeal microbiome.  

 Alpha-diversity in oropharyngeal samples at the first time point also correlated 

with COVID-19 severity, with lower diversity associated with higher WHO score 

(Spearman’s rho: -0.37, p=0.0006, Figure 2C).  We then assessed rate of change over 

time, comparing COVID-19 and non-COVID subjects. Community types were 

summarized using weighted UniFrac values, which scores bacterial abundances, and 

divergence over time from the subject's initial sample was calculated (Figure 2E). The 

rate of change in oropharyngeal bacterial community structure was significantly greater 

in COVID-19 than non-COVID subjects (p=0.005, Kruskal-Wallis), indicating that COVID-

19 patients experience greater destabilization of bacterial communities during their 

illness. Significant differences were not seen with unweighted UniFrac, emphasizing that 

differences were primarily associated with changes in community proportions rather than 

membership. 
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The lung microbiome in intubated COVID-19 patients 

 The lung microbiome was interrogated in endotracheal aspirate (ETA) samples 

from 24 intubated subjects (Figure 3).  ETA from COVID-19 patients had markedly lower 

diversity than lung communities from healthy people (Simpson index 0.56 vs 0.86; 

p=5.1x10-6, Wilcoxon rank-sum test, Figure 3A). Lineages were heterogeneous and 

revealed both common respiratory pathogens (Staphylococcus, Klebsiella, 

Stenotrophomonas) and taxa typical of upper respiratory tract communities 

(Corynebacterium, Prevotella).  

 Six of 24 subjects had one or more ETA samples dominated by Staphylococcus 

(subjects 196, 197, 213, 248, 272, 288), and another three revealed Staphylococcus as 

a prominent minority constituent (209, 252, 269). Of the 5 subjects with Staphylococcus 

domination who had respiratory culture within 1 week of sampling, only 3 had S. aureus 

identified by culture, suggesting that either 16S sequencing is more sensitive than 

culture, or dominant Staphylococcus is not S. aureus. Three subjects had ETA samples 

dominated by Enterococcus (252, 256, 269). Other respiratory pathogen taxa that 

dominated smaller numbers of samples (two patients each) included Stenotrophomonas, 

Enterobacteriaceae (identified as Klebsiella aerogens by BLAST) and Enterobacterales 

(Eschericia coli by BLAST). 

 Among subjects who had serial ETA samples, several showed stable 

composition over time (203, 204,206, 218, 252, 288), while some demonstrated modest 

or gradual compositional evolution (212, 255, 256). In contrast, several showed marked 

changes between longitudinal samples (196, 225, 248, 261, 269). Thus, the lower 

respiratory tract microbiome in critically ill intubated COVID-19 patients is low diversity, 

can be dominated by either pathogens or normal upper respiratory taxa, may have a 

predilection for Staphylococcus, and can be highly dynamic.  
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Commensal DNA viruses are associated with disease severity 

We next assessed the presence of two airway commensal DNA viruses, 

Anelloviridae and the recently-described Redondoviridae (13-15). Figure 4A shows 

longitudinal data for Anelloviridae and Redondoviridae combined with bacterial taxa. At 

early time points, both Anelloviridae and Redondoviridae in oropharyngeal samples was 

positively associated with intubation during hospitalization (Figure 4B,C; Table E4; 

FDR=0.02 for both, Fischer’s exact test with FDR correction). The commensal DNA 

viruses were also associated with higher WHO score (Table E4).  

 

The respiratory microbiome is related to systemic immune responses 

 We asked whether airway microbiome communities were related to systemic 

immune or inflammatory features. The ratio of lymphocytes and neutrophils has been 

associated with COVID-19 severity and outcomes (27, 28).  We found that lower 

lymphocyte-to-neutrophil ratio (LNR) was associated with both lower diversity 

(FDR=0.03, r=0.23, Spearman correlation; Figure 5A) and composition of the 

oropharyngeal microbiome (UniFrac second principal coordinate: FDR=0.01, r=0.32 

weighted; FDR=0.008, r=0.35, unweighted; Spearman correlation; Table E5). As 

expected, LNR correlated inversely with disease severity (FDR=3.5x10-5, r=-0.6, 

Spearman correlation; Figure 5B). 

 We then investigated peripheral blood mononuclear cell (PBMC) phenotyping 

that was available on 34 of the subjects (Table E1) co-enrolled in a deep immune 

profiling study of COVID-19 patients (24). That study assessed 193 individual cellular 

immune features and integrated them in a high-dimensional immune phenotype analysis 

(Uniform Manifold Approximation and Projection; UMAP) that reduced the immune 
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features to a two-dimensional landscape and created compacted meta-features reflected 

in the two components.  

 We initially tested a limited set of individual B cell and T cell markers and found 

no association with the bacterial or viral microbiome that reached significance after FDR 

correction (Table E7). To encompass the multiple immune parameters, we compared 

global immune patterns to overall microbiome profiles by comparing the UMAP distance 

matrix generated by the 193 immune components to the respiratory microbiome 

unweighted UniFrac distance matrix. This revealed a significant correlation between the 

OP microbiome distance matrix and the systemic immune profile distance matrix 

(p<0.001; Mantel's test). We also applied a Procrustes analysis, which provides 

visualization of the overlay of the two multidimensional matrices (Figure 5C), and which 

also revealed a significant correlation (Procrustes correlation 0.4; p=0.01).  Thus, the 

oropharyngeal microbiome composition is globally correlated to systemic immune cell 

composition. 

 

Machine learning identifies signatures associated with COVID-19 severity 

 Lastly, we sought to identify microbiome features most associated with disease 

severity, employing the random forest machine learning algorithm. This analysis 

incorporated abundances of bacterial taxa, bacterial community features and 

commensal DNA viruses in OP or NP samples to discriminate patients who needed 

intubation and WHO score (Figure 6).  We used the first two samples for each patient to 

allow more homogenous comparison between patients sampled for different durations.  

 Both NP and OP microbiome data discriminated between patients requiring 

intubation or not (Area Under the Receiver Operating Characteristics (AUROC)=0.80 

and 0.86, respectively; Figure 6A). The feature that contributed most to clinical status 

discrimination was the presence of small circular DNA viruses for OP samples, with 
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higher levels of the viruses associated with intubation (Figure 6B). Also positively 

associated with intubation were Prevotella and Mycoplasma. Lower random forest 

accuracy rates were observed in NP compared to OP samples, but more than 50% of 

the most important taxa were in common between the two sample types (Figure 6C).  

OP and NP data also discriminated disease severity (WHO score 4-6 vs 7-10, 

AUROC=0.82 and 0.75, respectively, Figure 6D). Bacterial lineages rather than the DNA 

viruses showed the strongest discriminatory power for WHO score (Figure 6E,F). Thus, 

these data define signatures of microbial activity associated with intubation and COVID-

19 severity.  

 

Discussion 

We found marked disruption of the oropharyngeal microbiome in hospitalized 

COVID-19 patients, which differed from non-COVID patients and was associated with 

disease severity. COVID-19 patients also showed greater destabilization of the 

microbiome over time than non-COVID patients. Endotracheal samples in intubated 

COVID-19 patients were low diversity and revealed frequent outgrowth of potential 

respiratory pathogens, particularly Staphylococcus. Oropharyngeal microbiome 

communities were associated with blood leukocyte populations and global PBMC 

immune profiles. Small DNA commensal viruses of the respiratory tract also differed 

among COVID-19 patients based on whether or not intubation was required. Together, 

the combination of bacterial and viral features at early time points had high classifier 

accuracy in distinguishing intubated versus non-intubated patients and clinical status 

reached over the course of hospitalization. 

Several possibilities could account for the association between the 

oropharyngeal microbiome and COVID-19 severity. Dysbiosis of the vaginal microbiome 

and consequent inflammation is strongly associated with sexual acquisition of HIV 
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infection (29). In the respiratory tract, the local microbiome appears to regulate mucosal 

immune tone (30), and local respiratory tract inflammation affects susceptibility to RSV 

infection and disease severity (9, 10). ACE2, the receptor for SARS-CoV-2 is an 

interferon-stimulated gene (31), and thus could be modulated by respiratory microbiome. 

While we did not have measures of local lung inflammation or immunity, we found that 

cellular immune profiles in blood correlated with oropharyngeal microbial communities in 

patients for whom both were available. Furthermore, the lung microbiome derives largely 

from that in the oropharynx (16) and could also be affected by OP microbiome profiles.  

It would be useful for future studies to investigate whether distinct respiratory 

microbiome profiles play a role in regulating SARS-CoV-2 infection or host response, 

including the propensity for infection to propagate from the upper to lower respiratory 

tract. 

Other mechanisms could potentially link the microbiome and COVID-19 disease.  

Commensal bacteria with heparinase activity are reported to alter SARS-CoV-2 binding 

to target cells (32), but we found no differences in predicted heparinase activity based on 

imputed bacterial metagenomes between COVID-19 and non-COVID patients or those 

with different disease severity (data not shown). Conversely, SARS-CoV-2 infection 

might itself alter the local microbiome through inflammation or other mechanisms. It will 

be important to distinguish these pathways, and determine whether interventions to 

modify the microbiome could prevent infection or diminish disease severity. 

 Our longitudinal analysis revealed greater destabilization of the oropharyngeal 

bacterial microbiome in COVID-19 than non-COVID patients. This finding is a particularly 

striking given that non-COVID patients were overall sicker (all in the ICU; 40% mortality) 

than COVID-19 patients (both ICU and non-ICU patients; 24% mortality). While use of 

antibacterial drugs could differentially affect the microbiome, both COVID-19 and non-

COVID patients received extensive antibiotic treatment (Fig. S1). Other interventions 
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that might impact the microbiome, such as intubation, were also not more frequent in 

COVID-19 patients. This observation is consistent with the possibility that SARS-CoV-2 

infection of the respiratory mucosa might itself also drive changes in microbiome 

communities. 

 The small commensal DNA viruses, Anelloviridae and Redondoviridae, were the 

top-ranking microbiome features in OP samples for distinguishing patients who required 

intubation. Prevalence in human adult populations ranges from 67-100% for 

Anelloviridae, which are found in blood and many tissues including the respiratory tract. 

Anelloviridae levels are typically elevated in immunocompromised states (13, 14). 

Redondoviridae are a recently-described family of viruses that appear restricted to the 

human oral and respiratory tract and have a prevalence of up to 15% (15, 33). 

Redondoviridae levels are elevated in the airway of intubated patients and in oral 

samples of periodontitis patients (15, 33), suggesting that they may be barometers for 

disease activity in some conditions. While small circular DNA viruses were the most 

powerful discriminators of intubation (Fig. 6B), they were not as strong as bacterial 

composition in predicting overall clinical severity (Fig. 6E). Since some subjects reached 

higher WHO scoring without intubation (e.g., due to vasopressor use and/or renal 

failure), this result suggests that these viruses may be specifically associated with 

intubation.  

  Bacterial superinfection in COVID-19 is an area of great interest and importance 

(34-36). Our lung microbiome analysis revealed complex and patient-specific patterns 

that were often dynamic. High relative abundance was seen for several anticipated 

pathogens, notably Staphylococcus (9/24 subjects). This molecular profiling of the lung 

microbiome is concordant with culture-based studies highlighting Staphylococcus aureus 

as an emerging co-pathogen in COVID-19 (37-39). Bacterial superinfection with 

Staphylococcus is a long-recognized consequence of influenza and important cause of 
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morbidity and mortality (6, 7), so further studies will be useful to determine if similar 

mechanisms operate during COVID-19. We also noted several patients with high relative 

abundances of Enterococcus, which was recently described as a common cause of 

bloodstream infection in critically ill COVID-19 patients (40).  

 Microbiome communities were associated with systemic immune profiles. The 

ratio of lymphocytes to neutrophils is a marker of COVID-19 severity and outcomes (27, 

28), and correlated with oropharyngeal microbiome diversity and composition. The 

overall structure of the oropharyngeal microbiome was also correlated with global 

cellular immune profiles in subjects for whom deep cellular immune profiling was 

available. These immune profiles are also associated with COVID-19 severity (24). It is 

unclear whether the respiratory tract microbiome directs systemic inflammatory 

responses, inflammatory response shapes the microbiome, or whether both are 

responsive to other factors associated with disease severity. 

Our study has several limitations. Many patients presented quite ill, and when 

initially sampled were already intubated or had reached high WHO scores. Thus, the 

ability to distinguish clinical course based on microbiome markers may not necessarily 

reflect prior predictive power. Our patients were heterogenous, with extensive use of 

antibiotics that could influence the bacterial microbiome. We enrolled subjects early in 

the COVID-19 pandemic when clinical management and outcomes may not have been 

optimal. We did not analyze local lung mucosal immune/inflammatory markers, and 

systemic immune profiling was available for only a subset of patients. There is no gold 

standard for diagnosis of bacterial pneumonia superinfection in this population, limiting 

the ability to definitively link ETA findings. Finally, lower respiratory tract microbiome 

information was only available from the patients who were intubated. 

In summary, we report profound dysbiosis of the respiratory tract bacterial and 

viral microbiome in hospitalized COVID-19 patients, which differs from that of non-
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COVID patients, exhibits accelerated destabilization over time, and associates with 

disease severity and systemic immune profiles. In intubated patients the lung 

microbiome is dysbiotic with frequent enrichment of Staphylococcus. The small 

commensal viruses, Anelloviridae and Redondoviridae, were the strongest 

discriminators of patient intubation. This work provides a basis for further studies to 

delineate mechanisms linking the respiratory tract microbiome and outcomes, and 

provides potential biomarkers to assess and/or predict clinical course. 
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Figure Legends 

Figure 1. Upper respiratory tract dysbiosis in COVID-19 patients. Bacterial 

communities in the oropharynx (A, C) and nasopharynx (B, D) were analyzed by 

unweighted UniFrac.  A, B. Communities from COVID-19 subjects compared to healthy 

individuals.  C, D. Communities from hospitalized patients grouped by COVID-19 status 

and disease severity as moderate/severe (WHO 4-6), critical (WHO 7-9) and fatal (WHO 

10). All samples are shown; P values were generated using random subsampling for 

each subject. The centroid for each subject group is indicated by X, and significant 

differences between groups indicated by bars at the right of each plot.  

 

Figure 2. Signatures of disease severity in airway bacterial populations.  A, B.  

Relative abundances of bacterial phyla, by patient disease status categories. All 

samples are shown; P values were generated using random subsampling for each 

subject and indicate Wilcoxon pairwise comparisons. C. Maximum WHO score reached 

by each patient (x-axis) versus Simpson Diversity Index in the first oropharyngeal 

sample obtained for each subject (y-axis). The grey shading shows the 95% confidence 

interval. D. Divergence in oral bacterial communities over time, comparing COVID-19 

(red) and non-COVID (green) samples. The x-axis shows the time since the first sample, 

the y-axis shows the weighted UniFrac distance to the first sample. The grey shading 

shows the 95% confidence interval.  

 

Figure 3. The lower respiratory tract microbiome in intubated COVID-19 patients.  

A. Simpson diversity of ETA samples from COVID-19 patients and healthy subjects’ 

BAL.  For COVID-19 patients with multiple samples only the first ETA sample was used.  

B. Timeline of subjects and samples, with results of endotracheal aspirate 16S 

sequence analysis shown below the line as stacked bar plots (color key to the right), and 
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clinical culture results shown above the line (key to symbols at right). Taxa are indicated 

at the lowest taxonomic level assigned by the QIIME/SILVA pipeline, but further 

identification by BLAST alignment revealed unassigned Enterobacteriaceae to be 

Klebsiella aerogens and Enterobacterales to be Eschericia coli.  

 

Figure 4. Bacterial dominance and commensal viruses in airway microbial 

communities. A. Summary of the most abundant taxa in each subject at different time 

points in nasopharyngeal, oropharyngeal and endotracheal communities. The x-axis 

shows days since first sample; each row shows a different patient. Subjects are grouped 

based on COVID-19 WHO score, with non-COVID patients at the bottom. The types of 

bacteria are indicated by the color code to the right and the size of the circle indicates 

the relative abundance of that dominant bacterial taxon. Detection of Anelloviridae 

and/or Redondoviridae is indicated by the ring around some disks and color coded as 

indicated to the right. B, C. Detection of Anelloviridae and Redondoviridae in intubated 

versus non-intubated patients.  To control for longer sampling period in sicker patients, 

detection in only the first two time point samples were considered. 

 

Figure 5. Relationship between oropharyngeal microbiome communities and 

systemic immune features. A. Oropharyngeal microbiome diversity at the first time 

point sampled is plotted against the blood lymphocyte/neutrophil ratio at the time of 

sampling.  B.  Blood lymphocyte/neutrophil ratio at time of oropharyngeal sampling (from 

panel A) is plotted against maximum WHO score during hospitalization.  C.  Procrustes 

analysis in which the UMAP immune profile plot and unweighted UniFrac microbiome 

plot are overlaid.  The immune and microbiome profiles from individual subjects are 

connected by a line 
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Figure 6. Random forest to detect signatures of severity in the SARS-CoV-2-

infected subjects. A. Receiver operating characteristic (ROC) curve of random forest 

classification on patient intubation status using OP and NP samples. Top 15 most 

important predictors in classifying patient’s intubation status using OP (B) and NP (C) 

samples are shown. D. ROC curve of random forest classification on disease severity 

using both OP and NP samples. Top 15 most important predictors in classifying disease 

severity using OP (E) and NP (F) samples are shown. 
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Table 1. Patients studied. 

  COVID-19 (N=83) non-COVID (N=13) 

Gender   

 Female 39 (47%) 4 (31%) 

 Male 44 (53%) 9 (69%) 

Race / Ethnicity   

 Black 56 (67%) 7 (54%) 

 White 20 (24%) 6 (46%) 

 Asian 3 (4%) 0 

 Other/Unknown 4 (5%) 0 

 Hispanic/Latinx 0 1 (8%) 

Age   

 Median [Min, Max] 64 [36-91] 60 [39-940] 

BMI   

 Median [Min, Max] 301 [17-62] 23 [19-31] 

Preexisting comorbidities:   

 Diabetes 39 (47%) 6 (46%) 

 Hypertension 67 (81%) 7 (54%) 

 Coronary artery disease 16 (19%) 3 (23%) 

 Stroke 17 (20%) 2 (15%) 

 Chronic lung disease 34 (41%) 5 (38%) 

 Renal disease (≥stage 4) 15 (18%) 3 (23%) 

 Cancer (within 6 months) 10 (12%) 4 (31%) 

 HIV infection 3 (4%) 0 

 Organ transplant 5 (6%) 1 (8%) 

 Immunosuppressive therapy 12 (14%) 3 (23%) 

 BMI ≥35 27 (33%) 0 

 Any major comorbidity 78 (94%) 13 (100%) 

Treatment   

 Corticosteroids 52 (63%)  

 Remdesivir 18 (22%)  

 Hydroxychloroquine 39 (47%)  

 Convalescent Plasma 4 (5%)  

 Antibacterials 72 (87%) 13 (100%) 

 Antifungals 20 (24%) 5 (38%) 

 Mechanical ventilation 40 (48%) 8 (62%) 

 ECMO 5 (6%) 1 (8%) 

Maximum WHO Score (examples)   

 4 (no supplemental O2) 20 (24%)  

 5 (low flow O2) 8 (10%)  

 6 (high flow O2) 7 (8%)  

 7 (intubated) 2 (2%)  

 8 (intubated low P/F; vasopressors) 14 (17%)  

 9 (ECMO; pressors; dialysis) 12 (14%)  

 10 (died) 20 (24%) 6 (46%) 
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Supplementary Methods 

Human subjects 

Following informed consent obtained under protocol #823392 approved by the University of 

Pennsylvania IRB, samples were collected at the Hospital of the University of Pennsylvania 

beginning on March 23, 2020 (two weeks after the first case was reported in Philadelphia), 

continuing through the first wave of the epidemic, and ending on July 10, 2020. Most patients 

were hospitalized for COVID-19 but a few were admitted for other reasons and found to have 

SARS-CoV-2 infection after hospitalization. Collections began a median of 4 days following 

hospitalization (generally within one week of hospitalization or identification of COVID+ status if 

post-admission) and continued 2-3 times weekly until discharge, death, or change in status 

precluding respiratory tract collections (e.g., noninvasive ventilation modalities) or 30 days from 

enrollment. Oropharyngeal (OP) and nasopharyngeal (NP) samples were obtained using 

flocked swabs (Copan Diagnostics) and endotracheal aspirate (ETA) samples were obtained 

from intubated patients by suction as previously described (1). Swabs and ETA were frozen (-

80°C) within 1 hour of collection and stored until extraction. For some collection days (typically 

during the first 1-2 weeks of enrollment), additional OP and NP swabs were obtained and eluted 

in viral transport media (VTM) for SARS-CoV-2 analysis as previously described (2). COVID-19 

patients were classified clinically based on the maximum score reached during hospitalization 

using the 11-point ordinal WHO COVID-19 progression scale (3). Non-COVID control subjects, 

who were all hospitalized in the intensive care unit (ICU) with a variety of underlying disorders, 

were consecutive consenting patients admitted to the ICU in two periods (September/October 

2019 and July 2020) (Table E1).  

 Total patient and sample numbers subjected to 16S rRNA gene sequencing were:  

COVID-19 patients: 83; samples: 507 (OP: 226; NP: 221; ETA: 60); Non-COVID patients: 13; 

samples: 75 (OP: 34; NP: 34; ETA: 7); Sequencing control samples: 94 (negative controls plus 

synthetic positive controls (4)) (Table ES2). 
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16S rRNA marker gene sequencing and analysis 

DNA extraction, PCR amplification and sequencing were carried out as previously 

described (5, 6), with some modifications. DNA was extracted from swabs or 200 μL ETA using 

DNeasy PowerSoil or PowerSoil Pro kits (Qiagen), incorporating a 95°C x 10 minutes incubation 

to inactivate SARS-CoV-2. Sequencing libraries were prepared using Q5 Polymerase (New 

England Biolabs) and primers targeting the V1V2 regions of the 16S rRNA gene (27F and 338R; 

Table E8). The resulting libraries were quantified using the Quant-iT PicoGreen Assay Kit 

(Invitrogen), pooled in equimolar quantities, and then sequenced with 250-bp paired-end reads 

using the 500 cycle Rapid v2 SBS and PE Cluster HiSeq kits (Illumina) on a HiSeq 2500 in rapid 

run mode. 

16S rRNA gene V1V2 region sequencing data were analyzed using the QIIME2 pipeline 

as described (7). Demultiplexed sequencing reads were imported into QIIME2 pipeline, and 

DADA2 was used for sequence quality filtering and denoising to generate a feature table (8). 

Samples with less than 1000 assigned reads were excluded from further analysis. Taxonomy 

was classified using the naïve Bayes classifier from QIIME2 and the SILVA database (v138.1) 

(9).  

Alpha diversity and UniFrac distances were calculated using the vegan (v2.5-6) package 

in R (v4.0.2). The principal coordinate analysis (PCoA) was performed using the ape package 

(v5.3) in R with UniFrac distances. The vegan package was used for PERMANOVA tests. 

Because patients with more severe COVID-19 had a larger average number of samples than 

those with more moderate disease, patients were randomly subsampled to one sample per 

patient 1000 times when calculating PERMANOVA tests, and mean p values were reported. 

To determine the rate at which sample composition diverged within a patient, we 

compared weighted UniFrac distance to the first sample from each patient in each sample type. 

To account for different sampling duration, only samples from the first 7 days were included. A 
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linear slope was calculated for each patient, and these slopes were compared using a Kruskal-

Wallis non-parametric test, so that patients with a larger number of samples were not more 

heavily weighted. 

16S rRNA gene V1V2 region sequencing data from NP, OP and lungs (bronchoalveolar 

lavage; BAL) of healthy controls were previously reported (1, 10, 11). These data were acquired 

using the Roche 454 GS-FLX platform; our group previously showed that differences in 

sequencing results between the Illumina and Roche systems are minimal for these samples (1). 

Healthy NP, OP and BAL 16S rRNA gene reads were assigned taxonomy directly, without 

preprocessing, using the naïve Bayes classifier from QIIME2. When calculating unweighted 

UniFrac distances between these samples and samples from our current study, a threshold of 

1% abundance was used to remove rare taxa from our data, to account for differences in 

sequencing depth between the two datasets.  

 

qPCR to detect small circular DNA viruses 

Total microbial DNA was amplified using Phi29 DNA polymerase (New England BioLabs) and 

random hexamers with the following program: 35ºC for 5 minutes, 34ºC for 10 minutes, 33ºC for 

15 minutes, 32ºC for 20 minutes, 31ºC for 30 minutes, 30ºC for 16 hours and 65 ºC for 15 

minutes. Each 20 μL reaction contained 10 units Phi29 DNA polymerase, 0.1 mg/mL BSA, 1X 

Phi29 buffer, 2 uM random hexamers, 1 mM dNTP, and 1 μL of DNA. QPCR was performed 

using TaqMan Fast Universal PCR (Thermo Fisher Scientific) on a QuantStudio 3 Real Time 

PCR System (Applied Biosystems) with the following program: 20 sec at 95°C for 1 cycle, and 

40 cycles of 95°C for 3 sec and 60°C for 30 sec. Each reaction contained 900 nM of each 

primer and 250 nM probe. Primers and probes that target Anelloviridae type species Torque 

Teno Virus (TTV) and Redondoviridae (RV) have been described previously (12, 13). 

Sequences are listed in Supplementary Table E8. qPCR replicates were performed in triplicate 

and the average genome copy number was used. Mean values are in Table E3. 
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qPCR to quantify levels of SARS-CoV-2 RNA 

Levels of SARS-CoV-2 RNA were quantified as described (2), RNA was extracted from 

140 L of swab eluate, neat ETA or saliva using the Qiagen QIAamp Viral RNA Mini Kit. The 

RT-qPCR assay used the CDC 2019-nCoV_N1 primer-probe set (2) and sequences are listed in 

Table E8. RT-qPCR reactions were prepared as follows: 8.5 l dH2O, 0.5 l N1-F (20 M), 0.5 

l N1-R (20 M), 0.5 l N1-P (5 M), 5.0 l TaqMan™ Fast Virus 1-Step Master Mix were 

combined per reaction. 5 l of extracted RNA was added to 15 l of prepared master mix for a 

final volume of 20 l per reaction. Final concentrations of 2019-nCoV_N1-F and 2019-

nCoV_N1-R primers were 500nM and the final concentration of the 2019-nCoV_N1-P probe 

was 125nM. The assay was carried out using an Applied Biosystems™ QuantStudio™ 5 Real-

Time PCR System. The thermocycler conditions were: 5 minutes at 50°C, 20 seconds at 95°C, 

and 40 cycles of 3 seconds at 95°C and 30 seconds at 60°C.  

 

Clinical and immune data 

Results from clinical laboratory tests performed during the patients’ hospitalization were 

extracted from the electronic medical record. For lymphocyte and neutrophil values, which are 

measured frequently, the average value of the three days surrounding the date of microbiome 

sampling was used. Cellular immune profiling data was acquired on peripheral blood 

mononuclear cells using flow cytometry as described (14). Cell subsets queried for associations 

with microbiome variables are listed in Table E7. The unbiased Uniform Manifold Approximation 

and Projection (UMAP) approach was used to distill 193 individual immune components into two 

principal components (14). The microbiome unweighted UniFrac PCoA was compared with 

blood cellular UMAP analysis using Mantel's test. Procrustes analysis was performed using the 

vegan package (v2.5-5) in R. 
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Statistical analysis 

Statistical tests were conducted using R (v4.0.2). Nonparametric tests were used to compare 

two independent groups (Wilcoxon rank-sum test), two related groups (Wilcoxon signed-rank 

test) and multiple groups (Kruskal–Wallis test). A Spearman’s rank-order correlation was used 

to carry out non-parametric correlation analysis. Fisher’s exact tests were used to test the 

difference between two categorical variables. P values are from two-sided comparisons. P 

values for multiple comparisons were corrected using the Benjamini–Hochberg FDR method. 

P<0.05 or FDR-corrected P<0.05 was considered significant. All acquired data were included in 

analyses. Figures were generated using the R packages ggplot2 (v3.3.2). 

 

Random forests 

Random forest classification was implemented using the randomForest package (v4.6-14) in R. 

The decision trees were trained on the data consisting of bacterial relative abundance at the 

genus level (genera with abundances greater than 10% in at least one sample were selected) 

and small circular DNA viruses copy numbers (Redondoviridae or Anelloviridae). The samples 

from the first two time points were interrogated to control for greater sampling duration of sicker 

subjects; the sample with the highest commensal DNA virus level was selected from each pair. 

Binary variables, such as intubated or not intubated, were analyzed using classificatory random 

forest classification. Discriminating predictors were identified by random forest using importance 

values, which were calculated as mean decrease in Gini index for classification random forests. 

Bootstrapped iterations were performed to obtain an estimate of the misclassification rate. 

Receiver operating characteristic (ROC) curves, which plot the true positive rate versus false 

positive rate for all possible threshold probabilities, were generated by pROC (v1.16.2) in R.  

 

Data availability 
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Sample information and raw sequences analyzed in this study are available in the National 

Center for Biotechnology Information Sequence Read Archive under accession IDs 

PRJNA678105, and PRJNA683617 (Table E9). Computer code used in this study is available at 

https://github.com/BushmanLab/covid_microbiome_2021. 
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Supplementary Figures 

Figure E1. Subject timelines and antibiotic administration. Subjects are grouped by COVID-

19 versus non-COVID status. Light gray boxes indicate period of hospitalization and dark gray 

boxes indicate period of sampling. The X axis indicates time from hospitalization. Maximum 

COVID-19 disease severity based on WHO score is indicated with subject identifiers, and 

patients who died (WHO 10) indicated with an asterisk. Antibiotic administration is shown as 

colored horizontal bars. For simplicity, some antibiotics are grouped with the most common 

agent within a particular class as indicated by "+": Cefazolin+ also includes cefalexin and 

cefadroxil; Ceftriaxone+ also includes ceftazidime and cefpodoxime; Meropenem+ also includes 

ertapenem and meropenem-vaborbactam. Antifungals include caspofungin, fluconazole, 

isavuconazonium, posaconazole, voriconazole and atovaquone. "Other" indicates less 

commonly used antibiotics including amoxicillin, aztreonam, ceftaroline, clindamycin, colistin, 

fosfomycin, minocycline, amoxicillin-clavulanate, ceftolozane-tazobactum, ampicillin, and 

ampicillin-sulbactam.  

  

Figure E2. SARS-CoV-2 viral RNA levels in respiratory tract samples. Levels of SARS-CoV-

2 were determined by qPCR. Sample type is coded by color, and samples of the same type 

from the same subject are connected by lines.  

 

Figure E3. Bacterial communities in oropharyngeal and nasopharyngeal samples. 

Heatmap showing oropharyngeal (A) and nasopharyngeal (B) communities.  

 

Figure E4. Bacterial taxa present in first sample that are significantly associated with 

clinical status over course of hospitalization. The x-axis shows the WHO score, the y-axis 

shows the precent of the community comprised by the indicated genus in the first sample. 

Sample type and FDR-corrected p-values are shown at the top.  
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Supplementary Tables 

Table E1. Demographic and clinical information on subjects. 

Table E2. Samples analyzed by 16S rRNA marker gene sequencing. 

Table E3. Results of qPCR assays to quantify Anelloviridae and Redondoviridae levels. 

Table E4. Statistical comparison of bacterial and viral microbiome data to patient demographics, 

treatment, and outcomes. P values are FDR-corrected and significant associations are 

highlighted.  

Table E5. Relationship between Lymphocyte-to-Neutrophil ratios and bacterial and viral 

microbiome data. To account for multiple daily laboratory tests and day-to-day variability, the 

first value per calendar day was used, and the average of 3 days (day -1, day 0 and day +1 

relative to the microbiome sample) was used. P values are FDR-corrected and significant 

associations are highlighted. 

Table E6. Statistical comparison of bacterial and viral microbiome data to clinical laboratory 

data. P values are FDR-corrected and significant associations are highlighted.  

Table E7. Statistical comparison of bacterial and viral microbiome data to immune profiling data 

available on 34 subjects. P values are FDR-corrected.  

Table E8. Synthetic oligonucleotides used in this study.  

Table E9. Accession numbers of sequence data generated in this study. 
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