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ABSTRACT In this work, we present a methodology to identify COVID-19 spreaders using the analysis
of the relationship between socio-cultural and economic characteristics with the number of infections and
deaths caused by the COVID-19 virus in different countries. For this, we analyze the information of each
country using the complex networks approach, specifically by analyzing the spreaders countries based on the
separator set in 5-layer multiplex networks. The results show that, we obtain a classification of the countries
based on their numerical values in socioeconomics, population, Gross Domestic Product (GDP), health and
air connections; where, in the spreader set there are those countries that have high, medium or low values in
the different characteristics; however, the aspect that all the countries belonging to the separator set share is
a high value in air connections.

INDEX TERMS Complex networks, complex systems, COVID-19, multiplex networks, optimization, social
networks.

I. INTRODUCTION
In the current year (2020), the world has faced a disease
caused by SARS-CoV-2, known as COVID-19. This virus
began to spread in Wuhan China on December 31, 2019 [1]
and, because the virus has spread rapidly throughout the
world, it has been determined as a pandemic by the World
Health Organization (WHO) in January 2020 [2].

COVID-19 is classified as a virus composed of single-
stranded RNA strands, and the symptoms of the disease
caused by COVID-19 are headache, dry cough, malaise,
fever, and respiratory failure [3]. However, cases of asymp-
tomatic people against the virus have been identified, which
implies a real challenge for health institutions.

As of March 31, 2020, the United States has become
the epicenter of the pandemic, followed by Italy, Spain,
China, and Germany with 186,265, 105,792, 95,923, 82,278,
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and 71,690 confirmed cases, respectively [4]. These five
countries represent 63.4% of the total confirmed cases world-
wide. The recovery percentages of this new pandemic are led
by China, Spain, Germany, Italy, and Iran with 42.8, 10.8,
9.1, 8.8, and 8.2% of cases. It is essential to mention that in
Europe and America, the spread of COVID-19 throughout the
world can be attributed to differences in health infrastructure,
air travel, human development, and other socio-cultural and
economic factors [5]–[7].

Therefore, in this work, we analyze the effect of socio-
cultural and economic factors, air travels, human develop-
ment on both spreading and growth of COVID-19 in each
country, using the Vertex Separator Problem (VSP) [8] in
multiplex complex networks. Here, it is essential to mention
that the data for each topic was obtained from the websites of
the European Union (EU) [9], the World Health Organization
(WHO) [4], the World Bank (WB) [10], the International
Monetary Foundation (IMF) [11] and Transparency Interna-
tional (TI) [12] until May 15, 2020.
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On the other hand, a complex network is a network with
non-trivial topological characteristics that do not occur in
simple networks, such as degree distributions, hierarchical
structures, community structures, and high local cohesiveness
(measured through the clustering coefficients) [13].

The identification and quantification of influential nodes
in complex networks is an essential activity in several appli-
cation fields, such as the spread and control of diseases [14],
the identification of the most influential members of a crim-
inal group [15], to know how impactful are the academic
publications [16], to predict future relationships [17]–[19],
among others [20], [21].

Currently, there are several measures to identify influen-
tial or spreaders nodes in complex networks, where the most
classic and important are:
• Closeness Centrality (CC) [22]: Classifies the impor-
tance based on the inverse sum of the shortest distances
to all other nodes from a central node, measuring the
global structure.

• Degree centrality (DC) [23]: Classifies each node based
on its degree; therefore, the more connections a particu-
lar node has, the more important it is considered.

• Betweenies Centrality (BC) [22]: Classifies the nodes by
the number of the shortest paths between any other pair
of nodes that cross through it.

In recent years, the study of complex networks and specif-
ically of multilayer networks has been emphasized; this is
thanks to the fact that most real systems have structures with
multiple types of links or interactions between nodes; for
example: Multimodal transport systems, biological systems,
social networks and numerousmodes of communication [24].

Multiplex networks are a particular class of multilayer net-
works, which were introduced to better model complex real-
world systems [25], [26]. Themain characteristic ofmultiplex
networks is that all the nodes in each layer are replicated in
other layers, and there is a direct link between each replica
node to denote the relationship.

Formally, let GP = (Gα, C) ∀ α ∈ {1, . . .M}, be a
multiplex network where:
• Gα = (Xα,Eα), is a monoplex network called layer α,
where Xα and Eα are the set of nodes1 and the links in
layer α, respectively.

• C = {Eαβ ⊆ Xα × Xβ; α, β ∈ {1, . . . ,M}, α 6= β};
is the set of interconnections between nodes in different
layers. The elements of C are called cross layers and the
elements of each Eα are called intralayer connections
of GP.

The present work is organized as follows: In Related
work, we show the main works indicated in the specific
literature from previous years related to COVID-19, com-
plex networks, spreaders nodes, and robustness in multiplex
networks. In Materials and methods, we describe the main
characteristics and the modeling process for monoplex and

1It is important to mention that in multiplex networks, each node belongs
to all the M layers.

multiplex networks. In Results, we show the study of the
numerical results. In Limitations of the study and discussion,
we present the main characteristics and limitations of the
work and finally, in Conclusions, we describe the summary
of the work.

II. RELATED WORK
As mentioned above, the world is facing a pandemic caused
by COVID-19 and, the analysis developed in this work shows
that there is different behavior in the development of the
disease in different countries. The identification of most
spreader nodes in complex systems has led to the develop-
ment of different methodologies; which are based on the
calculation of the structural information of the network or the
analogies of statistical physics or mathematical models.

At this point, it is essential to mention that we use the
multiplex network approach since there are at least five
types of complex systems to analyze (for more informa-
tion, see Materials and Methods); therefore, we present
the main works denoted in the specific literature related
to multiplex networks, robustness, spreaders nodes, and
COVID-19.

For the methodologies to identify spreaders nodes in net-
works based on structural information, the most representa-
tive works are:
• Zhao et al. [27], present an index to calculate the influ-
ence of a node based on the number of communities to
which it belongs.

• Berahmand et al. [28], propose a local approach based
on the detection and expansion of central nodes. The
proposed algorithm can detect all the communities of the
graph in a network using local information and identify
several functions of the nodes.

• Berahmand et al. [29], propose a new measure of semi-
local centrality that can assign higher ranges or struc-
tural holes as better diffusers in the network; therefore,
the proposed centrality avoids the selection of separators
that are very close to each other.

• Berahmand et al. [30], demonstrate that, in data sets with
a rich-club, it is better to use degree centrality to find
influential nodes because it has linear time complexity
and uses local information.

• Berahmand et al. [31], propose a new local classification
measure to identify the influence of a node, using the
propagation capacity of the nodes based on their essen-
tial location parameters, such as the degree of the node,
the degree of its neighbors, the standard links between
a node and its neighbors and the inverse clustering
coefficient.

• Wang et al. [32], study the identification of influential
spreaders in complex networks based on several central-
ity indices.

• His et al. [33] and Han et al. [34] propose some node
classification algorithms based on the identification of
structural holes. A structural hole is known as the phe-
nomenon that occurs when a node connected to multiple
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local bridges (multiple communities) is removed, and
space is produced.

• Li et al. [35], present a classified neighbor algorithm
to quantify the nodal propagation capacity. The results
show that the proposed algorithm can effectively control
the outbreak of epidemics in many real-world systems.

• Wang et al. [36], propose a measure of influence to
quantify the propagation capacity of nodes in complex
networks.

• Yan et al. [37], propose a method that takes into
account several aspects of node properties, including
local topological characteristics, central location, prop-
agation characteristics, and ownership of neighboring
nodes.

Most of these strategies are based on the global char-
acteristics of the networks, such as: PageRank [38],
LeaderRank [39], Excentricity Centrality [40], Cluster-
Rank [41], K-shell [42], Eigenvector Centrality [43] and Katz
Centrality [44].

For statistical physics-based methods, most papers use the
percolation model [45]–[47], which is known as the time
when the giant component (GC) is formed; for example:
• Radicci et al. [48], present a methodology based on the
filtration of links, finding the relationships that make a
node more influential or spreader.

• Fei et al. [49], present a methodology based on the
inverse square law, where the sum of the attraction
between any pair of nodes is used to classify the influ-
ence of each node.

• Marone and Makse [46], present a model of immuniza-
tion of a network against epidemics and argue that the
most influential or spreader nodes can be mapped in the
optimal filtration.
On the other hand, several optimization models have
been presented, where the most representative works
are:

• Cheng et al. [50], propose a methodology based on
the Influence Maximization Problem (IMP) [51], which
identifies a set of nodes that maximizes the influence
effect on the network.

Finally, there are some optimization methods to solve
the network percolation problem [45], [52], and recently,
Montes-Orozco et al. [53] proposed a methodology based
on inverse percolation that causes a rupture of the GC in
monoplex and multiplex networks.

The main advantage of optimization models is that they
can guarantee the optimal solution to the problem. However,
some methodologies depend on the topology of the network.

Furthermore, if the nodes are removed randomly, the effect
on the transmission is very slight; but, if the deleted nodes
are chosen carefully, they can cause the system to colapse.
Therefore, finding the elements that are important to network
connectivity is of great importance.

Specifically for COVID-19, several mathematical and sta-
tistical models have been used in order to predict the behavior
of the pandemic and even to evaluate its economic costs.

Yuan et al. [54], present a model denoted as iSEIR to chart
the pandemic path in Wuhan China, and thus they could
precede the date of maximum contagion. Messina et al. [55],
developed a network-based model to define the molecu-
lar aspects of pathogenic phenotypes in coronavirus infec-
tions. Liang et al. [56], developed a mathematical model to
predict the propagation rates of three cases of pneumonia:
COVID-19, SARS, and MERS.

On the other hand, Chin et al. [57], propose a methodology
to identify spatial superspreaders with daily passenger data
from public transport in Singapore. Chatterjee et al. [58],
developed a stochastic mathematical model to predict the
number of infections in India. Cao et al. [59], present an
analysis based on several mathematical models to assess the
prevention actions that were carried out in Wuhan, and they
include that the actions had a crucial effect on the spread of
the pandemic.

Finally, Bragazzi et al. [60], and Pham et al. [61], discuss
extensively computational techniques and information tech-
nologies, artificial intelligence, and Big Data can help man-
age the enormous amount of data derived from the present
pandemic.

III. MATERIALS AND METHODS
In this section, we present the way of model the multiplex
networks, and the methodology to analyze and identify the
most spreader countries of COVID-19. This study is divided
into four phases, which are:

1) Data collection: In this phase, we build the data set
through a statistical analysis applied to the information
obtained from the IMF, WB, WHO and IT.

2) Construction of networks: In this phase, based on
the similarity of the characteristics for each country,
we model the monoplex and multiplex networks.

3) Analysis of spreader nodes: For the modeled networks,
we use an adaptation of the VSP to identify spreaders
countries in multiplex networks.

4) Analysis of results: In this phase, we show the study
of the countries that are classified as spreaders, which
cause the rupture of the multiplex networks.

A. MATERIALS
As mentioned above, to model the networks used in this
work, we use the information about COVID-19 available
on the websites of the European Union (EU) and World
Health Organization (WHO); while for the socio-cultural
and economic data we use the information available on the
websites of theWorld Bank (WB), the InternationalMonetary
Foundation (IMF) and Transparency International (TI).

The information of COVID-19 (infections and deaths),
includes the period from 12/31/19 to 05/15/20 and the indi-
cators used to define the socio-cultural-economic character-
istics, are: projected real Gross Domestic Product (GDP)
(2020), projected consumer prices (2020), special drawing
rights (millions), quota (millions), human development index
(HDI) (2009-2018), corruption perception index (2018),
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Gross national income (GNI) per capita, GNI per capita rank
minus HDI rank, country population (population/km2), real
population density (hectares by person), Gini Coefficient,
current health expenditure (% of GDP 2000-2016) and air
travels (2019-2020).

Specifically, in this work, we modeled two 5-layer multi-
plex networks; where each layer represents the relationship
between each pair of countries υ as follows:
• Layer 1 (L1), for Human Development Index and its
components.

• Layer 2 (L2), for Human Development Index Trends,
1990-2018.

• Layer 3 (L3), for the Inequality-adjusted Human Devel-
opment Index.

• Layer 4 (L4), for the air travels (inbound and outbound)
between each country.

• Layer 5 (L5), L5.1 for the number of infections and
deaths network, and L5.2 for the GDP and health
network.

These relationships are given by the number of characteris-
tics in which the countries are similar, and their quantification
is obtained as follows:
• The Mahalanobis distance between each pair of coun-
tries is calculated.

• The median of the Mahalanobis distances is calculated.
• For each pair of countries with a distance less than the
median, a link is added.

Here, it is essential to emphasize that, although GDP is
frequently used to compare international economies or the air
travels are used to analyze the population movement; the idea
of modeling five different types of layers is to be able to carry
out a classification based on a multi-criteria analysis that
allows a stable assessment of the different elements included,
thus streamlining the decision-making process.

FIGURE 1. Graph of the infection multiplex network.

Now, we present Figures 1 and 2, that show graphically
the two 5-layer multiplex networks, denoted as infection and
GDP, respectively.

In this study, each node represents a country, which belongs
to all the layers of the multiplex network, where each inter-
layer link indicates that the two countries are similar in most
of the characteristics analyzed, and the intralayer links indi-
cate the identity relationship (main characteristic of multiplex
networks).

FIGURE 2. Graph of the GDP multiplex network.

Then, with the modeled networks, using the approach of
VSP in multiplex networks, we develop an analysis about the
influence of the countries and the propagation of COVID-19
using the information of the relationship of the main socio-
cultural and economic characteristics, the number of flights,
as well as the number of infections and deaths caused by
COVID-19.

B. METHODS
In this work, the VSP is used to identify the spreaders coun-
tries. The approach of VSP is based on the robustness in
networks finding the nodes that cause the rupture of the
GC. In the case of multiplex networks, the GC is denoted
as the Mutually Connected Giant Component (MCGC)
defined in [62]:

Each node i is in the MCGC if it has at least one neighbor j
that belongs to the MCGC and if all its replica nodes in each
interdependent network are also in the MCGC.

From this definition, Bianconi et al. [62] deduce that if
a node i in a particular layer of a multiplex network is in
an MCGC, then all its replica nodes in all layers are in the
MCGC.

On the other hand, the VSP [53] consists of finding a
minimum set of C nodes that, when their links are removed
from the network, produce a disconnection from the multi-
plex network into at least two connected components (A, B),
such that |A| and |B| are maximized. Then, the adaptation of
VSP can be summarized as:
• Instance: A MCGC of a multiplex network GP =
(Gα, C).

• Problem: Find a partition of nodes belonging to the
MCGC of GP that results into three disjoint sets A, B
and C , A and B nonempty, such that:

There are no interlayer or intralayer links
between the elements belonging to each set A,
B or C .
|A| and |B| are maximized.
|C| is minimized.

It is essential to mention that we can quantify the robust-
ness and the number of spreaders in the networks by ana-
lyzing the percentage of nodes that belong to the separator
set C (set of spreaders). For example, a high percentage
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(more than 70%) of nodes in C indicates that the network
is robust (there are a high number of spreader countries).
In contrast, a low percentage (less than 30% ) indicates that
the network is not very robust (there are a low number of
spreader countries).

Because the original VSP is considered as NP-Hard
[8], [63], the adaptation frommultiplex networks, is NP-Hard
too [64], [65]; therefore, we can solve the adaptation of VSP
using a heuristic method.

In this work, we used a simulated annealing algorithm
(SA) [66] developed in C language. SA is a technique based
on local search, and it is necessary to establish the struc-
ture of neighborhoods. In the development of this work,
two neighborhoods were used: Hamming distance 12 and
Hamming distance 2. Then, the first type of neighborhood
is added or deleted one node of the current solution with the
following steps:

1) A random number between 0 and 1 is generated.
2) If random ≤ 0.5, one node is removed, otherwise one

node is added.
3) To remove an element, it is chosen randomly, giving

the same probability to each element that belongs to
the current solution.

4) To add an element, it is chosen randomly, giving the
same probability to each element that not belongs to
the current solution.

For the other neighborhood, two nodes are removed, or two
nodes are added, and if it is the case that two nodes can not
be removed or added, one is deleted, and a different one is
added. With this, the distance of Hamming 2 is maintained.

By last, the algorithm finished when the best solu-
tion it is not updated when 50 temperature updates have
elapsed or Tk = Tf .

SA requires 4 control parameters and, in order to obtain a
good performance it is important to find the effective param-
eter settings for the technique. Then, using the Differential
Evolution algorithm (DE) [67]; we obtain the following val-
ues (for more information, see [68]):

• Initial temperature Ti = 1500.
• Final temperature Tf = 0.001.
• Cooling program Tkγ , with γ = 0.95.
• Times that a new neighbor is generated Lk = 20.

IV. RESULTS
In this section, we show the results and discussion on themain
structural metrics of the modeled networks and the countries
that cause the spread of COVID-19.

A. STRUCTURAL METRICS
In order to facilitate the understanding of the results of the
networks structural metrics, we briefly introduce some fun-
damental concepts:

2Hamming distance is defined as the number of elements that have to be
changed to transform a solution into another valid solution.

• Clustering coefficient [69]. It quantifies how much a
node is interconnected with its neighbors; where, two
nodes are neighbors if exist a link that join them, and
for non-directed graphs, it is calculated in the following
way:

Ci =
2|{eab}|
ki(ki − 1)

: va, vb ∈ Ni, eab ∈ E

where, ki is the degree of the node vi; va and vb belong to
the neighborhood for the node vi (Ni = ki) and; eab is a
subset of the total number of links (E) that connect any
pair of nodes va, vb.
It is essential to mention that, the higher the number of
triangles, the greater is the clustering coefficient value.

• Average degree [70]. The degree of a node is the number
of links connected to it. Then, the average degree is cal-
culated with the degrees of all the nodes of the network.

• Diameter of the network [71]. It is given by the longest
route of all the shortest paths between any pair of
nodes.

• Average path length [72]. Defines the average number
of steps that must be traveled through the shortest path
for all possible pairs of nodes.

In Table 1, we present the numerical values for the average,
variance and the low and high limits for each structural metric
and the closeness and betweenies centralities with 95% level
of certainty (for each layer).

TABLE 1. Structural metrics of layers.

Based on the information presented in Table 1, we can see
that L1 to L4 and L5.2, have characteristics of the small-
world model [73], while the layer 5.1 has characteristics of
the scale-free model [74].

For example, L3 has a clustering coefficient of 0.952 and
an average path length of 1.32, while L5.1 has 0.191 and 1,
respectively. On the other hand, for closeness and betwee-
nies centralities, L1 to L4 and L5.2 have high values, while
L5.1 has low values.
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TABLE 2. Cardinality of components A, B and C .

B. IDENTIFICATION OF SPREADERS OF COVID-19
In Table 2, we present the numerical values obtained by
applying the adaptation of VSP to the MCGC of Infections
and GDP networks. In the first column, we show the identifier
for each network; in the second column, we present the values
for |C|, and; in the third column, we show the values for
|A| and |B|.
It is essential to mention that, in both networks, the MCGC

is the total of the nodes (195 countries). On the other hand,
we must remember that if |C| has a value higher than 70% of
the total nodes of the MCGC, it is considered robust (there
are many spreader nodes). On the other hand, when |C| has
a value lower than 30%, the network is not very robust (there
are few spreader nodes).

According to the results shown in Table 2, we can verify
that applying the adaptation of VSP; we can find the set of
nodes that cause the rupture of the MCGC for the 5-layer
multiplex networks, since the sum of |A|, |B|, |C| and the
isolated components (nodes without connections to other
nodes) is equivalent to the total number of nodes that belong
to the MCGC.

Furthermore, we can assure that the networks are not robust
and that there are many spreader nodes; therefore, we can
deduce that the elimination of the links of the countries that
are in the separator set, the pandemic caused by COVID-19
can be controlled, since in both networks |C| is 54% and 56%
of the total nodes belonging to the MCGC, respectively.

Then, in order to analyze the countries that cause the
rupture of theMCGC in the networks, we perform an analysis
of the types of countries that cause the spread of COVID-19.

Now, we present Table 3 and Figure 3), which show the
countries that belong to each set after the rupture of the
MCGC for the infection network.

It is important to mention that Figure 3 presents the con-
nections that the nodes belonging to each set have in the five
layers.

Based on the information presented in Figure 3 and Table 3,
we can see that in Component 1, there are countries as Brazil,
China, Italy (among others) with a high human development
index; however, these countries present high percentage in
contagion and deaths. On the other hand, in Component 2,
there are countries as Congo, Niger, Montenegro (among
others) with a low percentage of contagion, and low human
development index; therefore, the characteristic that both
types of countries share is the low number of air travels.

For the separator set, there are countries with different
values of characteristics (for more information, see the URLs
presented in Annex) according to the percentage of the pop-
ulation who infect or died by day, an average of the projected

TABLE 3. Sets of countries after the rupture of the MCGC (infection
network).

FIGURE 3. Graph of the sets of countries after the rupture of the MCGC
(infection network).

real GDP, average consumer prices, human development
index, the average of the Corruption perception index, aver-
age current health expenditure (% of GDP), average popula-
tion and number of air travels.

For example, in the socioeconomics and population char-
acteristics: Norway, Ireland, Hong Kong, Sweden (among
others) have high values in Human development index (HDI),
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life expectancy at birth, expected years of schooling, per-
centage of infected by day and the rate of deaths by day;
while Iran, Mauritius, Panama, Georgia, Sri Lanka (among
others) have average values and Viet Nam, Iraq, Morocco,
Kyrgyzstan, Tajikistan, Cabo Verde (among others) have low
values.

Based on the information about the number of infections
and deaths, we can see that some countries as the United
States, Italy, and China, which are considered the countries
with the most diseases and deaths, are not in the set of the
most spreaders. On the other hand, some countries that are
in the spreaders set are: Norway, Ireland, and Denmark that
present a high percentage of contagion; Mexico, Venezuela,
and Egypt with an average percentage and countries like
India, Nicaragua, and Mozambique have a low percentage.

Now, to analyze the relationship between the GDP and the
spread of COVID-19, we present Figure 4 and Table 4, which
perform the sets of countries after the rupture of the MCGC
in GDP and health network.

FIGURE 4. Graph of the sets of countries after the rupture of the MCGC
(GDP network).

It is important tomention that Figure 4 presents the connec-
tions that the nodes belonging to each set have in the 5 layers.

As in the previous case, based on the information presented
in Figure 4 and Table 4, we can see that in each set (separator,
component 1 and component 2), there are countries with
different values in the characteristics.

For example, in components 2 and 3, there are countries
such as Ghana, Nepal, Uganda, Egypt (among others) with
low human development index, and the high percentage of
contagion and deaths.

For the socioeconomics, GDP and health characteristics,
in the separator set (spreaders), are countries as Norway,
Switzerland, Germany (among others) that have high val-
ues in Human development index (HDI), life expectancy at
birth, expected years of schooling, percentage of infected and

TABLE 4. Sets of countries after the rupture of the MCGC (GDP and health
network).

deaths by day; countries as Costa Rica, Mexico, Colombia,
Armenia (among others) that have average values and coun-
tries like Nauru, SanMarino, Somalia, Tuvalu (among others)
have low values.

Based in the information about the flow in air travels,
we can affirm that the countries in the separator set for both
infection and GDP networks have an increase in the rate of
contagion since in addition to being those countries where
there is a higher flow in air travels (inbound and outbound),
economies are based on business and transactions with other
countries (which are in the same situation).

Finally, based on the results shown in Table 3 and Table 4,
we can see that in order to mitigate a second outbreak of
COVID-19 in the world, the countries that are in the union
of both separator sets must reinforce their sanitary mea-
sures (in the area). On the other hand, the countries that
are at the intersection of the two separator sets, in addition
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to strengthening their sanitary measures, must regulate the
airflow in order to contain the spread of the disease.

V. LIMITATIONS OF THE STUDY AND DISCUSSION
The analysis developed in this work, is based on the modeling
of two multiplex networks, which consist of 5 layers; where
each layer shows the similarities of the countries for the
different types of characteristics.

The idea of model five different types of layers is to be able
to obtain an identification of the spreader nodes, based on a
multi-criteria analysis that reduces the disadvantages of using
only one set of nodes; thus, the technique is capable of identi-
fying those countries that, based on different characteristics,
are the most spreaders of COVID-19.

We apply the multiplex network approach using the adap-
tation of the Vertex Separator Problem, in order to identify
those countries that, when their links are eliminated from all
the layers of the network, cause the rupture of the system and,
therefore, contain the spreaders countries of COVID-19.

The main advantage of this approach is that it allows infor-
mation from various fields to be combined, such as economic,
health, and transportation. Thus, with this approach, we can
quantify the relationship between the different countries and
model the networks that help to understand the dynamics
of the system to be analyzed (in this case, the spread of
COVID-19).

It is important to mention that, in this work, we are quan-
tifying the dynamics of behavior of COVID-19 with the
information available until May 15, 2020.

Therefore, a limitation of the study is that the drastic
change of one or more variables causes the dynamics of
the system to change. Then, because the information about
COVID-19 is updated every day, the set of spreader countries
that we find can be maintained if the behavior of the variables
is maintained; otherwise, we must re-model the networks to
carry out a new analysis.

Although we are schematizing the dynamics of the spread
behavior of COVID-19, the analysis is susceptible to the
existence of those elements that drastically alter one or more
layers of the entiremultiplex network. However, as long as the
behavioral trends are maintained (values within the 95% level
of certainty show in Table 1), the set of spreader countries
found, will not change.

VI. CONCLUSIONS
In this work, we present an analysis of the countries that are
spreaders of COVID-19, based on the main socio-cultural,
economic, and connection characteristics, such as GDP, life
expectancy, number of air travel, and budget for health,
among others.

The results show that the methodology, can cause the
rupture of the 5-layer multiplex network and help identify the
spreader countries and obtains a classification of the countries
based on their characteristics, where, in the spreaders set,
the countries have high, medium or low values in the different
socio-cultural and economic aspects; however, the character-
istic that everyone shares are the high value in air connections.

On the other hand, we can affirm that to mitigate a second
outbreak of COVID-19 in the world, the countries that are in
the union of both separator sets must reinforce their sanitary
measures; in contrast, the countries that are at the intersection
of the two separate sets, in addition to improving their sani-
tary measures, must regulate airflow to contain the spread of
the disease.

Based on the information collected and modeled (until
May 15, 2020), we can affirm that, by changing the rela-
tionships of the air flow, the risk of a second outbreak of
COVID 19 can be minimized; however, we cannot quantify
how much it can help.

Finally, in order to study and analyze the behavior of the
propagation of COVID-19, we are currently developing a
simulation system, which is based on prediction models of
COVID-19 in 165 countries, and the approach presented in
this work.

ANNEX
Now, we present the URLs for the information used to model
the six networks used as layers for the two 5-layer multiplex
networks.

• Information about Human Development Index: https://
drive.google.com/file/d/136y0449h4sfM86Ye-qeOrL8x
kx9ixFAE/view?usp=sharing

• Information about deaths and infections: https://drive.
google.com/file/d/1PqwJB-F3Y9WWFhVRwBUDydO
CkqvT7ECn/view?usp=sharing

• Information about air travels: https://drive.google.com/
file/d/18PA8JMnzxueXLU1MzjkEya3htBe4hrBw/
view?usp=sharing

• Information about GDP: https://drive.google.com/file/d/
1HhAEpN-WzEBJXAzJeNbF5iSNm8S2xi1Q/view?
usp=sharing
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