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Abstract

Both obesity and gestational diabetes mellitus (GDM) lead to poor maternal and fetal outcomes, 

including pregnancy complications, fetal growth issues, stillbirth, and developmental 

programming of adult-onset disease in the offspring. Increased placental oxidative/nitrative stress 

and reduced placental (trophoblast) mitochondrial respiration occur in association with the altered 

maternal metabolic milieu of obesity and GDM. The effect is particularly evident when the fetus is 

male, suggesting a sexually dimorphic influence on the placenta. In addition, obesity and GDM 

are associated with inflexibility in trophoblast, limiting the ability to switch between usage of 

glucose, fatty acids, and glutamine as substrates for oxidative phosphorylation, again in a sexually 

dimorphic manner. Here we review mechanisms underlying placental mitochondrial dysfunction: 

its relationship to maternal and fetal outcomes and the influence of fetal sex. Prevention of 

placental oxidative stress and mitochondrial dysfunction may improve pregnancy outcomes. We 

outline pathways to ameliorate deficient mitochondrial respiration, particularly the benefits and 

pitfalls of mitochondria-targeted antioxidants.
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1. Effect of obesity and GDM in pregnancy

The World Health Organization recognizes obesity as a global epidemic. In 2014, 

approximately 13% of the world’s population was classified as obese (BMI ≥ 30); this figure 

is nearly 20% in developed countries with higher rates of obesity in women than men [1]. In 

the United States, the number of women of reproductive age who are obese is also on the 
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rise: 39.7% of American women were obese in 2018 compared to 33.2% in 2004 and only 

16.5% in 1980 [2–4].

Obesity is a significant health concern, linked to an increased risk of hypertension, diabetes, 

and atherosclerosis and leads to adverse outcomes in pregnancy, for both mother and fetus 

[5]. Obese women are 2-3 times more likely to develop preeclampsia, three times more at 

risk for gestational hypertension, 3-4 times more likely to have gestational diabetes mellitus 

(GDM) [6,7], are at increased risk for stillbirth [8], for excessive weight gain during 

pregnancy and have higher cesarean section rates [9]. Postpartum, obese women were found 

to be less likely to be able to lose weight or breastfeed successfully [10], and more likely to 

develop heart disease and hypertension later in life [11]. Babies born to obese women are 

twice as likely to be born with macrosomia and to suffer from congenital malformation, and 

2.3 times more at risk for childhood obesity [11,12].

Gestational diabetes, a common metabolic disorder in pregnancy, occurs in approximately 

7% of pregnancies in the United States and is associated with dysregulation of insulin and 

glucose. In obese women and women with GDM, insulin resistance increases, causing 

maternal hyperglycemia and neonatal hypoglycemia, which can instigate seizures and brain 

damage if glucose levels are low enough [13,14]. GDM increases the risk of pregnancy 

complications and postnatal consequences for both mother and fetus, including diabetes, 

obesity, and cardiovascular disease [15–17]. Maternal obesity and GDM developmentally 

program the fetus for obesity in a propagating cycle of dysfunction [18] (Figure 1). Not all 

obese women will develop GDM in pregnancy; however, as obesity increases the risk of 

GDM and other health issues, studying both combined and separate risks as well as early 

intervention is becoming a critical area of obstetric research.

2. Placental structure and function: fuel consumption, storage, and 

energy production

The placenta is composed of three primary cell types: fetal vascular cells, including 

pericytes and endothelial cells; mesenchymal cells, including Hofbauer cells and fibroblasts; 

and trophoblasts [19]. Trophoblasts have several critical roles in the placenta: regulating 

signaling, apoptosis, steroid synthesis, amino acid transport [20], production of growth 

factors and hormones for fetoplacental growth, coordination of placental angiogenesis, and 

serving as a physical and biochemical barrier. The placenta has a high ATP demand to 

perform its many tasks, the most energetically-demanding among them being fetal nutrient 

transport and placental protein synthesis [21].

The primary trophoblast cells are cytotrophoblasts (CTBs) which continuously differentiate 

throughout pregnancy to two different cell types: multinucleated syncytiotrophoblasts 

(STBs), which cover the entire surface of the placental villous trees [22]; and extravillous 

trophoblasts (EVTs), which invade the maternal decidua and vasculature [23]. Trophoblast 

comprises 22-30% of the overall human placental villous volume at term [24–26]. Although 

there are conflicting reports on whether CTBs or STBs are the most metabolically active, 

STBs are widely considered to be the greater fuel consumers; however, it is agreed that 
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trophoblasts as a whole constitute the vast majority of metabolic activity in the placenta [27–

29].

The placenta itself consumes a significant portion of the nutrients in maternal blood 

delivered to it via the spiral arteries for rapid growth, angiogenesis, and syncytium formation 

[30–32]. It has an exceptionally high metabolic rate, comparable to that in brain, liver, 

kidney, and tumor cells [33,34] and having sixfold greater oxygen and glucose consumption 

per gram than the fetus. As fetal demand grows over gestation, the placenta still consumes 

proportionally more glucose and oxygen than it transports to the fetus in order to support its 

metabolism [33]. In a sheep model of pregnancy, only 55% of the oxygen and 28% of the 

glucose delivered to the uterus was transferred to the fetus [31]. A recent study in human 

pregnancy indicates that up to 70% of the glucose delivered to the uteroplacental interface 

may be effectively transferred to the fetus, with 30% remaining for placental consumption 

[35].

Although glucose and oxygen have long been considered the chief fuel sources for fetal and 

placental metabolism [36–38], recent studies indicate the placenta may use fatty acids and 

amino acids for metabolism more than previously thought. The capability to use and switch 

between multiple fuel sources is called fuel flexibility [39]. Only about 2-4% of fatty acids 

(FAs) in maternal circulation (mostly long-chain polyunsaturated fatty acids (LC-PUFA)) 

are transferred to the fetus at any given time in humans [40]. FAs can be converted for 

metabolism via β-oxidation, or stored by the placenta as lipid droplets [41]. Coenzyme A 

(CoA) couples to and metabolically activates FAs. The Acyl-carnitine shuttle system 

transfers acyl-CoA into the mitochondria using carnitine palmitoyltransferase 1 (CPT1) to 

join acyl-CoA to carnitine. Acyl-carnitine is transported across the inner mitochondrial 

membrane in exchange for carnitine by a translocase. Once in the matrix, CPT2 separates 

the carnitine from acyl-CoA, which can then be β-oxidized to form acetyl-CoA and thus 

enter the citric acid cycle [42].

Amino acids must undergo deamination before metabolism can proceed [21]. The amino 

acid with both the highest concentration in maternal and fetal plasma in mammals is 

glutamine. Glutamine is hydrolyzed to form glutamate, which is then converted by 

glutamate dehydrogenase to enter the citric acid cycle as α-ketoglutarate [43]. Serine and 

branched-chain amino acids valine, leucine, and isoleucine are found at higher levels in the 

placenta than in the maternal or fetal circulation in numerous animal models, indicating their 

use in placental-specific metabolism [44]. Deamination of these amino acids results in the 

production of a-keto acids or succinyl CoA, which can then be oxidized to produce ATP 

[45]. A summary of the major mechanisms for fuel usage by trophoblast mitochondria is 

illustrated in Figure 2.

The release of human placental growth hormone (hPGH) and human placental lactogen 

(hPL) by the syncytiotrophoblast early in pregnancy drives an increase in maternal energy 

storage, particularly in the form of triglycerides and glycogen [46,47]. The mother can break 

down these stores in fasting states or near term when energy demand is highest, leaving 

more free glucose for fetoplacental development [48]. The placenta may also store nutrients, 

including vitamins and fatty acids. If vitamin levels are low, particularly B6, B12, and folate, 
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the placenta will preferentially store them rather than transfer them to the fetus [49]. Storage 

of fatty acids as lipid droplets is common, primarily in STB, where excess placental fatty 

acids and insulin create more lipid droplets [50]. In summary, the placenta has several 

mechanisms to metabolize and store nutrients as needed to support fetal growth during 

gestation.

3. Mitochondrial function and trophoblast-specific roles

Mitochondria are complex, double-membraned organelles that generate adenosine 

triphosphate (ATP) using oxidative phosphorylation [51]. Oxidative phosphorylation begins 

in glycolysis with the conversion of glucose to pyruvate, which is then decarboxylated in the 

mitochondria to acetyl-coenzyme A (CoA), the first substrate for the citric acid cycle [52]. 

The resultant 10 NADH and 2 FADH2 generate 30-32 of the 36-38 ATP (dependent on the 

shuttling of the first two NADH) via proton donation to the mitochondrial electron transport 

chain (ETC). Electron shuttling through the ETC pumps protons from the mitochondrial 

matrix into the intermembrane space, creating a proton motive force that drives ATP 

Synthase (complex V) to join ADP and a free phosphate to form ATP [53]. ATP generation 

is dependent on the availability of substrates to oxidative phosphorylation, including oxygen, 

ADP, and inorganic phosphate [54,55].

3.1 Regulation of mitochondrial respiration

As oxidative phosphorylation is dependent upon mitochondrial electron transport chain 

functionality, any agent disrupting the activity of ETC complexes I-V similarly disrupts 

mitochondrial respiration. Mitochondrial respiration is highly regulated through several 

mechanisms, including nitric oxide (NO) inhibition, calcium (Ca2+) interactions, peroxisome 

proliferator-activated receptor γ coactivator 1 (PGC1) transcriptional activation, and 5′ 
adenosine monophosphate-activated protein kinase (AMPK) stimulation. NO primarily 

inhibits the activity of mitochondrial complex IV but may also inhibit complexes I and III, 

reducing the generation of ROS (reactive oxygen species). This inhibition at complex IV has 

been proposed to be a potential mechanism for redistributing oxygen intracellularly from 

regions of high concentration to regions of low concentration [56]. Calcium in the form of 

Ca2+ regulates the activity of several key metabolic enzymes, including FAD-glycerol 

phosphate dehydrogenase, pyruvate dehydrogenase phosphatase, NAD+-isocitrate 

dehydrogenase, 2-oxoglutarate dehydrogenase, and ATP synthase. Cyclooxygenase activity 

is also impacted indirectly as [Ca2+] affects cAMP signaling [57]. PGC1 increases 

transcription of genes in the oxidative phosphorylation pathway and mitochondrial 

biogenesis, notably in muscle and fat cells [58]. As AMPK increases, gluconeogenesis 

decreases; this promotes lipid and glucose metabolism as well as mitochondrial biogenesis 

[59]. In addition to endogenous regulators, multiple exogenous agents have been found or 

specifically developed to target mitochondrial complex elements, some of which are 

discussed further in Section 5. All these factors may affect the rates of reactive oxygen 

species formation, ATP synthesis, and substrate consumption.

Some specific mechanisms have been found to affect syncytiotrophoblast mitochondrial 

respiration, including less coupling control of oxidative phosphorylation compared to 
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cytotrophoblast, reduced cardiolipin, and the presence of more superoxides compared to 

CTBs [20]. Selenium, which is discussed more at length in Section 5, upregulates 

mitobiogenesis and respiration in both human trophoblast cells and placental tissue [60]. 

Regulation of trophoblast mitochondrial respiration by microRNAs has been documented by 

our group: miR-210 upregulation suppresses trophoblast respiration via targeting of the iron-

sulfur cluster (ISCU) in the setting of preeclampsia[61]. Respiration was significantly 

decreased in GDM placentas, which correlated with reduced expression of miR-143 whereas 

overexpressing miR-143 led to an increase in mitochondrial respiration [62].

3.2 Trophoblast oxidative and nitrative stress

During normal mitochondrial function, up to 2% of electrons “leak” from the ETC at 

complexes I and II, interact with oxygen, and form superoxide anions, which are a reactive 

oxygen species (ROS) [63]. ROS are present in normal pregnancy and necessary for cellular 

functions, including mitochondrial fusion/fission, autophagy, and cell signaling [64]. 

However, elevated levels of ROS, as observed in pathologic pregnancies, are associated with 

adverse outcomes: tissue and mitochondrial damage [65], decreased mitochondrial 

functional capacity [66], accelerated aging [67], and overall increased cellular oxidative 

stress [63]. Oxidative stress occurs when the production of ROS overwhelms antioxidant 

capacity[68]. This imbalance has been previously linked to placental tissue injury and 

spontaneous first-trimester abortion [69,70]. We have previously shown increased oxidative 

[63] and nitrative stress [71] in the placenta with maternal obesity coupled with a decrease in 

antioxidant defense enzymes [72].

Pregnancy itself is associated with persistent elevated oxidative and nitrative stress, but both 

obesity and gestational diabetes mellitus exacerbate these conditions [63,73,74]. Maternal 

obesity and GDM have both been found to increase placental ROS in both rodents and 

humans [74–76]. Maternal obesity led to more mitochondrial-specific ROS production in 

human term placentas [77]. Hyperglycemia stimulates aldose reductase to convert glucose to 

polyalcohol sorbitol, which then oxidizes further and increases the ratio of NADH to NAD+, 

inhibiting GAPDH, and increasing substrate availability to complex I [78]. In addition, 

hyperglycemia has been found to upregulate NADPH oxidase, which also generates ROS 

[79]. Specific products of reactive oxygen species action, including malondialdehyde and 

thiobarbituric acid-reactive substances, were found to be increased in GDM pregnancies, 

while antioxidants such as SOD and catalase were decreased [78,80]. Mitochondrial 

respiration is reduced in pregnancies complicated by obesity and GDM [62,73], as are 

antioxidant levels [78]. Obesity and GDM also both notably increase ROS, which may 

damage mitochondrial DNA and reduce electron transport chain activity, ATP production, 

and metabolic activity, particularly in ROS-sensitive syncytiotrophoblasts [84]. In GDM, 

elevated blood glucose levels increase ROS via membrane phospholipid or stress-activated 

signaling in rat models of diabetes [85,86]. Insulin resistance, a hallmark of GDM, has been 

found to reduce mitochondrial respiration, while the accompanying hyperglycemia reduced 

complex I activity [87,88]. Obesity decreases mitochondrial complex I-V expression in the 

placenta, but complex I activity increases, contributing to ROS levels already increased by 

the presence of fatty acids in maternal circulation [77,89]. Fuel flexibility is impaired in both 
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obese and GDM pregnancies: syncytiotrophoblasts were unable to effectively switch from 

lipid to glucose oxidation [15].

Structural differences between cytotrophoblast and syncytiotrophoblast mitochondria may 

also affect mitochondrial respiration: CTB mitochondria are larger with lamellar cristae, 

while STB mitochondria are smaller with a dense matrix and vesicular cristae [90]. Unlike 

CTBs, STBs contain cholesterol side-chain cleavage enzyme (also known as P450scc, a 

member of the cytochrome P450 enzyme superfamily) in the inner mitochondrial membrane, 

allowing STBs to be more specialized for steroidogenesis. In addition to converting 

cholesterol to pregnenolone to begin steroidogenesis [90], cytochrome P450scc is also 

involved in superoxide formation, causing STBs to be more sensitive to ROS than CTBs 

[91]. This mainly occurs in early gestation when STBs do not express the antioxidant 

enzyme mitochondrial superoxide dismutase (SOD). However, after trophoblast plugs loosen 

around 12 weeks, the exposure to oxygen from the maternal circulation increases both 

oxidative stress and SOD expression [92]. Ultrastructural mitochondrial analysis of GDM 

syncytiotrophoblasts found mitochondrial swelling or destruction [93]. Pregnancies 

complicated by both obesity and GDM together showed this same mitochondrial disruption.

3.3 Consequences of trophoblast mitochondrial dysfunction

Dysfunctional mitochondria caused by maternal obesity and GDM have been linked to 

numerous immediate and long-term consequences in disease. As trophoblast mitochondria 

are involved in the provision of energy, their dysfunction affects energy-requiring 

trophoblast functions, including peptide synthesis and the transport of nutrients to the 

developing fetus and may ultimately lead to stillbirth [8,94]. Placental peptides regulate 

maternal metabolism and fetal growth and development; any irregularity in mitochondrial 

function may thus alter these effects together with negatively affecting placental transport. 

Changes in nutrient supply and composition to the placenta with obesity and GDM may alter 

their usage as fuel (fuel flexibility) for energy generation by mitochondria hence impacting 

what is available for transfer to the fetus. In addition to impairment of energy supply altered 

macro- and micronutrient composition reaching the placenta may affect one-carbon 

metabolism and cofactors that modulate epigenetic pathways related to fetal developmental 

programming [95]. Moreover, in a mouse model of obesity, a maternal diet high in fat and 

sucrose caused cardiac mitochondrial programming defects in the offspring, indicating a 

potential for multigenerational effects explicitly linked to mitochondrial dysfunction [96]. 

Fetal programming of many postnatal-onset diseases including early-life stress programming 

in the brain, renal disorders, neurodegenerative diseases, cardiovascular disease, Type 2 

diabetes, and obesity have all been linked to placental mitochondrial dysfunction [97–102]. 

Future pregnancies to offspring impacted by fetal programming may have adverse outcomes, 

contributing to the feedback loop illustrated in Figure 1. Adverse maternal outcomes have 

also been associated with increased oxidative stress related to trophoblast mitochondrial 

function, including preterm delivery, stillbirth, and fetal growth restriction as well as higher 

risk for neurodegenerative diseases like Alzheimer’s and Parkinson’s later in life [103,104].
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4. Sexual dimorphism in obese and GDM trophoblast function

Male fetuses are generally more at risk for pregnancy complications. Males are more 

susceptible to birth trauma [105], stillbirth [106], and developmental programming of adult-

onset obesity, hypertension, and diabetes [32,107]. Abnormal fetal size (both fetal growth 

restriction and large-for-gestational-age diagnoses) occurs more frequently in male fetuses 

as well [17,108]. GDM is more likely to occur in a pregnancy with a male fetus, with 

marginally more significant risks for GDM in both the first and second pregnancy in one 

study, while another reported a 4% higher risk [109,110].

Maternal pathology magnifies these phenotypic fetal sex effects. Male fetuses from lean 

women had less placental oxidative and nitrative stress as well as more antioxidant SOD 

than males from obese women; females from obese women showed no difference compared 

to females from lean women [72]. In a rat study, females had less placental oxidative stress 

response to a high-fat diet with higher antioxidant defenses than male siblings [111]. Fetal 

sex affected neither the amount of mitochondrial DNA nor mitochondrial morphology, 

however [112]. Chronic hypoxia inhibited mitochondrial complexes I and IV in male guinea 

pig placentas, but there was no reduction in either complex in females [113]. In human 

studies, males from GDM women had fewer trophoblast mitochondria than females from 

GDM women, which correlated with reduced key antioxidant coactivator PGC-1α [114]. 

Trophoblast mitochondrial content was significantly reduced in placentas from obese 

mothers regardless of fetal sex [115]. Interestingly, both in an in vivo pregnant rat model and 

in human trophoblasts in vitro increased testosterone decreased trophoblast respiration and 

caused mitochondrial dysfunction which potentially could be a fetal sex-specific effect 

[116].

Recently, we found that fetal sex also affects fuel flexibility. In male STBs, flexibility to 

switch between using glucose, fatty acids, or glutamine for mitochondrial respiration 

significantly decreased from lean women to obese women to women with GDM. Male STBs 

from women with GDM were more dependent on fatty acids to maintain basal respiration 

than females, and less able to utilize glutamine [15].

Although the reasons for sexually dimorphic placental responses are not well understood, 

differences in trophoblast gene expression between males and females are well described. 

Female placentas had a higher expression of genes involved in immune regulation like 

JAK1, CXCL1, and IL2RB, which might benefit their response to infection and autoantigens 

[117]. Different mechanisms, including differential gene methylation [118] or escape from 

X-linked inactivation [119], may influence gene expression levels. Continued research into 

sexual dimorphism in the placenta and its driving causes is critical to understand the fetal 

impact on placental development.

5. Current and proposed treatments to improve mitochondrial function by 

reducing oxidative stress

Both obesity and GDM impact trophoblast mitochondrial function by increasing ROS and 

oxidative stress [120] and decreasing trophoblast respiration [115,121] and are associated 
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with the adverse pregnancy outcomes seen in these conditions. Antioxidant treatments that 

focus on remediating trophoblast respiration to improve placental function and pregnancy 

outcomes are currently under investigation, including vitamins, general antioxidants, 

mitochondria-targeted antioxidants, and mitochondrial-derived peptides. A summary of the 

specific targets and effects of these treatments can be found in Figure 3 and Table 1.

5.1 Vitamins to prevent ROS generation

Vitamin A (retinoic acid) increases the activity of both mitochondrial complexes I and II and 

is also critical to activating PKC-δ, which controls the flux of pyruvate into the citric acid 

cycle [122,123]. In a diabetic rat model, three times as much vitamin A was required for 

normal transcription of mitochondrial ATP6, which encodes for subunit 6 of ATP synthase, 

versus nondiabetic rats [124]. A deficiency of retinol (the less-active precursor to retinoic 

acid) led to embryo reabsorption and poor fetal outcomes in animal models that could be 

rescued by vitamin A supplementation; however, overdose also led to fetal demise, 

congenital defects, and trophoblast apoptosis in similar models [125].

The components of the vitamin B complex have different roles in oxidative phosphorylation 

as cofactors and their precursors. Vitamin B1 (thiamine) is a cofactor to ketoacid 

dehydrogenases acting on pyruvate, α-ketoglutarate, and branched-chain amino acids. B2 

(riboflavin) is a component of mitochondrial complexes I and II, and a precursor to electron 

carrier flavin adenine dinucleotide (FAD) [126]. B3 (niacin) is critical to complex I function 

as a precursor to electron transporter nicotinamide adenine dinucleotide (NAD). B9 (folate) 

similarly increased NAD in vitro [127]. B2, B3, B5, B6, B9, and B12 are all involved in 

coenzyme Q (CoQ) synthesis [126,128]. The limited number of studies on the effect of B 

vitamins on trophoblasts have focused primarily on folate and B12 (cobalamin): deficiencies 

in both caused apoptosis and oxidative stress in vitro [125]. Imbalance in B vitamins can 

cause abnormalities in the one-carbon cycle, resulting in less production of thymidine, 

purines, ATP, NAD, and CoA, resulting in developmental programming for type 2 diabetes 

and obesity [129].

Vitamin D is best known for its involvement in aiding calcium absorption, but it also 

modifies placental mitochondrial function. Calcitriol (D3, the active form) is vital in 

pregnancy: it regulates decidualization, implantation, hormone secretion, and placental 

immune response via the vitamin D receptor VDR [130]. Trophoblasts readily convert 

inactive 25-hydroxyvitamin D to calcitriol, critical to STB use of vitamin D to transport 

calcium to the fetus [130]. However, excessive vitamin D induces nitric oxide production, 

which could be a root cause of GDM endothelial cell dysfunction [131].

Vitamin D concentrations directly influence mitochondrial function. The vitamin D response 

element VDRE can be found in the promoter region of some cytokines, including cytokine-

regulator NF-κB, which also affects mitochondrial fusion, morphology, and ETC usage 

[132,133]. Diminishing cytochrome c subunits II and IV caused by vitamin D may inhibit 

mitochondrial respiration [134] but may help improve metabolism and cytokine production 

in obesity where vitamin D is depleted [135,136]. Placental apoptosis and oxidative stress 

declined and autophagy increased when treating pregnant rats with calcitriol [137].
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Vitamin K (phylloquinone) is a fat-soluble vitamin involved in blood coagulation derived 

from plants and intestinal bacteria [126]. It has not been studied extensively in conjunction 

with pregnancy, as minimal vitamin K crosses the placenta to the fetus [138]. However, it 

does mediate electron transport from NADH to CoQ and cytochrome c, which may be of 

interest in regards to trophoblast treatment [139].

5.2 Vitamins as ROS scavengers

Vitamin C (ascorbic acid; AA) decreases ROS via its strong reducing potential [140,141]. 

The glucose transporter GLUT1 and sodium-dependent vitamin C transporter SVCT1 can 

transport vitamin C into the mitochondria as dehydroascorbic acid (DHA) and AA, 

respectively [140]. DHA is more effective against ROS but is present in lower amounts in 

the cell. Vitamin C also affects gene expression in several ways. For example, it is a 

competitive inhibitor for adenylyl cyclase, which would prevent the conversion of ATP to 

cAMP and, therefore, cAMP-regulated gene expression, and it decreased the apoptotic/anti-

apoptotic ratio of BAX/BCL2 in first-trimester cultured EVTs [142,143].

Vitamin E (commonly α-tocopherol) is a ROS scavenger. As it is fat-soluble, vitamin E is 

incorporated into both the cellular membrane and the mitochondrial outer membrane to 

protect against ROS [144]. Trolox, a vitamin E analog, reduced ROS without altering gene 

expression or mitochondrial membrane potential [145], and it improved ATP synthase 

function and antioxidant levels when used as a pretreatment in rat cardiomyocytes prior to 

high glucose exposure [146].

When administered together, vitamin C can regenerate vitamin E’s antioxidant properties 

[147]. There is no current evidence that early supplementation with vitamins C and E 

improves trophoblast mitochondrial function in healthy pregnancy [148]. However, it may 

help reduce insulin resistance, increase SOD, and improve neonatal blood sugar levels in 

GDM in humans [149].

5.3 Selenium

Selenium is located at the catalytic site of several antioxidant and regulatory enzymes, 

including glutathione peroxidase and thioredoxin reductase [150]. SOD activity increased 

and ROS decreased in hypoxic conditions after 72 hours of selenium treatment on human 

EVT cell cultures [151]. Selenium deficiency resulted in reduced selenium-dependent 

thyroid hormone converting enzymes, causing fetal growth restriction and associated 

programming issues [152]. Protein levels of selenoprotein H, PGC-1α, and NRF1 were 

elevated after selenium treatment in trophoblasts in vitro, protecting against oxidative stress 

by stimulating mitochondrial biogenesis [153].

5.4 Melatonin

Melatonin is a potent antioxidant, acting as a ROS scavenger, in non-tumor cells but is 

cytotoxic in tumor cells [154,155]. In non-trophoblast studies, melatonin enhanced gene 

expression of antioxidant enzymes catalase, glutathione peroxidase, and SOD [156]. 

Thioredoxin, NAD(P)H:quinone acceptor oxidoreductase 1 (NQO1), and glutamate-cysteine 

ligase gene expression were all upregulated in placental tissue following melatonin 
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treatment; sFLT secretion was reduced in primary trophoblasts treated with melatonin, but it 

did not change sFLT-related endothelial dysfunction [157].

In trophoblasts affected by hypoxia/reoxygenation, melatonin successfully repaired 

oxidative damage [158], and mitochondrial respiration was improved in syncytiotrophoblasts 

from obese women after melatonin treatment [66]. Interestingly, combining melatonin with 

vitamins A and C demonstrated an additive inhibition of lipid peroxidation and effective 

antioxidant treatment in isolated human placental mitochondria [159].

5.5 Synthetic antioxidants

One of the best-studied mitochondria-targeted synthetic antioxidants is MitoQ, coenzyme Q 

covalently bound to a lipophilic triphenylphosphonium cation (TPP+). As lipophilic cations 

do not require specific transport mechanisms, TPP+ and its ubiquinone cargo can 

accumulate very quickly in the mitochondria [160]. MitoQ is reduced in the mitochondria by 

the ETC to active ubiquinol, which prevents lipid peroxidation and mitochondrial damage 

[161]. In vivo, MitoQ has been successfully used in human clinical trials to treat 

cardiovascular disease and is well tolerated [161,162]. MitoQ also prevented trophoblast 

mitochondrial stress in early hypoxic rat pregnancies [160]. In vitro, however, MitoQ has 

been shown to cause mitochondrial swelling and depolarization [163,164]. Small amounts of 

MitoQ are sufficient to kill cells in vitro, including human trophoblast (unpublished 

observation), likely due to the rapid accumulation of TPP+ permitted by increased 

mitochondrial membrane permeability. It is presumed that in vivo, TPP+ can be metabolized 

or cleared before toxicity can occur [165].

Research on gene expression changes in pregnancy with MitoQ treatment has primarily 

focused on ameliorating the effects of hypoxia. Gene expression of growth factors Vegfa and 

Igf2 in the hypoxic placenta increased after placental-targeted nanoparticle-encapsulated 

MitoQ (nMitoQ) treatment in a rat model of pregnancy, but only when the fetus was female 

[166]. Using nMitoQ also decreased placental release of miRNA and subsequently 

decreased mRNA expression of genes related to fetal brain injury in hypoxic conditions 

[167].

Analogs of MitoQ have shown similar effects but with varying levels of efficacy. Idebenone 

is a non-mitochondria-targeted coenzyme Q10 structural analog not bound to TPP+ and 

exhibits weaker antioxidant ability, while SkQ1 (10-(6’-

plastoquinonyl)decyltriphenylphosphonium, aka Visomitin) is a more powerful antioxidant 

combining TPP+ and plastoquinone. Idebenone prevented a reduction of cytochrome c 

oxidase and mRNA levels of PPARG1 and NRF1 in diabetic rats; it also reduced apoptosis 

in the embryos of these same animals [168]. SkQ1 exclusively targeted the mitochondria, 

reduced ROS and senescence in cell culture and rodent models, and slowed aging in a 

fungus and two animal models [169]. MitoQ and idebenone reduce oxidative and 

inflammatory markers in cardiovascular disease in a sexually dimorphic manner: female 

fetuses respond better to both than males in GDM in rats [170,171].

Other potential mitochondria-targeted treatments have not yet been applied to trophoblasts 

but may be of future interest based on their results in other tissues. SS31, part of the Szeto-
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Schiller group of peptides, prevents cardiolipin from converting cytochrome c into a 

peroxidase while preserving its ETC function [172]. Previously used in downregulating 

CD36 in brain injury, SS31 is now finding success as a ROS scavenger, improving 

mitochondrial function in traumatic brain injury, Parkinson’s Disease, cancer, and diabetes 

[172,173]. Tiron, an iron chelator found to cross the mitochondrial membrane, functions 

similarly to the SS class of peptides and can permeabilize the cell membrane, scavenge ROS, 

and prevent ADP depletion [174]. Gramicidin S-based JP4-039 and XJB-5-131 have 

targeting sequences for selective mitochondrial accumulation. Although quite recently 

created, both already show promise in reducing oxidative stress and preventing lipid 

peroxidation and apoptosis [175].

Metformin, a synthetic biguanide, can effectively reduce insulin resistance and 

cardiovascular risk factors and has antioxidant effects as it increases SOD and reduces ROS 

in diabetic patients [176,177]. It is reported to primarily affect mitochondrial ROS formation 

by inhibiting complex I [178]. However, it also upregulates gene expression of the ROS 

scavenger thioredoxin and inhibits the expression of pro-inflammatory genes IL-6 and 

TNFα [179,180]. Although metformin has been used for more than sixty years to treat both 

gestational and non-gestational diabetes [181], limited research is available on its effects on 

the placenta, and none yet published on trophoblast mitochondrial function. Recent studies 

suggest, however, that metformin can cross the placenta to the fetus [182]. More data is 

needed regarding safe dosage levels.

5.6 Mitochondrial-derived peptides

Peptides generated by the mitochondria themselves, including humanin, MOTS-c 

(mitochondrial open reading frame of 12s rRNA-c), and SHLP (small humanin-like 

proteins), help maintain mitochondrial function and cell viability in pathologic conditions 

[183]. Humanin is a 24-amino-acid cytoprotective peptide that initially found success in 

preventing β-amyloid plaques in Alzheimer’s [184]. Humanin acts as an antioxidant by 

restoring mitochondrial glutathione levels and increasing mitobiogenesis [185]. Humanin 

also stimulates insulin secretion, which may help increase glucose uptake; however, 

circulating humanin levels decrease with age, which may lead to eventual insulin resistance 

[186,187]. MOTS-c, a 16-amino-acid peptide that controls mitochondrial insulin regulation 

and homeostasis, increases AMPK and insulin sensitivity and promotes the expression of 

Nrf2 antioxidant genes [188,189]. SHLP1-6, most notably SHLP2 and 3, increase oxygen 

consumption rate and reduce apoptosis and ROS [190]. Mice on high-fat diets treated with 

these peptides demonstrated reduced weight gain, decreased ROS, and protection against 

ischemic injury [185].

5.7 Targeted superoxide dismutase conjugates

Treatments attempting to deliver antioxidant superoxide dismutase directly are challenging 

as SOD has a half-life of approximately six minutes in the circulation [191]. Compensating 

by increasing SOD dosage paradoxically exacerbated oxidative damage [192]. Due to its 

instability, rapid excretion, and low cellular uptake due to poor permeability across cell 

membranes, clinical applications of SOD alone as a therapeutic agent are limited. SOD 
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conjugates have been developed with better stability and longer half-lives, as recombinant 

SOD conjugated to nanoparticles is protected from being degraded in serum [193].

Some of the earliest concepts involved SOD conjugation to pyran polymers, catalase, and 

gelatin [192,194,195]. However, SOD-conjugated liposomes were quickly found to be more 

effective in reducing ROS and inflammation. Long-circulating polyethylene glycol (PEG) 

liposomes loaded with SOD accumulated in inflammatory sites with greater efficiency and 

specificity than conventional stearylamine liposomes [196]. Polymers have regained some 

popularity. Both carboxymethylcellulose (CMC) and polymethyl vinyl ether-co-maleic 

anhydride (PMVE/MA) conjugates significantly increased SOD enzyme activity in diabetic 

rats and protected them from degenerative changes in brain, kidney, and liver tissue [197].

Several types of nanoparticles conjugated to SOD have been successful at reducing oxidative 

stress. SOD loaded on poly (D,L-lactide-co-glycolide) nanoparticles protected rat brain cells 

from oxidative stress related to ischemia-reperfusion injury, reducing infarcts by 65% over 

controls with a 75% survival rate (compared to 0% in controls) at 28 days [198]. Silica 

nanoparticles conjugated with Cu/Zn SOD were engineered with an HIV transactivator 

protein domain to enhance transmembrane transport [199]. However, the generation of these 

conjugates often results in toxic byproducts; a greener approach incubating Cu/Zn with 

glucose under heat-induced aggregation created a stable product that efficiently crossed cell 

membranes [191].

5.8 Global and indirect mitochondrial antioxidants

Global and indirect mitochondrial antioxidants are not explicitly targeted to remediate 

mitochondrial dysfunction but still reduce cellular oxidative stress. N-acetyl cysteine is a 

global antioxidant, as it has several roles: a precursor to glutathione, ROS scavenger, and 

direct interactor with NO2 and HOX [200]. Sulforaphane, an indirect mitochondrial 

antioxidant derived from cruciferous vegetables, similarly raises glutathione levels and 

decreases ROS, but it also diminishes mitochondrial membrane potential [201]. 

Sulforaphane prevented maleic acid-induced oxidative damage, improved function of 

mitochondrial complex I, and decreased ROS in non-pregnant rats [202]. Although 

sulforaphane protects mitochondrial function in both cancerous and non-cancerous cells, it 

paradoxically induces mitochondrial biogenesis, demonstrating that its mechanism is still 

not fully understood [203].

5.9 Behavioral modification

Finally, there is some evidence indicating that modifying certain lifestyle behaviors may 

reduce oxidative stress. Restricting caloric intake without inducing malnutrition reduces 

overall oxidative stress, which may have developed as a defense mechanism to survive in 

adverse conditions [204]. Moderate exercise may reduce metabolic rate by presenting 

regular oxidative stress challenge to the muscles and boosts insulin resistance and 

endogenous antioxidant levels, as seen in rat skeletal muscle [205]. Excessive consumption 

of antioxidant supplements is detrimental as low amounts of ROS are necessary to maintain 

mitochondrial function [204]. However, moderate antioxidant supplement consumption 
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paired with behavioral modifications may be considered a part of an overall treatment plan 

to improve cellular response to oxidative stress.

6. Conclusion

The highly metabolic placenta relies on efficient mitochondrial function to produce the 

requisite energy for supporting a developing fetus through the transport of nutrients, gases, 

and wastes. Both maternal obesity and GDM generate placental oxidative stress, impair 

trophoblast mitochondrial function, impact fetal growth and development, developmentally 

program adult-onset disease, and are associated with a range of short and long term adverse 

fetal and maternal outcomes. Fetal sex influences trophoblast mitochondrial response to 

gestational pathology, with males generally responding less well to adverse pregnancy 

conditions, resulting in more severe health risks at birth and beyond. Both global and 

mitochondria-targeted antioxidants and mitochondrial-derived peptides may be a potential 

answer to correcting trophoblast mitochondrial dysfunction with obesity and GDM. Further 

investigation is warranted to identify the best agents, dosages, and timing of administration 

to improve both maternal and fetal gestational and long-term health outcomes.
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Highlights

• Maternal obesity and gestational diabetes adversely affect pregnancy 

outcomes

• Increased oxidative stress leads to decreased trophoblast mitochondrial 

respiration

• Effects are sexually dimorphic with male placenta being more severely 

affected

• Mitochondria-targeted treatments may improve trophoblast respiration
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Figure 1. The consequence of programming in utero.
The maternal state affects placental and fetal development (programming). On reaching 

adulthood, the programmed individual may start this cycle anew, creating a pattern for future 

disease.
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Figure 2. Overview of major aerobic metabolic pathways.
Glucose, fatty acids, and amino acids can all undergo oxidative metabolism in the 

mitochondria with one primary goal: ATP generation.

Hebert and Myatt Page 28

Biochim Biophys Acta Mol Basis Dis. Author manuscript; available in PMC 2022 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. Cellular sites of action of different agents for targeted reduction of oxidative stress.
Each letter represents an antioxidant-targeted component of the mitochondria or the 

cytoplasm.
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Table 1.

Cellular targets, and mechanistic effects of various antioxidant agents

Agent Location Effect Reference

Vitamin A B, C ↑ Complex I + II activity [122]

Vitamin B complex B1 – A, I
B2 – B, C, D

B3 – B, D
B5, 6, 9, 12 – D

B1 – cofactor in pyruvate, α-ketoglutarate and branched-chain ketoacid dehydrogenases
B2: Complex I, II component; ↑CoQ

B3: Complex I component; ↑CoQ
B5, 6, 9, 12: ↑CoQ

[126]

Vitamin C D, I ↓ ROS, ↑CoQ [126]

Vitamin D F ↓ CytC [134]

Vitamin E J, K ↓ ROS, fortifies membranes against ROS [206]

Trolox J ↓ ROS [145]

Vitamin K D, F, G Mediates electron transport to CoQ, CytC, Complex IV [126,139]

Selenium I ↑ glutathione peroxidase, PGC-1α (mT biosynthesis), cell signaling cascades; necessary 
for antioxidant selenoproteins

[207,208]

MitoQ D ↑ CoQ [164]

SkQ1 J ↓ ROS, ↓ mT membrane potential [169]

Melatonin I, J ↑ glutathione reductase, SOD; ↓ ROS [66]

Metformin B ↓ Complex 1 [177]

SS31 F, J ↓ ROS, lipid peroxidase; prevents CytC from exiting to cytoplasm and signaling 
apoptosis

[173]

Tiron J ↓ ROS, permeabilizes mitochondrial membrane [174]

Humanin J Restores mT glutathione; ↓ ROS [186,209]

MOTS-C I, J Binds to NRF2 antioxidant gene promoter; ↓ ROS [185]

SHLP2, SHLP3 J ↓ ROS [185]

N-acetyl cysteine I, J ↑ glutathione, ↓ ROS [210]

Sulforaphane I, J ↑ glutathione, ↓ ROS, ↓ mT membrane potential [201]
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