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Abstract
The mechanisms by which parkin protects the adult human brain from Parkinson disease remain incompletely understood. 
We hypothesized that parkin cysteines participate in redox reactions and that these are reflected in its posttranslational modi-
fications. We found that in post mortem human brain, including in the Substantia nigra, parkin is largely insoluble after age 
40 years; this transition is linked to its oxidation, such as at residues Cys95 and Cys253. In mice, oxidative stress induces 
posttranslational modifications of parkin cysteines that lower its solubility in vivo. Similarly, oxidation of recombinant parkin 
by hydrogen peroxide (H2O2) promotes its insolubility and aggregate formation, and in exchange leads to the reduction of 
H2O2. This thiol-based redox activity is diminished by parkin point mutants, e.g., p.C431F and p.G328E. In prkn-null mice, 
H2O2 levels are increased under oxidative stress conditions, such as acutely by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine 
toxin exposure or chronically due to a second, genetic hit; H2O2 levels are also significantly increased in parkin-deficient 
human brain. In dopamine toxicity studies, wild-type parkin, but not disease-linked mutants, protects human dopaminer-
gic cells, in part through lowering H2O2. Parkin also neutralizes reactive, electrophilic dopamine metabolites via adduct 
formation, which occurs foremost at the primate-specific residue Cys95. Further, wild-type but not p.C95A-mutant parkin 
augments melanin formation in vitro. By probing sections of adult, human midbrain from control individuals with epitope-
mapped, monoclonal antibodies, we found specific and robust parkin reactivity that co-localizes with neuromelanin pigment, 
frequently within LAMP-3/CD63+ lysosomes. We conclude that oxidative modifications of parkin cysteines are associated 
with protective outcomes, which include the reduction of H2O2, conjugation of reactive dopamine metabolites, sequestration 
of radicals within insoluble aggregates, and increased melanin formation. The loss of these complementary redox effects may 
augment oxidative stress during ageing in dopamine-producing cells of mutant PRKN allele carriers, thereby enhancing the 
risk of Parkinson’s-linked neurodegeneration.
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Introduction

Bi-allelic mutations in PRKN, which encodes parkin, lead 
to a young-onset, recessive form of Parkinson disease (PD) 
[39, 42]. Pathology studies of parkin-deficient brains have 
demonstrated that neuronal loss is largely restricted to the S. 
nigra and L. coeruleus, two brainstem nuclei that synthesize 
dopamine (reviewed in Doherty et al. [15]).

Parkin is a principally cytosolic protein. It has been asso-
ciated with diverse cellular functions, foremost related to its 
ubiquitin ligase (E3) activity, the control of inflammation 
signalling, and maintenance of mitochondrial integrity, as 
mediated through participation in mitophagy and mitochon-
drial antigen presentation (MITAP) [5, 57–59, 63, 65, 67, 
88] (reviewed in Barodia et al. [4]). Although mitophagy 
has recently been shown to be co-regulated by parkin in the 
developing heart of mice [26], the diverse roles ascribed to 
parkin function have not yet explained its selective neuro-
protection. For example, vertebrate models of genomic prkn 
deletion do not reproduce dopamine cell loss; one excep-
tion is the parkin-deficient Polg mouse, where mitochondrial 
DNA mutagenic stress had been added as a second, genetic 
hit [75]. The general lack of dopamine cell loss in genomic 
parkin deficiency-based models of vertebrates could be due 
to compensatory mechanisms [86], a shorter life span of 
non-human mammals, and possibly, unique aspects of dopa-
mine metabolism in humans. The latter is exemplified by the 
generation of cytoplasmic neuromelanin in dopamine syn-
thesizing neurons beginning after childhood [110]. Never-
theless, genomic prkn-null models have revealed biochemi-
cal and structural changes in high energy-producing cells 
of flies and murine tissues [4, 21, 102], which suggested 
the presence of elevated oxidative stress [34, 70, 74]. These 
observations pointed at a contribution of parkin to redox 
homeostasis in vivo.

Redox equilibrium invariably involves cysteine-based 
chemistry. There, thiols are subjected to oxidative modi-
fications by reactive oxygen-, reactive nitrogen- and reac-
tive electrophilic species (ROS, RNS, RES) [2, 52], some 
of which are reversible. Proteins irreversibly conjugated by 
RES, including by electrophilic dopamine radicals, are either 
degraded or sequestered within inclusions. It is thought that 
the latter process occurs via lysosomal functions and under-
lies neuromelanin formation throughout adulthood [83].

Human parkin contains 35 cysteines [42], its murine 
homologue 34. Of these, 28 cysteines are involved in the 
chelation of eight zinc ions within four RING domains [31]. 
Although Cys431 has been identified as critical in catalyz-
ing human parkin’s E3 ligase activity, 6 other cysteines are 

structurally unaccounted for, including Cys95 located within 
parkin’s ‘linker’ domain. Several reports have demonstrated 
the unique sensitivity of parkin to ROS and RES in cells [50, 
60, 103]. Further, RNS and sulfhydration can also modify its 
cysteines, and NO-/NO2-modified parkin variants have been 
described in cells and brain tissue [6–8, 97, 107]. Oxidation 
of parkin has been linked to both activating (‘gain-of-func-
tion’) and detrimental (‘loss-of-function’) outcomes when 
tested in the context of parkin’s E3 ligase activity in vitro 
[8, 51, 60, 107].

We found that wild-type parkin is highly oxidized and 
insoluble in adult human midbrain, leading us to explore 
non-E3 ligase-mediated, protective functions. Owing to its 
large number of cysteine-based thiols, we hypothesized: 
one, that parkin confers neuroprotection by acting as an anti-
oxidant molecule in vivo and thereby contributes to redox 
balance; two, specifically, that parkin directly lowers ROS- 
as well as RNS-linked stressors and promotes the conjuga-
tion of dopamine radicals (RES); and three, we posited that 
selective neurodegeneration in PRKN-linked, autosomal-
recessive PD (ARPD) could be partially explained by the 
absence of parkin-mediated sequestration of toxic metabo-
lites during decades of human ageing.

Materials and methods

Tissue collection

All tissues were collected in accordance with Institutional 
Review Board-approved guidelines. Fresh frozen samples of 
the cortical human brain from subjects under 50 years of age 
were acquired through the University of Alabama and the 
Autism Tissue Program. Post mortem, frozen brain samples 
from frontal cortices were also obtained from the NICHD 
Brain and Tissue Bank at the University of Maryland. Brain 
tissues, including midbrain specimens, with short post mor-
tem interval (PMI) were obtained from patients diagnosed 
clinically and neuropathologically with multiple sclerosis 
(MS) according to the revised 2010 McDonald’s criteria 
[76]. There, tissue samples were collected from MS patients, 
as approved by the Montreal-based CRCHUM research eth-
ics committee. Autopsy samples were preserved and lesions 
classified using Luxol Fast Blue/Haematoxylin and Eosin 
staining and Oil Red-O staining, as previously published 
[14, 48]. No inflamed tissue areas were used in the cur-
rent study. Additional, fresh-frozen and paraffin-embedded 
human samples were obtained from the Neuropathology 
Service at Brigham and Women’s Hospital in Boston, MA 
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and from archived autopsy specimens in the Department of 
Pathology and Laboratory Medicine of The Ottawa Hospital, 
Ottawa, ON. Human spinal cord and muscle tissues were 
collected post mortem from organ donors at The Ottawa 
Hospital with approval from the Ottawa Health Science 
Network Research Ethics Board.

Animal tissues

All animal protocols were approved by the review board of 
the Animal Care and Veterinary Services at the University 
of Ottawa. Brains were collected from wild-type C57Bl/6J 
mice from Jackson laboratories (Bar Harbor, ME); prkn-null 
mice were from Dr. Brice’s laboratory [34] and back-crossed 
onto a pure C57Bl/6J background; Sod2 ± mice were from 
Jackson laboratories (pure C57Bl/6J background), and the 
bi-genic mouse (prkn−/−//Sod2±) was created by crossing 
prkn-null mice with Sod2-haploinsufficient mice, and the 
interbreeding of heterozygous offspring. These bi-genic 
mice have been characterized elsewhere (El-Kodsi et al. in 
preparation [17]). Following euthanasia by Euthanyl (65 mg/
mL) intraperitoneal injection, mouse brains were collected 
and processed on ice in a Dounce glass homogenizer by 20 
passes in Tris salt buffer with vs. without the addition of 1% 
hydrogen peroxide (H2O2—Sigma), or 0.1–1 M dithiothrei-
tol (DTT—Sigma), transferred to ultracentrifuge tubes and 
spun during 30 min at 163,202.1 × g and 4 °C to extract the 
soluble fraction. The resulting pellets were further homog-
enized in the tris-salt buffer with the addition of 2–10% SDS, 
transferred to ultracentrifuge tubes and spun at 163,202.1 × g 
and 10 °C for 30 min to extract the insoluble fraction. Wild-
type mice (of C57Bl/6J or mixed background, as indicated) 
were used for the analysis of the effects of PMI on murine 
parkin distribution in the brain. Mice ranging from 4 to 22 
months in age were perfused with PBS, their brains collected 
and processed, as above. Wild-type SAS Sprague Dawley 
rats were obtained from Charles River Laboratories; frozen 
frontal lobe specimens of a cynomolgus monkey were pro-
vided by the New England Primate Research Center.

Sequential extraction of parkin from neural tissue

Approximately 1 cm3 of the human frontal cortex and mid-
brain specimens (age range, 5–85 years) were weighed and 
placed in 3 × volume/weight of Tris-salt buffer (TS; 5 mM 
Tris, 140 mM NaCl, pH 7.5) containing complete EDTA-
free protease inhibitor cocktail, and 10 mM iodoacetamide 
(IAA, Bio-Rad). The samples were homogenized on ice in 
a Dounce glass homogenizer by 50 passes, transferred to 
ultracentrifuge tubes and spun at 163,202.1 × g and 4 °C 
for 30 min. The TS supernatant was transferred to a fresh 
tube and the pellet was extracted further with the addition 
of 3 × volume/weight of Triton X-100 buffer (TX, TS + 2% 

Triton X-100). The samples were mixed by vortexing, incu-
bated on ice for 10 min and centrifuged again using the same 
setting. The TX supernatant was transferred to a fresh tube 
and the pellet was extracted further with the addition of 
3 × volume/weight of SDS buffer (SDS, TS + 2% SDS). The 
samples were mixed by vortexing, incubated at room tem-
perature for 10 min and centrifuged again at 163,202.1 × g 
and 12 °C for 30 min. The SDS supernatant was transferred 
to a fresh tube and the pellet was either stored at − 80 °C 
or extracted further with the addition of 3 × volume/weight 
of 6 × non-reducing Laemmli buffer (LB, 30% SDS, 60% 
glycerol, 375 mM Tris; pH 6.8;), mixed by vortex and incu-
bated at room temperature for 10 min. Samples were centri-
fuged again at 163,202.1 × g and 12 °C for 30 min and the 
LB supernatant was transferred to a fresh tube. Extracted 
proteins from TS, TXS and SDS buffers including pellet 
(20–30 μg) and 10–20 μL of LB extracts were run on SDS-
PAGE using reducing (100 mM DTT) and/or non-reducing 
(0 mM DTT) LB. Following transfer to membranes, Pon-
ceaus S staining (Sigma) was used to probe for equal load-
ing; following washing, membranes were immunoblotted for 
the detection of parkin (Biolegend 808503, 1: 5000), DJ-1 
(Ab18257, 1: 2000), α-synuclein (syn-1, 1:1000 or MJFR-1, 
1:2000), LC3B (3868, 1:2000), VDAC (MSA03, 1:5000), 
MnSOD and GLO1 (each at 1:1000), calnexin (MAB3126, 
1:1000), cathepsin D (sc-6486, 1:1000), GRP75 (sc-1058, 
1:1000). ImageJ software (version 1.52 k; National Institutes 
of Health, USA) was used for signal quantification purposes.

mRNA analyses

PRKN mRNA isolated from individual S. nigra dopamine 
neurons, cortical pyramidal neurons and non-neuronal, 
mononuclear cells from venous blood were processed, as 
described [16] and annotated in the Human BRAINcode 
database (www.human​brain​code.org).

1‑methyl‑4‑phenyl‑1,2,3,6‑tetrahydropyridine 
(MPTP) treatment

Eight to 12 months-old wild-type and prkn-null mice were 
injected intraperitoneally with 40 mg/kg of saline or MPTP 
and sacrificed an hour later [3]. Brains were harvested for 
ROS measurement, protein analysis by Western blotting and 
immunoprecipitation of parkin followed by MS analysis. For 
LC–MS/MS, murine brains were first incubated in IAA prior 
to homogenization and fractionation, as described above. 
Brain homogenates were then incubated with anti-parkin 
conjugated to magnetic beads (Dynabeads Coupling Kit; 
Invitrogen), as below. A magnet was used to enrich mouse 
parkin bound to Prk8 conjugated to beads, and several 
washes were used to remove non-specific proteins. Eluted 
fractions (IP elute) along with controls (input, unbound, 

http://www.humanbraincode.org
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wash and recombinant parkin protein standards) were run 
on SDS/PAGE under reducing conditions and blotted with 
anti-parkin. A sister gel was stained with Coomassie, as 
described above, and gel slices corresponding to band sizes 
at 50–75 kDa were excised and analyzed by LC–MS/MS, as 
described below.

Recombinant protein expression using a pET‑SUMO 
vector

Plasmid cDNA encoding for wild-type and truncated (amino 
acid 321-465) human parkin proteins were expressed as 
6His-Smt3 fusion proteins in Escherichia coli BL21 (DE3) 
Codon-Plus RIL-competent cells (C2527, New England Bio-
labs), as previously described [1, 49, 91]. Plasmids encod-
ing for human parkin with p. C95A, p.G328E and p.C431F 
substitutions were generated with the use of a restriction-
free cloning strategy [96] using the following primers: for 
p.C95A PRKN forward: CAG​AAA​CGC​GGC​GGG​AGG​
CgcTGA​GCG​GGA​GCC​CCA​GAG​CT and PRKN reverse: 
CAT​CCC​AGC​AAG​ATG​GAC​CC; for p.G328E PRKN for-
ward: TCC​AAA​CCG​GAT​GAG​TGG​TG and PRKN reverse: 
CGG​GGG​CAT​AAC​ACG​CCC​cCCA​TCT​GCA​GGA​CAC​
ACT​C; for p.C431F PRKN forward: CTA​CTC​CCT​GCC​
TTG​TGT​GG and PRKN reverse: GCG​GAC​ACT​TCA​TGT​
GCA​TaaaGCC​TCC​ATT​TTT​TTC​CAC​TGG.

DJ-1 and SNCA coding regions were cloned from 
pcDNA3.1 into the pET-SUMO vector using PCR and 
restriction enzymes. A new restriction site for NotI was 
inserted between SUMO cleavage site and protein start 
codon in pET-SUMO using the following primers: pET-
SUMO forward: GTG​ATG​CCG​GCC​ACG​ATG​CGT​CCG​
GC and pET-SUMO reverse: TTT​TAA​GCT​TCC​gcggccgc-
CAC​CAC​CAA​TCT​GTTC. The inserts containing wild-
type DJ-1 and SNCA sequences with 5′ NotI and 3′ HindIII 
restriction sites were generated using the following primers 
and inserted into pET-SUMO using standard conditions: for 
DJ-1 forward: agggcggccgcATG​GCT​TCC​AAA​ and DJ-1 
reverse: cctaagcttCTA​GTC​TTT​AAG​AAC​AAG​TGG​AGC​
CTTC; for SNCA forward: agggcggccgcATG​GAT​GTA​TTC​
ATG​AAA​GG and SNCA reverse: ctTTA​AGC​TTC​AGG​TTC​
GTA​GTC​TTG​ATA​CCC​TTC​AGA​.

Quality control steps were performed at the Sequenc-
ing Core Facility of the Ottawa Hospital Research Institute 
(OHRI) to confirm the correct sequences.

Transformed bacteria were grown at 37 °C in 2% Luria 
Broth containing 30 mg/L kanamycin. All parkin protein-
expressing cultures were supplemented with 0.5  mM 
ZnCl2. Protein expression was induced at 16 °C with iso-
propyl β-d-1-thiogalactopyranoside (Sigma) using 25 μM 
for wild-type parkin, and 0.75 mM for truncated parkin, 
DJ-1, α-synuclein and ulp1 protease. Bacteria were har-
vested after 16–20 h by centrifugation and resuspended 

in isolation buffer, T500i (50 mM Tris, 500 mM NaCl, 
250 μM TCEP, 25 mM imidazole, pH 7.5). Lysozyme 
(0.1 mg/mL, except for ulp1 protease) treatment and soni-
cation steps (Sonics Vibra Cell) were used to lyse cells. 
Proteins were collected after 1 h incubation at 4 °C with 
Ni–NTA agarose and washed several times with buffers 
T500i and T200i (50 mM Tris, 200 mM NaCl, 250 μM 
TCEP, 25 mM imidazole, pH 7.5). Fractions of elution 
buffer T200e (50 mM Tris, 200 mM NaCl, 250 μM TCEP, 
250 mM imidazole, pH 7.5) were combined with 2–2.5 mg 
of 6xHis-tagged ulp1 protease and subsequently dialyzed 
(6–8 kDa cut-off,) against T200 (50 mM Tris, 200 mM 
NaCl, 250 μM TCEP, pH 7.5) for 24 h at 4 °C. Remaining 
proteins were incubated with Ni–NTA agarose for 1 h at 
4 °C. Fractions were collected until no protein was detect-
able, pooled and concentrated to 1 mg/mL using 10 kDa 
cut-off centrifugation filters (Millipore). The purity and 
correct masses of isolated proteins were assessed using 
electron spray ionization mass spectrometry (Agilent 6538 
Q-TOF).

Protein staining methods

All proteins were separated on pre-cast 4–12% 
Bis–Tris SDS-PAGE gels (NPO321BOX, NPO322BOX, 
NPO336BOX) from Invitrogen using MES running buffer 
(50 mM MES, 50 mM Tris, 1 mM EDTA and 0.1% SDS, 
pH 7.3) and Laemmli loading buffer (10% SDS, 20% glyc-
erol, 0.1% bromophenol blue, 0.125 M Tris HCl, 200 mM 
DTT or β-mercaptoethanol). Proteins were stained in gel 
using SilverQuest™ Silver Staining Kit (LC6070) from 
Invitrogen or Coomassie brilliant blue R-250 dye (20,278) 
from Thermo Scientific using the following protocol: The 
gel was transferred to a plastic container and rocked for 
30 min in Fix Solution (10% acetic acid, 50% methanol), 
followed by staining for 2–24 h (0.25% Coomassie R250) 
until the gel turned a uniform blue. The stain was replaced 
with Destain Solution (7.5% acetic acid and 5% methanol) 
and the gel was rocked until crisp blue bands appeared. 
Following a wash with water, the gel was stored in 7% 
acetic acid. Proteins transferred to PVDF (Bio-Rad) mem-
branes were stained with Ponceau S solution (Sigma) for 
20 min, washed three times with water, imaged and then 
destained with 0.1 M NaOH prior to Western blotting.

Dynamic light scattering assay

For each recombinant protein preparation tested, the buffer 
(50 mM Tris, 200 mM NaCl and 250 μM TCEP, pH 7.5) 
was exchanged for a 20 mM phosphate buffer with 10 mM 
NaCl (pH 7.4). 20 μM full-length wild-type recombinant 
parkin was centrifuged at 21,000 × g for 60 min at 4 °C and 
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light scattering intensity of the supernatant was collected 30 
times at an angle of 90° using a 10 s acquisition time. Meas-
urements were taken at 37 °C using a Malvern Zetasizer 
Nano ZS instrument equipped with a thermostat cell. The 
correlation data were exported and analyzed using the nan-
oDTS software (Malvern Instruments). The samples were 
measured at 0, 1, 3 and 5 h. Following 24 h incubation, 
2 mM DTT was added to the sample and the light scattering 
intensity of the supernatant was measured again.

Far UV circular dichroism spectroscopy

Fifteen μM of reduced and partially oxidized full-length 
wild-type, recombinant (r-) parkin was measured at t = 0 and 
t = 5 days of incubation under native conditions in 20 mM 
phosphate, 10 mM NaCl buffer. The aggregate-rich phase 
and the monomer-rich phase in the samples were separated 
with ultracentrifugation (100,000 × g for 2 h). Far UV cir-
cular dichroism (CD) spectra were recorded for the mono-
mer- and aggregate-rich phase of protein samples using a 
JASCO J-720 spectrometer. The final spectrum was taken as 
a background-corrected average of 5 scans carried out under 
the following conditions: wavelength range 250–190 nm at 
25 °C; bandwidth was 1 nm; acquisition time was 1 s and 
intervals was 0.2 nm. Measurements were performed in a 
0.01 cm cell. CD spectra were plotted in mean residue molar 
ellipticity units (deg cm2 dmol−1) calculated by the follow-
ing equation: [Θ] = Θobs/(10ncl), where [Θ] is the mean resi-
due molar ellipticity as a function of wavelength, Θobs is the 
measured ellipticity as a function of wavelength (nm), n is 
the number of residues in the protein, c is the concentration 
of the protein (M), and l is the optical path length (cm). 
Secondary structure analysis of proteins using CD spectro-
scopic data was carried out using the BeStSel (Beta Struc-
ture Selection) software [41, 61, 62, 90].

Cysteine labeling for mass spectrometry

Recombinant protein samples were first prepared by 
exchanging the T200 buffer for PBS. The protein concen-
trations were measured and adjusted to 10 μM using PBS. 
Stock solutions of 500 mM DTT, 100 mM IAA, 100 mM 
H2O2 and 250 mM EDTA were prepared in PBS. A stock of 
500 mM NEM was prepared in ethanol immediately before 
use. The stepwise Cys labeling procedure was as follows: A 
10 μL aliquot of protein (at 10 μM) was reacted with hydro-
gen peroxide at various concentrations, as indicated (Sup-
plementary Table 2, online resource) for 30 min at 37 °C 
as indicated. Any unreacted cysteines were alkylated with 
incubation with 5 mM IAA (either with or, in some runs, 
without 10 mM EDTA) for 2 h at 37 °C. Previously oxidized 
cysteines were then reduced by treatment with 40 mM DTT 
for 30 min at 37 °C. Newly reduced cysteines were alkylated 

by incubation with 85 mM N-ethyl maleimide (NEM) for 2 h 
at 37 °C. The samples were separated on SDS-PAGE using 
Laemmli buffer containing 100 mM DTT and proteins visu-
alized using Coomassie staining. Appropriate bands were 
excised and analyzed by liquid chromatography mass spec-
trometry (LC–MS/MS).

Protein identification by LC–MS/MS

Proteomic analyses were performed at the OHRI Proteom-
ics Core Facility (Ottawa, Canada). Proteins were digested 
in-gel using trypsin (Promega) according to the method 
of Shevchenko [84]. Peptide extracts were concentrated 
by Vacufuge (Eppendorf). LC–MS/MS was performed 
using a Dionex Ultimate 3000 RLSC nano HPLC (Thermo 
Scientific) and Orbitrap Fusion Lumos mass spectrom-
eter (Thermo Scientific). MASCOT software version 2.6.2 
(Matrix Science, UK) was used to infer peptide and protein 
identities from the mass spectra. For detection of dopamine 
metabolites on parkin, the following variable modifica-
tions were included: 5,6-indolequinone (+ C8O2NH3, m/z 
shift + 145), aminochrome (+ C8O2NH5, + 147), amino-
chrome + 2H (+ C8O2NH7, + 149), and dopamine quinone 
(+ C8O2NH9, + 151). These samples were prepared for anal-
ysis without any use of DTT or IAA. The observed spectra 
were matched against human sequences from SwissProt 
(version 2018-05) and also against an in-house database of 
common contaminants. The results were exported to Scaf-
fold (Proteome Software, USA) for further validation and 
viewing.

Analysis of the r-parkin holoprotein and of three runs 
of H2O2-exposed r-parkin (Supplementary Table 2, online 
resource) was also performed at the University of Western 
Ontario. There, samples were run on a QToF Ultima mass 
spectrometer (Waters) equipped with a Z-spray source and 
run in positive ion mode with an Agilent 1100 HPLC used 
for LC gradient delivery (University of Western Proteomics 
Facility).

MaxQuant analysis of mass spectrometry data

For select experiments, the raw MS data files were fur-
ther processed with MaxQuant software version 1.6.5 and 
searched with the Andromeda search engine [10]. The ref-
erence fastas were set to uniprot-human (version 2019-02-
12) and uniprot-ecoli. The E. coli proteome was included 
to account for bacterial proteins present in the recombinant 
protein samples. The ‘second peptides’ and ‘match between 
runs’ settings were enabled. All other settings were left as 
default. Selected variable modifications included oxidation 
(Met), acetylation (protein N-terminus), and carbamidome-
thyl (Cys), as well as custom modifications for pyro-carba-
midomethyl (N-terminal Cys), N-ethylmaleimide (Cys), and 
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NEM + water (Cys). For data analyses, site-level intensity 
values were obtained from the MaxQuant-generated “Car-
bamidomethylSites” table which combines the intensity of 
MS1 signals from all peptides covering a particular cysteine 
residue.

Immunoprecipitation (IP) of brain parkin

Conjugation of anti-parkin antibody (Prk8, 808503, lot 
B209868) and clone A15165-B (this report: Suppl. Fig-
ure 8c) to magnetic beads at a final concentration of 10 mg 
of antibody/mL of beads was carried out following the Mag-
netic Dynabeads Antibody Coupling Kit from Invitrogen 
(14311D). Human tissue lysates were also prepared using 
the sequential extraction of proteins from neural tissue pro-
tocol, as described above, with the addition of 10 mM IAA 
prior to homogenization. Equal amounts of protein from TS 
tissue extracts (n = 4) and SDS tissue extracts (n = 8) were 
diluted in TS buffer, resulting in final SDS concentrations 
of 0.0175–0.05% in the SDS extracts. For the IP, anti-par-
kin primary antibody-conjugated agarose beads were first 
prepared by multiple washes with 1 mL of TS buffer using 
centrifugation (1000 × g at 4 °C for 3 min) and adhesion to 
a strong magnet. The amount of Prk8 conjugated agarose 
beads used for each experiment were approximated based on 
the amount of parkin (μg)/sample calculated by densitom-
etry when the sample was compared to recombinant parkin 
protein standards using Western blotting with Prk8 as a pri-
mary antibody. The mixture was incubated for 16 h at 4 °C 
with slow rotation. Unbound proteins, were separated from 
the beads by centrifugation (1000 × g at 4 °C for 3 min) fol-
lowed by adhesion to a strong magnet and saved as the IP 
“unbound” fraction.

Beads were washed three times with 1 mL of ice-cold RIPA 
buffer (1% nonionic polyoxyethylene-40, 0.1% SDS, 50 mM 
Tris, 150 mM NaCl, 0.5% sodium deoxycholate, 1 mM EDTA) 
using centrifugation (1000 × g at 4 °C for 3 min) and adhe-
sion to a strong magnet. Approximately 5–10 µL of each wash 
was combined and saved as the IP “wash” fraction. To elute 
antibody-bound proteins, 35 µL of 6X reducing Laemmli 
buffer (30% SDS, 60% glycerol, 0.3% bromophenol blue, 
0.375 M Tris, 100 mM DTT, pH 6.8) was added to the beads 
and the samples were boiled for 5 min. Following centrifuga-
tion (1000 × g at 4 °C for 3 min), the supernatant was trans-
ferred to a fresh tube labeled “IP elute” and the beads were 
discarded. To assess IP efficiency, eluted fractions (IP elute), 
along with controls (input, unbound, wash and recombinant 
parkin protein standards) were run on SDS/PAGE and blot-
ted with anti-parkin antibody (Prk8, MAB5512 Millipore or 
2132S Cell Signalling). Human IP elutes used for mass spec-
trometry (MS) analysis were incubated with 500 mM NEM (as 
indicated for select runs) for 16 h at 4 °C prior to SDS-PAGE 
and further processed for MS, as described above. Gel slices 

corresponding to band sizes at 50–53 kDa were excised and 
analyzed by LC–MS/MS.

Reactive oxygen species (H2O2) measurements 
in recombinant protein preparations, cell lysates 
and tissue homogenates

An Amplex® Red hydrogen peroxide/peroxidase assay kit 
(Invitrogen A22188) was used to monitor endogenous lev-
els of H2O2 in aliquots of tissues and cells, and in test tubes 
following either exposure to increasing concentrations of 
H2O2, n-ethylmaleidmide (NEM), and ethylenediaminetet-
raacetic acid (EDTA), or after incubation with either select, 
recombinant parkin proteins, or DJ-1, α-synuclein, bovine 
serum albumin (Thermo Scientific), ring finger protein 43 
(RNF43—BioLegend, MA.), HOIL-1-interacting protein 
(HOIP—Boston Biochem, MA.), glutathione (Sigma), 
or catalase (Sigma) for 30 min at room temperature. Pre-
weighed cortex pieces from the human brain and pelleted 
cells were homogenized on ice in the 1 × reaction buffer 
provided (Invitrogen A22188) using a Dounce homogenizer 
(3 × volume to weight ratio). Homogenates were diluted in 
the same 1 × reaction buffer (fivefold to tenfold). A serial 
dilution of the H2O2 standard provided was prepared (20, 
10, 2 and 0 μM). Fifty μL of standards and samples were 
plated in a 96-well black plate with a clear flat bottom 
(Thermo Fisher Scientific). The reaction was started by the 
addition of 50 μL reaction buffer, Amplex® Red and horse-
radish peroxidase (HRP) (10 mM Amplex® Red and 10 U/
mL HRP). Plates were incubated at room temperature for 
30 min protected from light. A microplate reader was used 
to measure either fluorescence with excitation at 560 nm and 
emission at 590 nm, or absorbance at 560 nm. The obtained 
H2O2 levels (μM) were normalized to the tissue weight (g) 
or protein concentration (μg/μL). The same assay was also 
used to measure parkin and glutathione’s peroxidase activity 
compared to horseradish peroxidase.

Chemiluminescence‑based, direct reactive oxygen 
species assay

The assay was modified from Muller et al. [64] to measure 
the ROS-quenching ability of parkin proteins, DJ-1, GSH, 
and catalase. Protein concentrations were quantified using 
Bradford assay and adjusted to 5, 10, 15 and 30 μM in buffer 
not containing TCEP. Bovine serum albumin (BSA; 10 and 
20 μM; Thermo Scientific), glutathione (15, 20, 200, 400, 
800 and 2000 μM; Sigma), and catalase (15 μM, Sigma) 
were prepared. Stock solutions of H2O2 for standard curve 
were prepared at 5, 10, 20, 40 and 50 mM in 0.1 M Tris HCl 
pH 8.0 using 30% H2O2. Stock solutions of 300 mM lumi-
nol and 40 mM 4-iodophenol were prepared in DMSO and 
protected from light. Signal reagent, containing 1.94 mM 
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luminol (Sigma) and 0.026 mM 4-iodophenol (Sigma), was 
prepared in 0.1 M Tris HCl pH 8.0 and protected from light. 
A 0.4% horseradish peroxidase solution was prepared using 
HRP-linked anti-rabbit secondary antibody diluted in Sta-
bilizyme solution (SurModics SZ02). Each read was set up 
in triplicate on a white polystyrene 96-well plate (Thermo 
Scientific 236,105) and to each well was added 80 μL Stabi-
lizyme, 15 μL of 0.4% horseradish peroxidase (HRP) and 25 
μL of sample or controls. One of the injectors in a Synergy 
H1Multi-Mode Plate Reader (Bio Tek) was primed and set 
to inject 15 μL of signal reagent and 15 μL of each H2O2 
stock solution was manually added to corresponding con-
trols and samples just prior to reading. Final concentrations 
of reagents were 0.04% HRP, 500, 1000, 2000, 4000 and 
5000 μM H2O2, 194 μM luminol, 2.6 μM 4-iodophenol and 
0.8, 1.7, 2.5 or 5 μM of protein. The plate reader was set to 
measure luminescence every 1 min for a total of 10 min.

The resulting kinetic data were converted to the area 
under the curve (AUC) using Prism software version 6. For 
samples pre-incubated with 20 mM iodoacetamide, a stock 
solution of 1 M iodoacetamide was prepared. To each well 
containing 25 μL of the sample, 0.52 μL of 1 M iodoaceta-
mide and 0.48 μL of buffer not containing TCEP was added 
and the samples were incubated for 2 h at 37 °C. Following 
incubation, the reagents for chemiluminescence were added 
as above except 79 μL of Stabilizyme was used instead of 80 
μL and the samples were analyzed as above.

Thiol quantification in recombinant proteins

Recombinant protein samples were first prepared by 
exchanging the T200e protein buffer (50 mM Tris, 200 mM 
NaCl and 250 μM TCEP, pH 7.5) for T200 using repeat 
centrifugations (8 times 4000 × g at 4 °C for 10 min) in Ami-
con Ultra 10 kDa MWCO filters (Millipore). The protein 
concentrations were measured and recorded. A glutathione 
stock solution of 32,539 μM was prepared by dissolving 
1 mg glutathione (GSH) in 1 mL of T200 and the standards 
0, 50, 101, 203, 406, 813 and 1000 μM were prepared by 
serial dilution in T200. The reaction buffer (0.1 M sodium 
phosphate, pH 8.0) was prepared by adding 93.2 mL 1 M 
Na2HPO4 and 6.8 mL of NaH2PO4 in 1 L of water. Thiol 
detecting reagent (Ellman’s reagent) was prepared by dis-
solving 2  mg of 5,5′-dithio-bis-[2-nitrobenzoic acid] 
(DNTB; Sigma) in 1 mL of reaction buffer. The assay was 
performed in 96-well clear round-bottom plates (Corning) by 
adding 50 μL of thiol detecting reagent to 50 μL of sample 
or standard and incubating for 15 min at room temperature.

The resulting 5-thio-2-nitrobenzoic-acid (TNB) produced 
was measured by absorbance at 412 nm using a Synergy 
H1Multi-Mode Plate Reader (Bio Tek). The amount of free 
thiols detected in each sample was calculated using the 

regression curve obtained from the glutathione standards 
and dividing by the concentration of the sample.

Zinc ion release assay

A zinc quantification kit (Abcam—ab102507) was used to 
assay zinc ion (Zn2+) release from proteins. Recombinant 
human proteins (wild-type r-parkin and r-DJ-1) were spun 
in 10 or 30 kDa cut-off centrifugation filters (Millipore) to 
remove residual TCEP. Increasing concentrations of protein 
(0 to 2.5 μM) were incubated under basal conditions or with 
the addition of H2O2 (2 mM) or DTT (100 mM) for 30 min at 
37 °C. A standard curve was prepared using a zinc standard 
(stock, 50 mM) provided by the manufacturer. Two hundred 
μL of the reaction mixture was added to 50 μL standards 
and samples on 96 well plates (Thermo Fisher Scientific) 
followed by incubation at room temperature for 10 min. A 
microplate reader was used to measure the absorbance at 
OD560 nm. The background was corrected by subtracting 
the value derived from wells of zero zinc standard from all 
readings.

Cell cytotoxicity assay

Human neuroblastoma cell lines (M17) without trans-
duction (controls), or transduced by vector-only plasmid 
(Myc-tag), or those with low levels of stable expression of 
Myc-parkin cDNA (P5) and high levels of stable expres-
sion of Myc-parkin (P17), or sister lines transiently over-
expressing flag-parkin (wild-type), flag-vector and flag-
parkin carrying one of three-point mutations (p.C431F; 
p.G3289E; p.C95A) were grown in 6-well culture plates at 
0.3 × 106 cell density (80% confluence). There, Opti-MEM 
media (Gibco 11,052-021) contained heat-inactivated 
fetal bovine serum (Gibco 10,082–147), Pen/strep/Neo 
(5 mg/5 mg/10 mg; Gibco 15,640-055), MEM-non-essen-
tial amino acids (10 mM; Gibco 11,140-050) and sodium 
pyruvate (100 mM). For rescue experiments, M17 cells 
transiently expressing cDNA for flag-vector, flag-parkin 
wild-type, and variants carrying p.G328E, p.C431F, or 
p.C95A-encoding parkin protein were used. There, 4 μg 
of cDNA was transfected using a 1:1 ratio of cDNA to 
Lipofectamine 2000 (52,887, Invitrogen) in OPTI-MEM 
transfection medium. Lipofectamine 2000 and cDNA were 
first incubated for 20 min at room temperature before 
being applied directly to the cells for 1 h at 37 °C with 5% 
CO2 followed by direct addition of fresh growth medium. 
The cells were incubated another 20–24 h at 37 °C with 
5% CO2.

Dopamine hydrochloride (Sigma) 200 mM stock was 
prepared. Cells were washed with fresh media once and 
then incubated with media alone or supplemented with 
dopamine at final concentrations of 20 μM and 200 μM 
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for 18–20 h. Post dopamine exposure, conditioned media 
were collected for cytotoxicity assays and cells were har-
vested for lysis in TS buffer, vortexed and centrifuged. 
Supernatants were collected and saved for Western blot 
analyses and to be assessed for cytotoxicity. Cell pellets 
were suspended in 2–10% SDS buffer and centrifuged to 
collect the ‘insoluble fraction’.

Vybrant ™ cytotoxicity assay kit (Molecular Probes 
V-23111) was used to monitor cell death through the release 
of the cytosolic enzyme glucose 6-phosphate dehydrogenase 
(G6PD) by damaged cells into the surrounding medium. 
Fifty μl of fresh media (without any exposure to cells) as 
well as conditioned media from control and stressed cells, 
in addition to lysates of M17 cells (as a positive control 
for maximum G6PD), were added to a 96-well microplate. 
Fifty μl of reaction mixture containing buffer (as per manu-
facturer) and resazurin, which reacts with G6PD generating 
fluorescently detectable resorufin, were added to each well, 
and the mircroplate was incubated at 37 °C for 30 min. A 
microplate reader was used to measure either fluorescence 
with excitation at 560 nm and emission at 590 nm, where 
the rise in fluoresence indicates a rise in G6PD levels as a 
surrogate marker of cell death.

Aminochrome synthesis

A solution of 0.1 M sodium phosphate buffer pH 6.0 was 
prepared from a mixture of 12 mL of 1 M NaH2PO4 and 
88.0 mL of 1 M Na2HPO4. The reaction buffer (0.067 M 
sodium phosphate, pH 6.0) was prepared by adding 33 mL 
of 0.1 M sodium phosphate buffer to 17 mL water. A solu-
tion of 10 mM dopamine in reaction buffer was prepared by 
adding 19 mg of dopamine hydrochloride (Sigma) to 1 mL 
of reaction buffer. Oxidation was activated by adding 5 μL of 
tyrosinase (25,000 U/mL; Sigma) and the mixture was incu-
bated at room temperature for 5 min. Tyrosinase was sepa-
rated from the oxidized dopamine using a 50 kDa cut-off 
Amicon Ultra centrifugation filter (Millipore) by centrifug-
ing at 21,000 × g for 10 min. The absorbance of the filtrate 
was measured at a wavelength of 475 nm (Ultrospec 2100 
pro spectrophotometer, Biochrom) and the concentration of 
aminochrome was determined using the Beer-Lambert equa-
tion and extinction coefficient of 3058 L × mol−1 × cm−1.

Redox chemistry reactions including oxidation 
of cysteine‑containing proteins in vitro

Purified, recombinant proteins were prepared by removing 
excess TCEP, present in the elution buffer, by using repeat 
centrifugations (8 times 4000 × g at 4 °C for 10 min) in 
Amicon Ultra 10 kDa MWCO filters (Millipore). Protein 
concentrations were measured and adjusted to 20 μM. Stock 

solutions of hydrogen peroxide (H2O2, 9.8 mM) and amino-
chrome (as described above) and used at concentrations of 
0-200 μM, were prepared. An aliquot of 10 μL of each pro-
tein sample (at 20 μM) was reacted with oxidants at the fol-
lowing concentrations: 0, 20, 200, 500, 750, 1000, 2000 μM 
for H2O2, and 0, 10 µM, 100 µM, 1 mM, 10 mM, 100 mM, 
1000 mM for DTT. Samples were treated for 30 min at 37 °C 
and centrifuged at 21,000 × g for 15 min. The supernatant 
was transferred to a fresh tube and the remaining pellet was 
extracted with 10 μL of T200 containing either 10% SDS or 
100 mM DTT. The pellets were incubated again for 30 min 
at 37 °C and centrifuged at 21,000 × g for 15 min. Laemmli 
buffer (10 μL, containing 100 mM mercaptoethanol) was 
added to both the pellet and supernatant fractions and sam-
ples were separated by SDS-PAGE and visualized by silver 
staining. Specific bands of aminochrome-treated wild-type, 
full-length r-parkin were excised and analyzed by LC–MS/
MS, as described above.

In vitro melanin formation assay

Recombinant protein samples were first prepared by 
exchanging the T200e protein buffer (50 mM Tris, 200 mM 
NaCl and 250 μM TCEP, pH 7.5) for T200 (50 mM Tris 
and 200 mM NaCl, pH 7.5) using repeat centrifugations (8 
times 4000 × g at 4 °C for 10 min) in Amicon Ultra 10 kDa 
MWCO filters (Millipore). The protein concentrations were 
measured and adjusted to 20 μM using T200. A 0.067 M 
sodium phosphate buffer, pH 6.0, was prepared by adding 
33 mL of 0.1 M sodium phosphate buffer to 17 mL water 
and adjusting the pH using HCl. A stock solution of 100 mM 
dopamine hydrochloride was prepared in 0.067 M sodium 
phosphate buffer and stock solutions of 100 mM reduced 
glutathione and H2O2 were prepared in T200.

Samples and controls were prepared in 100 μL total vol-
ume that contained 10 μL of protein sample or T200, 10 μL 
of 100 mM dopamine or 0.067 M sodium phosphate buffer, 
10 μL of 100 mM glutathione or T200 buffer, and 70 μL 
T200. Unless otherwise indicated, the final concentration 
of protein was 2 μM and the final concentration of reagents 
was 10 mM. The samples and controls were plated in trip-
licate, and absorbance read at 405 and 475 nm every 90 s 
for 1 h and up to 4 h (Synergy H1Multi-Mode Plate Reader; 
Bio Tek).

Immunohistochemistry

Immunohistochemistry (IHC) was performed on paraffin-
embedded sections, as previously described [81, 82, 87]. 
Briefly, prior to antibody incubation, sections were deparaffi-
nized in xylene and successively rehydrated through a series 
of decreasing ethanol concentration solutions. Endogenous 
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peroxidase activity was quenched with 3% hydrogen per-
oxide in methanol, followed by a standard citric acid-based 
antigen retrieval protocol (CitriSolv, Decon Labs) to unmask 
epitopes. Sections were blocked in 10–20% goat serum in 
PBS-Tween (Tween 20 0.075%) to reduce non-specific sig-
nal. Sections were incubated overnight at 4 °C in primary 
antibodies diluted in 1–5% goat serum in PBS-T accord-
ing to the following concentrations: novel anti-parkin 
mAbs from Biolegend clones D (BioLegend, A15165-D; 
1:250), clone E (BioLegend, A15165E; 1:2,000), and clone 
G (1:250), Prk8 (BioLegend, MAB5512; 1:500) as well as 
anti-LAMP-3/CD63 (Santa Cruz, SC5275; 1:100), anti-
LC3B (Sigma, L7543-200uL; 1:100), anti-VDAC (MitoSci-
ence, MSA03; 1:100). Biotinylated, secondary antibodies 
(anti-mouse IgG (H + L), Vector Labs, BA-9200, and bioti-
nylated anti-rabbit IgG (H + L), both made in goat; Vector 
Labs, BA-1,000) were diluted to 1:225, and sections were 
incubated for 2 h at room temperature. The signal was ampli-
fied with VECTASTAIN® Elite® ABC HRP Kit (Vector 
Labs, PK-6100), and visualized via standard diaminoben-
zidine solution (DAB, 55 mM), or Vina green (Biocare 
Medical, BRR807AH), or most frequently by using ‘metal 
enhanced DAB’ (Sigma, SIGMAFAST™ DAB with Metal 
Enhancer D0426). Samples were counterstained with Har-
ris Modified Hematoxylin stain and dehydrated through a 
series of increasing ethanol concentration solutions and 
xylene. Permount (Fisher Scientific, SP15-100) was used 
for mounting and slides processed for IHC were visualized 
and processed using a Quorum Slide Scanner at the OHRI 
Imaging Core Facility.

Immunofluorescence and confocal microscopy

Paraffin-embedded human midbrain sections were stained by 
routine indirect immunofluorescence (IIF) with the follow-
ing details. Antigen retrieval was performed in Tris–EDTA 
buffer pH 9.0 for 10 min. Primary antibodies were incubated 
overnight at 4 °C. Details for primary antibodies anti-parkin 
clone E (1:500), anti-LAMP-3 (1:250) are described above. 
Fourty min-long incubations with the following secondary 
antibodies were performed: goat anti-mouse alexa fluor 488 
(1:200), goat anti-rabbit alexa fluor 594 (1:500). Slides were 
mounted with fluorescence mounting medium using DAPI. 
Sections stained for IIF were imaged using a Zeiss LSM 880 
AxioObserver Z1 with an Airyscan Confocal Microscope 
and then processed for further analysis using Zeiss Zen and 
Fiji software.

Statistical analyses

Statistical analyses were performed using GraphPad Prism 
version 6 (GraphPad Software, San Diego, CA, USA, www.

graph​pad.com). Differences between two groups were 
assessed using an unpaired t-test. Differences among 3 or 
more groups were assessed using a one-way or two-way 
ANOVA followed by Tukey’s post hoc corrections to iden-
tify statistical significance. Select post hoc tests are depicted 
graphically to visualize significance. For all statistical analy-
ses, a cut-off for significance was set at 0.05. Data are dis-
played with p values represented as *p < 0.05, **p < 0.01, 
***p < 0.001, and ****p < 0.0001. Linear regression (for 
the continuous dependent variable, e.g., % soluble parkin 
and H2O2 concentration) was performed using R version 
3.6.0. Furthermore, to address the effect of age on parkin 
solubility (defined as a dichotomous variable using criteria 
below), logistic regression and receiver operating charac-
teristic (ROC) curves and area under the ROC curve (AUC) 
values were calculated using R, as reported [87].

Results

Parkin solubility declines in the ageing human brain 
including in the Substantia nigra

Parkin’s biochemistry in the human brainstem vs. other 
regions of the neuroaxis has remained largely unexplored 
[73]. We serially fractionated 20 midbrain specimens (ages, 
26–82 years) and > 40 cortices (ages, 5–85 years) from 
human subjects, which had been collected post mortem 
(Fig. 1, Supplementary Fig. 1; Supplementary Table 1, 
online resource). In control brain, we found that before the 
age of 20 years, nearly 50% of cortical parkin was found 
in soluble fractions generated by salt [Tris-NaCl; TS]- and 
non-ionic detergent [Triton X-100; TX]-containing buff-
ers (Fig. 1a, b; Supplementary Fig. 1a, online resource). 
In contrast, after age 50 years, parkin was predominantly 
(> 90%) found in the 2% SDS-soluble (SDS) fraction and 
the 30% SDS extract of the final fractionation pellet (P). The 
same distribution was seen in adult midbrain (e.g., S. nigra; 
red nucleus), the pons (e.g., L. coeruleus), and the striatum 
(Fig. 1a, b; Supplementary Fig. 1a–c, online resource).

Intriguingly, in older individuals (ages, ≥ 50 years) 
approximately half of the detectable parkin remained solu-
ble in the human spinal cord and skeletal muscle specimens, 
which had also been collected post mortem (Fig. 1c, d). We 
used univariate linear regression analysis to explore a cor-
relation between soluble parkin (of TS- and TX-fractions 
relative to the total signal for parkin, plotted as %) and age 
in human control cortices (Fig. 1e). The regression coeffi-
cient of age was − 0.54 (at a 95% confidence interval (CI) of 
− 0.79 to − 0.29, P = 7.7e−05), where the multiple R-squared 
value was 0.302. When defining parkin solubility as a binary 
variable, i.e., the presence or absence of soluble parkin in 
TS- and TX-fractions (absent defined as less than 2% of total 
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signal), and using logistic regression analysis, we found that 
the transition to insoluble parkin occurred between the ages 
of 28 years (with low sensitivity but high specificity values) 
and 42 years (with high sensitivity and low specificity val-
ues) (data not shown).

This age-dependent partitioning of parkin was not 
seen for any other protein examined, including two other 
PD-linked proteins, i.e., DJ-1 and α-synuclein (Fig. 1a, 
f), or for organelle-associated markers, e.g., cytosolic 
glyoxalase-1, peroxiredoxin-1 and -3; and endoplasmic 
reticulum-associated calnexin. Notably, mitochondrial 

Fig. 1   Parkin’s decline in solubility is specific to the adult human 
brain and correlates with age. a Representative Western blots of par-
kin, DJ-1, and LC3B distribution in human cortex, S. nigra (SN) and 
red nucleus (RN) serially fractionated into Tris-NaCl buffer-soluble 
(TS), Triton X-100-soluble (TX), 2% SDS-soluble (SDS) extracts and 
the pellet (P) lysed in 30% SDS-containing buffer. SDS extracts from 
PRKN-linked Parkinson disease (ARPD) brain and recombinant, 
human parkin (r-parkin) are included. Ponceau S is shown as loading 
control. b Relative distribution of parkin signal within each fraction 
for cortex and midbrain grouped by age ranges: young (Y ≤ 20 years; 
n = 13); mid (M > 20 years but < 50 years; n = 15 for cortex, and n = 6 
for midbrain); older (O ≥ 50 years; n = 13 for cortex and n = 14 for 
midbrain). Data shown as mean ± SEM. The significance in protein 
distribution between soluble (TS + TX) and insoluble (SDS + pellet) 
fractions was determined using 2-way ANOVA [F(2, 76) = 26.21, 
p < 0.001] with Tukey’s post hoc test (***p < 0.001; ****p < 0.0001). 
Additional Western blots are shown in Supplementary Fig.  1a–c, 
online resource. Midbrains include both control and neurological 
disease cases, as listed in Supplementary Table 1, online resource. c 
Western blots of parkin and DJ-1 as well as Ponceau S staining of 
serial fractions from the representative human spinal cord and skele-
tal muscle tissues from individuals ≥ 50 years. d Relative distribution 
of parkin as in (b) for human spinal cord (n = 4) and skeletal muscle 
specimens (n = 6) from donors aged 50–71 years. e Univariate linear 

regression analysis of parkin solubility in cortices as a function of 
age (n = 46). Each brain is represented by an individual dot; red cir-
cles denote three cases of parkinsonism not linked to PRKN; the lin-
ear regression line (in blue) and 95% confidence intervals (grey) are 
shown. Age ranges that correspond to Y–O–M in (b) are shown under 
the graph. Age coefficient was −  0.54 (95% CI: −  0.79 to −  0.29, 
P = 7.7e−05). f–h Relative distribution of f DJ-1, α-synuclein and g 
VDAC, MnSOD, glyoxalase (GLO1) and h LC3B in human cortices 
(n = 3–5 per age group), as described in (b). Representative Western 
blots are shown in Supplementary Fig. 1b, c, online resource. i West-
ern blots of parkin and Dj-1 and Ponceau S staining of serial frac-
tions from whole brains of wild-type (WT; 8 months of age) and prkn 
knock-out (KO) mice, WT rat (WT; 14 months) and from frontal cor-
tex of a cynomolgus monkey (60 months). j Univariate linear regres-
sion analysis of parkin solubility in human brain as a function of 
length for post mortem interval (PMI; in hours); the linear regression 
line (in blue) and 95% confidence intervals (grey) are shown (n = 41 
cortices). k Western blots of parkin and DJ-1 distribution in two 
human brainstem nuclei, L. coeruleus and S. nigra, which were col-
lected within 2–5 h after death prior to freezing and processed as in 
(a, c). l Immunoblots for endogenous parkin and Dj-1 as well as Pon-
ceau S staining from serially extracted WT mouse brains (n = 3) dis-
sected after a 40 h post mortem interval. Note, Western blots shown 
in this figure followed SDS/PAGE under reducing conditions
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markers, e.g., voltage-dependent anion channel (VDAC) 
and Mn2+-superoxide dismutase (MnSOD), also did not 
partition with parkin (Fig. 1g; Supplementary Fig. 1b, c, 
online resource; and data not shown). In contrast, parkin did 
co-distribute with LC3B, a marker of protein aggregation, 
foremost in brain specimens from older individuals (Fig. 1a, 
h; Supplementary Fig. 1c, online resource).

The age-associated loss in parkin solubility appeared 
unique to the human brain in that it remained predominantly 
soluble in the adult nervous system of other species, e.g., 
mice and rats as well as cynomolgus monkey, which were 
processed in the same way (Fig. 1i). Specifically, in brain 
lysates of two different wild-type strains of mice (C57Bl/6J, 
and a mixed 129S//FVB/N//C57Bl/6J background) aged to 
18 and 22 months respectively, parkin remained present in 
the soluble fraction throughout their lifespan (Supplemen-
tary Fig. 1d, online resource; and data not shown).

In soluble fractions from older humans, we did not detect 
any truncated species of parkin using several, specific anti-
bodies (data not shown). Despite the loss of parkin solubil-
ity with progression in age, PRKN mRNA was detectable 
in individual neurons isolated from the S. nigra and cortex 
throughout all age groups; there, transcript levels in neu-
rons did not correlate with the subject’s age (Supplementary 
Fig. 1e, f, online resource).

Our analysis comprised samples with post mortem inter-
vals (PMI) that spanned from 2 to 74 h (Supplementary 
Table 1, online resource). Using univariate linear regression 
analysis, we detected no correlation between parkin solubil-
ity in human control cortices (n = 41) and PMI length, where 
the regression coefficient for PMI measured − 0.15 (95% 
CI: − 0.76 to 0.46, P = 0.62), and the multiple R-squared 
value was 0.0064 (Fig. 1j). As expected, PMI did not cor-
relate with the age of the deceased person (not shown). Like-
wise, wild-type parkin was found to be largely insoluble in 
striatal, midbrain and pontine samples isolated from aged 
subjects with PMIs as short as 2 to 6 h (Fig. 1k; Supple-
mentary Fig. 2a, b, online resource). We further explored a 
possible contribution of PMI to parkin solubility by mimick-
ing conditions of some of the human autopsy cases, using 
adult mice. This included a PMI length of up to 40 h, where 
animals were kept at room temperature for the first 14 h, 
followed by storage over 26 h at 4 °C before removal of 
their brain; in these cases, parkin remained in the soluble 
compartments (Fig. 1l and data not shown). While we can-
not exclude that PMI length could affect parkin’s solubility 
in some cases, the age-dependent loss of parkin solubility 
observed in human brain samples of our cohort was not due 
to the PMI.

Further, we determined that the decline in detectable par-
kin solubility in the aged human brain did not differ based 
on the sex of the deceased person, such as when examined 
by univariate linear regression analysis or by multivariate 

analysis (data not shown); it was also not caused by either 
tissue freezing prior to protein extraction or the pH value of 
the buffer (Supplementary Fig. 2c–f, online resource). More-
over, employing the commonly used ‘RIPA buffer’ instead of 
our serial extraction buffers resulted in the release of parkin 
into the supernatant with some reactivity left in the pellet, as 
expected (Supplementary Fig. 2g, online resource).

Decline in parkin solubility correlates with rising 
hydrogen peroxide levels in the mammalian brain

We next explored a possible association between parkin dis-
tribution, age and oxidative changes. Using sister aliquots 
from the brain specimens examined above, we found that 
hydrogen peroxide (H2O2) concentrations positively corre-
lated with age (Fig. 2a, b; see also Supplementary Table 1, 
online resource), as expected from the literature [54]. Using 
univariate linear regression analysis, we determined that 
the coefficient of age was 0.067 (95% CI: 0.035 to 0.098, 
P = 3e−04; multiple R-squared value, 0.4877).

In three brains from subjects with non-PRKN-linked par-
kinsonism, the levels of H2O2 were similar to those meas-
ured in age-matched controls (Fig. 2b). When analyzing par-
kin distribution vs. H2O2 concentrations in human cortices, 
we found that parkin solubility in human brain negatively 
correlated with H2O2, where the coefficient of the latter 
was − 4.2 (95% CI: − 7.92 to − 0.48, P = 0.029; multiple 
R-squared value, 0.2174) (Fig. 2c).

We next sought to dynamically model the observed corre-
lation between higher ROS levels in the nervous system and 
reduced parkin solubility. We first used an ex vivo approach, 
whereby wild-type mouse brains were exposed to either 
saline or H2O2 during tissue homogenization. There, we saw 
a significant reduction in soluble parkin and an increase in 
insoluble parkin in the H2O2-exposed lysates (Fig. 2d, e). 
We next examined two in vivo models. In the first, wild-
type mice were intraperitoneally injected with 40 mg/kg of 
1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) toxin 
one hour before sacrificing them to induce acute oxidative 
stress, but no cell death [3]. Brains were serially fraction-
ated, and parkin distribution was quantified across soluble 
and insoluble compartments. There, we measured a decrease 
of murine parkin in the soluble fraction and a corresponding 
rise in the insoluble fractions of MPTP- vs. saline-injected 
littermates (Fig. 2f, g).

In the second in vivo model, we observed a similar, 
significant shift in parkin distribution toward insolubil-
ity in adult mice that were haploinsufficient for the Sod2 
gene, which encodes mitochondrial MnSOD, and which 
occurred in the absence of an exogenous toxin (Fig. 2h, 
i). Of note, in both models we confirmed the expected 
rise in H2O2 levels (see below and El-Kodsi et al. [17]). 
Moreover, in contrast to murine parkin, the solubility of 
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endogenous Dj-1, which is encoded by a second, ARPD-
linked gene, was not visibly altered under these elevated 
oxidative stress conditions, as monitored by SDS/PAGE/
Western blotting (Fig. 2h).

Parkin is reversibly oxidized in the adult human 
brain

The correlation between parkin insolubility and H2O2 levels 
in the human brain suggested to us that the relation could be 
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due to posttranslational, oxidative modifications. Indeed, in 
contrast to SDS-containing brain fractions analyzed under 
reducing conditions (+ DTT), when gel electrophoresis 
was performed under non-reducing (-DTT) conditions, we 
detected parkin proteins ranging in Mr from > 52 to 270 kDa, 
invariably in the form of redox-sensitive, high molecular 
weight (HMW) smears (right vs. left panel; Fig. 3a). We 
saw the same pattern in fractions prepared from control 
midbrains; no such reactivity was seen in SDS-extracts of 
parkin-deficient ARPD brains, thus demonstrating the speci-
ficity of protein detection.

We confirmed that reversible oxidation of brain parkin 
was also present in soluble (TS-, TX-) fractions, albeit at 
lesser intensities (Fig. 3b; data not shown). Of note, the for-
mation of high Mr parkin was not due to secondary oxidation 
in vitro, because specimens had been processed and fraction-
ated in the presence of iodoacetamide (IAA) prior to SDS/
PAGE in order to protect unmodified thiols. These HMW 
parkin smears also did not arise from covalent ubiquitin-
conjugation, such as due to auto-ubiquitylation of parkin, 
owing to the fact that such adducts cannot be reversed by 
reducing agents (e.g., DTT) (data not shown).

Because we predicted that the loss of parkin solubility 
was due to thiol-based, posttranslational oxidation events 
[50], we first sought to test this in vitro using purified, 
tag-less, full-length, recombinant (r-) parkin. There, we 
observed the H2O2 dose-dependent formation of HMW 
smears and loss of parkin solubility; however, r-parkin 
protein solubility was greatly recovered by adding DTT 
(Fig.  3c; Supplementary Fig.  3a, online resource) or 

β-mercaptoethanol (not shown). Demonstrating its sen-
sitivity to bi-directional redox forces, the exposure of 
native r-parkin to excess DTT also rendered it increas-
ingly insoluble (Supplementary Fig. 3b, online resource), 
likely due to loss of zinc-sulfur chelation in its four RING 
domains [31, 47]. Unlike r-parkin, the addition of up to 
1 M DTT in the extraction buffer did not induce parkin’s 
extraction into a soluble phase (i.e., TS- or TX-fractions) 
in aged human brain tissue (Supplementary Fig. 3c, online 
resource).

We confirmed by mass spectrometry (MS) of the holo-
protein carried out without any trypsin digestion that all 35 
cysteine-based thiol groups of human r-parkin are princi-
pally accessible to alkylation by IAA (right vs. left panel; 
Supplementary Fig. 3d, online resource). These results 
unequivocally demonstrated that each parkin cysteine 
theoretically possesses the capacity to have its thiol be 
modified. Nevertheless, in these in vitro experiments we 
consistently observed a concentration-dependent change 
in r-parkin solubility, thereby suggesting that some thiols 
were more amenable than others to modification by reac-
tive species (see below and summary in Supplementary 
Table 2, online resource).

Oxidative conditions alter parkin structure

The progressive insolubility of brain parkin and r-parkin 
due to redox stress suggested that the protein had under-
gone structural changes. Indeed, when we analyzed the 
effects of spontaneous oxidation using native r-parkin 
by far-UV-circular dichroism (Fig. 3d), soluble fractions 
initially contained both α-helically ordered as well as 
unstructured r-parkin proteins. Five days later, r-parkin 
preparations were separated by centrifugation and frac-
tions re-analyzed. There, we found a marked shift to 
increased β-pleated sheet-positive r-parkin in insoluble 
fractions (Fig. 3d). Similarly, when we monitored r-par-
kin during spontaneous oxidization using dynamic-light 
scattering (Supplementary Fig. 3e, online resource), we 
observed a gradual shift in the hydrodynamic diameter 
from 5.1 nm, representing a folded monomer, to multiple 
peaks with larger diameters 5 h later. The latter indicated 
spontaneous multimer formation, which was partially 
reversed by the addition of DTT (right panel; Supplemen-
tary Fig. 3e, online resource). Thus, these structural and 
solubility changes of r-parkin were congruent with our 
immunoblot results for human brain parkin (Fig. 3a).

Fig. 2   Decline in parkin solubility correlates with a rise of oxidative 
stress in mammalian brain. a Mean concentrations of H2O2 in human 
brain cortices grouped by age range, as described in Fig. 1. Individual 
data points represent separate brains, as reported in Supplementary 
Table  1, online resource. Results are plotted as mean ± SEM; sig-
nificance was determined using 2-way ANOVA [F(2, 76) = 26.21, 
p < 0.001] with Tukey’s post hoc test (**p < 0.01; ***p < 0.001). b–c 
Linear regression analysis of H2O2 concentrations in control cor-
tices (μM/g tissue) as a function of age (b), and c linear regression 
analysis of parkin solubility as a function of H2O2 levels in the same 
specimens (n = 22). Red circles denote three disease cortices (non-
PRKN-linked parkinsonism). H2O2 concentration coefficient (in (c)) 
was − 4.2 (95% CI: − 7.92 to − 0.48, P = 0.0287). d–e Western blots 
(d) of parkin distribution in brain lysates of 2–4 month-old wild-type 
C57Bl/6 J mice containing either saline or 1% H2O2; e parkin signal 
distribution was quantified using ImageJ, as controlled for respec-
tive loading controls, in both soluble and insoluble fractions. A stu-
dent t-test was used for statistical analysis (*p < 0.05). f, g Western 
blots f of parkin distribution in brains of wild-type C57Bl/6  J mice 
1 h following intraperitoneal administration of either saline or MPTP 
neurotoxin (40 mg/kg); g parkin signals were quantified as in (e). h–i 
Western blots h of fractionated brain homogenates from C57Bl/6  J 
wild-type and Sod2± mice; i parkin signals were quantified and sta-
tistically analyzed as in (e) (*p < 0.05). Note, Western blots shown in 
this figure followed SDS/PAGE under reducing conditions

◂
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Fig. 3   Parkin’s solubility and structure are altered by oxidative modi-
fications. a Western blots of parkin and DJ-1 in SDS fractions from 
normal cortices (3 age groups are shown) and two age-matched 
patients, i.e., idiopathic Parkinson’s (PD) and parkin-deficient ARPD. 
Sister aliquots of the same lysates were processed in parallel by SDS-
PAGE either under reducing (+DTT) or non-reducing (-DTT) con-
ditions. b Western blots of parkin and SOD2 distribution in serially 
fractionated human cortices from a young individual (age, 5 years) 
and an adult (62 years) subject, and separated by SDS-PAGE under 
reducing (+DTT) and non-reducing (−DTT) conditions. c Silver 
staining of the supernatant of sister aliquots of r-parkin following 
initial exposure to increasing concentrations of H2O2 (0–2 mM) fol-
lowed by the addition (or absence of) DTT (100 mM) prior to cen-
trifugation as indicated. d Circular dichroism spectra of soluble, 
untreated, wild-type r-parkin at the start of experiment (T = 0; left 
panel), and spectra of soluble (black line) and aggregated (red line) 
states following incubation at 37  °C for T = 5  days (right panel). e 

Graphic depiction of strategy for LC–MS/MS-based analysis to iden-
tify cysteine oxidation state for untreated and H2O2-treated, parkin 
species, by using IAA-DTT-NEM fingerprinting to identify reduced 
cysteines with an iodacetamide (IAA) tag or reversibly-oxidized resi-
dues with a N-ethylmaleimide (NEM) tag. f, g Quantitative analyses 
of IAA-modified cysteines captured by LC–MS/MS for f untreated 
vs. H2O2-exposed, wild-type, human r-parkin, and g soluble com-
pared to insoluble (pellet) fractions. Each dot represents the log2-
transformed total IAA-signal intensities of individual cysteines (n = 3 
runs for each). The cysteine pool is shown with the mean ± SEM; 
significance **p < 0.01, as determined using Student T-Test. h–i LC–
MS/MS-generated spectra following trypsin digestion of labelled, 
oxidized r-parkin indicating NEM adducts (+ 125 mass gain) at 
Cys95 and Cys253; r-parkin was exposed to H2O2, and cysteines 
labelled as in (e). See Supplementary Table 2, online resource, for a 
complete list of modified cysteines and oxidizing conditions
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Hydrogen peroxide modifies parkin at multiple 
cysteines

To determine whether the oxidation of cysteines and/or 
methionine residues caused parkin insolubility, we ana-
lysed r-parkin that was treated with and without H2O2 and/or 
thiol-alkylating agents using liquid chromatography-based 
MS (LC–MS/MS). To differentiate reduced from oxidized 
cysteines we used a serial thiol-fingerprinting approach, 
which labelled reduced thiols with IAA, and tagged revers-
ibly oxidized thiols with N-ethylmaleimide (NEM) after 
their prior reduction with DTT (Fig. 3e). The first test was 
to determine how progressive oxidation affected thiol acces-
sibility. As expected, using the strong alkylating agent IAA 
on the nascent protein (and trypsin digestion to map indi-
vidually modified peptides), we confirmed that the majority 
of parkin cysteines were reactive (Supplementary Fig. 3d; 
Supplementary Table 2, online resource). Intriguingly, when 
treating native r-parkin with lower H2O2 concentrations, we 
identified an average of 19 cysteines (54.3%) to be modi-
fied; in contrast, higher H2O2 concentrations increased this 
number to 32 cysteines (91.4%). These results suggested 
progressive unfolding of r-parkin with increasing oxidation 
(Supplementary Table 2, online resource).

Next, we sought to precisely identify the location of 
oxidized cysteine residues. Using Scaffold PTM-software, 
we found a rise in the number of oxidized residues (NEM-
Cys, range of 3–26), which was proportional to the increase 
in H2O2 concentrations and appeared to begin in parkin’s 
RING1 domain at three residues, i.e., Cys238, Cys241 and 
Cys253 (Supplementary Table 2, online resource; Fig. 3i), 
but also involved Cys95 in its linker domain (Fig. 3h). Fur-
thermore, when quantifying thiol modifications by Max-
Quant software [10], we found a significant drop for the 
number of cysteines in the reduced state (IAA-cysteines) 
within the H2O2-treated samples (P = 0.0016; Fig. 3f), as 
expected.

In accordance, when comparing cysteine oxidation events 
in soluble and insoluble fractions of untreated vs. oxidized 
r-parkin preparations, the number of IAA-Cys was signifi-
cantly decreased in the pellets (P < 0.0001; Fig. 3g). Of 
note, modifications at methionine residues did not correlate 
with r-parkin solubility. These collective results unequivo-
cally demonstrated that H2O2-induced oxidation events at 
cysteine-based thiols are linked to both progressive, struc-
tural change and lesser solubility of human r-parkin.

Parkin is also irreversibly oxidized in adult human 
and mouse brains

We next sought to identify oxidation events at parkin 
cysteines in vivo by LC–MS/MS. To this end, we exam-
ined both cortex-derived, human parkin and brain parkin 

isolated from intraperitoneally, MPTP toxin- (vs. saline-) 
treated mice (Fig. 4). Specimens were processed with IAA 
during homogenization and fractionation to prevent any oxi-
dation artefacts in vitro. Following immunoprecipitation and 
gel excision of endogenous parkin at the 50–53 kDa range 
(an example is shown in Supplementary Fig. 4a, b, online 
resource), we focused on cysteine mapping and the identifi-
cation of thiol redox states (Fig. 4a). A graphic representa-
tion of theoretically possible, thiol-based redox modifica-
tions is provided in Supplementary Fig. 4c, online resource).

In human control cortices (n = 12 runs; summarized in 
Fig. 4a), we mapped a mean of 46.8 and 19.4% of parkin’s 
wild-type sequence in the soluble and insoluble fractions, 
respectively. There, we found cysteines in either a redox 
reduced state (IAA-alkylated Cys + 57; examples shown 
in Fig. 4b, d) or in oxidized states (e.g., to sulfonic acid 
Cys + 48). Irreversible oxidation events in human corti-
ces occurred, for example, at Cys95 (Fig. 4c) and Cys253 
(Fig. 4e). The relative frequencies of detection for parkin 
thiols that were found in a reduced state in vivo (and thus, 
were alkylated by IAA in vitro) in the soluble vs. insoluble 
fractions of the human brain were 67.3 vs. 38.1%, respec-
tively (Fig. 4a).

Likewise, in saline- and MPTP-treated mouse brains 
(n = 6 runs), we mapped 25.0 and 51.5% of wild-type par-
kin, respectively (summarized in Fig. 4a). Interestingly, akin 
to the findings in the human brain, we identified the murine 
sequence-corresponding residue Cys252 in either a reduced 
or in irreversibly oxidized states (Fig. 4f, g). As mentioned, 
mice do not carry a cysteine at residue 95 (for sequence 
comparison, see below). The relative frequencies of detec-
tion for thiols that were in a reduced state in vivo (and thus, 
alkylated by IAA in vitro) in parkin from saline- vs. MPTP 
toxin-treated mouse brains were 92.9 vs. 68.2%, respectively 
(Fig. 4a). These collective results demonstrate that parkin 
cysteines are variably oxidized in adult mammalian brain.

Parkin thiols reduce hydrogen peroxide in vitro

A typical redox reaction involves the reduction of an oxi-
dized molecule in exchange for the oxidation of the reducing 
agent (examples are shown in Supplementary Fig. 4c, online 
resource). We, therefore, asked whether parkin oxidation 
resulted in a reciprocal reduction of its environment (Fig. 5; 
Supplementary Fig. 5, online resource). Using r-parkin, we 
established that parkin could reduce H2O2 levels in a con-
centration-dependent manner in vitro (Fig. 5a; Supplemen-
tary Fig. 5h, online resource). This reducing activity was not 
enzymatic, in that it did not mirror the dynamics of catalase, 
and r-parkin did not possess peroxidase activity (Fig. 5a; 
Supplementary Fig. 5a, online resource). Rather, the reaction 
was dependent on parkin’s thiol integrity, because pre-treat-
ment with NEM (or IAA) and pre-oxidation of the protein 
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with H2O2 abrogated the ROS-reducing activity of r-parkin 
(Fig. 5b; Supplementary Fig. 5b, g, online resource). It thus 
appeared similar to the effect of glutathione (Fig. 5a; Sup-
plementary Fig. 5a, e, f, online resource).

The anti-oxidant effect by r-parkin was also dependent 
on its intact Zn2+ coordination, because increasing concen-
trations of the divalent ion chelator, EDTA, abrogated the 
activity; the latter could be ameliorated by supplementing 
the reaction buffer with zinc (Supplementary Fig. 5c, online 
resource). As expected, the exposure of r-parkin to excess 
H2O2 (or excess DTT) led to the release of zinc ions from 
the nascent recombinant protein, as measured in vitro (Sup-
plementary Fig. 5d, online resource).

Interestingly, RNF43 (a distinct E3 ligase that con-
tains a zinc-finger domain), HOIP (an E3 ligase contain-
ing a RING domain) and bovine serum albumin (BSA, 
which akin to parkin has 35 cysteines), did not show 
any H2O2-lowering capacity (Fig. 5c, d; Supplementary 
Fig.  5e, online resource). Further, Parkinson’s-linked 

α-synuclein, which has no cysteines, also had no reduc-
ing effect (Fig. 5c, d). These results suggested that the 
cysteine-rich, primary sequence and the tertiary structure 
of r-parkin conferred anti-oxidant activity.

We next examined an additional, cysteine-containing, 
ARPD-linked protein, e.g., r-DJ-1 and two disease-linked 
variants of full-length r-parkin, p.G328E and p.C431F, 
as well as a C-terminal RING2-peptide of parkin (r-park-
in321C). We also used a second ROS quantification assay 
for further validation and to expand our dose-depend-
ency studies (Fig. 5e, Supplementary Fig. 5f–m, online 
resource). There, r-DJ-1 and r-parkin321C showed negli-
gible H2O2-lowering capacity, and the two point-mutants 
conferred less activity than did wild-type, human r-parkin 
(Fig. 5e). As expected from typical redox reactions (Sup-
plementary Fig. 4c, online resource), the lowering of ROS 
in vitro correlated with reciprocal r-parkin oxidation, as 
revealed by SDS/PAGE, which was performed under 

Fig. 4   Select parkin cysteine residues are oxidized in human and 
mouse brain. a Summary of results for 12 immunoprecipitation 
(IP) runs (TS extracts; n = 4; SDS extracts, n = 8) from human cor-
tices and either saline- or acute (1  h) MPTP toxin-treated murine 
brain (as described in Fig. 2d, e) for endogenous parkin enrichment 
to identify the redox state of its cysteine residues (see also b–g). All 

specimens were fractionated in the presence of IAA. b–g Among the 
redox active residues identified Cys95 and Cys253 in human brain 
parkin were found in either a reduced redox state (b, d) (i.e., IAA-
labelled; + 57 mass gain) or (c, e) in irreversibly oxidized states, e.g., 
to sulfonic acid (trioxidation; + 48 mass). In mouse brain parkin (f, g), 
Cys252 was found either reduced or oxidized as well
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Fig. 5   Wild-type parkin lowers hydrogen peroxide in  vitro, in 
cells and the brain. a–c Quantification of H2O2 concentration using 
AmplexRed, demonstrating (a) full-length, human, recombinant (r-) 
parkin when incubated with H2O2 is able to reduce it in a r-parkin 
concentration-dependent manner. Effects of r-Parkin were com-
pared to catalase and GSH at equimolar concentrations as well as 
following partial inhibition of catalase by amino-triazole (AT), as 
indicated. b Pre-incubation of r-parkin with a thiol-conjugating 
compound (NEM) inhibits parkin-dependent H2O2 reduction in a 
NEM-concentration-dependent manner. c Reducing capacity of 
wild-type r-parkin compared to two other, PD-linked proteins (DJ-
1; α-synuclein), bovine serum albumin (BSA) and two RING-car-
rying ubiquitin ligases (RNF43; HOIPcd; cd = catalytic domain). 
Their respective cysteine and methionine contents are summarized 
in (d). Two-way ANOVA with Tukey’s post hoc test (**p < 0.01, 
***p < 0.001, and ****p < 0.0001) was used for statistical analysis a 
[F (15, 48) = 5.069, p < 0.0001]; b [F (20, 60) = 3.966, p < 0.0001]; 
and c [F (25, 72) = 22.91, p < 0.0001]. e Area under the curve (AUC) 
plots for results from in vitro colorimetric assays, where AUC inte-
grates total H2O2 levels measured over the time course of the assay 
(see also Supplementary Fig. 5f, online resource). Comparison of WT 
r-parkin with DJ-1, two r-parkin point mutants, and r-parkin321-465 
(321C). Results represent n = 3 ± SD using one-way ANOVA [F 
(7, 17) = 99.87, p < 0.0001] with Tukey’s post hoc test *p < 0.05, 

**p < 0.01,***p < 0.001, and ****p < 0.0001. f Quantification of 
reactive thiol content (in molar equivalents) for r-parkin (WT; two 
point mutants; 321C) and full-length r-DJ-1 using the Ellman’s rea-
gent assay. Results analyzed by one-way ANOVA [F (4, 18) = 45.11, 
p < 0.0001]. g Correlation curve between number of free thiols 
(f) vs. the H2O2-reducing capacity (e) for indicated proteins with 
R2 = 0.8789. h–i Quantification of H2O2 levels in (h) saline vs. MPTP 
toxin-treated prkn wild-type (WT) and prkn−/− mouse brain (n = 3/
genotype/condition), and i in human brain from parkin-deficient 
ARPD cortices compared to age- and post-mortem interval-matched 
controls (n = 4/group) collected at the same institution. Results are 
represented as the mean concentration of H2O2 (μM) per total pro-
tein concentration (μg/μL) or tissue weight (g) analyzed ± SEM; 
*p < 0.05, ***p < 0.001, and ****p < 0.0001 determined using a Stu-
dent T-test or one-way ANOVA with Tukey’s post hoc test; [F (3, 
8) = 45.41, p < 0.0001]. j, k H2O2 quantification (j) and cell viability 
assay (k) for dopamine-treated, human M17 cells expressing either 
WT or two ARPD-linked parkin point mutants, as indicated relative 
to treatment with vehicle alone. Cells were exposed to 200 μM dopa-
mine or vehicle for 20 h, as indicated. Data points represent the mean 
of duplicates ± SEM (n = 3 experiments); *p < 0.05 and **p < 0.01, 
and ****p < 0.0001 by one-way ANOVA with Tukey’s post hoc test: 
j [F (3, 8) = 35.34, p < 0.0001]; and k [F (3, 8) = 12.92, p = 0.0020]
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non-reducing conditions immediately after the reaction 
with H2O2 (Supplementary Fig. 5n, online resource).

These results suggested that the anti-oxidant activity by 
r-parkin was dependent on its reactive thiol content, which 
we examined next using the Ellman’s reagent. There, full-
length r-parkin, r-parkin321C and r-DJ-1 showed the predicted 
number of reactive thiols, whereas the single point-mutant 
variants of r-parkin revealed fewer accessible thiols (Fig. 5f). 
From these results, we observed a linear correlation between 
thiol equivalencies and the degree of ROS reduction in vitro, 
demonstrating that a greater number of readily reactive and/
or a greater number of accessible thiols in human parkin 
proteins corresponded with a more effective lowering of 
H2O2 (Fig. 5g).

Hydrogen peroxide levels are increased 
in parkin‑deficient brain

To explore whether parkin oxidation conferred ROS reduc-
tion in vivo, we first quantified H2O2 concentrations in 
the brains of wild-type and prkn−/− mice. A trend, but no 
significant difference, was measured under normal redox 
equilibrium conditions. However, when analyzing brain 
homogenates from mice treated with MPTP-toxin vs. saline, 
carried out as above (Fig. 2), we found significantly higher 
H2O2 levels in the brains of adult prkn−/− mice compared 
to wild-type littermates (P < 0.001; Fig. 5h). Similarly, in 
adult humans H2O2 levels were significantly increased in 
the cortex of PRKN-linked ARPD patients vs. age-, PMI-, 
ethnicity- and brain region-matched controls [42] (P < 0.05; 
Fig. 5i). Specimens of three non-PRKN-linked patients with 
parkinsonism showed H2O2 levels comparable to those from 
age-matched normal cortices (Fig.  2b, red circles). We 
concluded that the expression of wild-type PRKN alleles 
contributes to the lowering of ROS concentrations in adult, 
mammalian brain.

Parkin prevents dopamine toxicity in cells in part 
by lowering hydrogen peroxide

To address the question of selective neuroprotection, we 
revisited the role of parkin in cellular dopamine toxicity 
studies [51, 104]. We first tested parkin’s effect on ROS 
concentrations in dopamine-synthesizing, human M17 neu-
roblastoma cells. There, dopamine exposure of up to 24 h 
caused a significant rise in endogenous H2O2 (P < 0.05; 
Fig.  5j), as expected. Wild-type PRKN cDNA expres-
sion effectively protected M17 cells against the dopamine 
stress-related rise in H2O2 levels (P < 0.0001; Fig. 5j). By 
comparing sister cultures that expressed similar amounts of 
exogenous parkin proteins, the E3 ligase-inactive p.C431F 
mutant had a partial rescue effect, whereas p.G328E, which 
we confirmed to retain its E3 ligase activity in vitro, showed 

no H2O2-lowering capacity in these cells (Fig. 5j; and data 
not shown).

Moreover, only wild-type parkin, but none of the mutant 
variants tested, increased the viability of M17 cells under 
rising dopamine stress conditions (P < 0.01; Fig. 5k; and 
data not shown). This protective effect also correlated 
with parkin insolubility and its HMW smear formation, as 
expected from previous studies [51]. These posttranslational 
changes in M17-expressed parkin were not reversible by 
DTT or SDS (Supplementary Fig. 6a, b, online resource), 
thereby suggesting irreversible dopamine-adduct formation. 
Notably, the protection from dopamine toxicity positively 
correlated with the level of PRKN cDNA transcribed, as 
confirmed in sister lines of M17 cells that stably express 
human, wild-type parkin. There, we estimated that ~ 4 ng of 
parkin protein expressed in healthy, neural cultures neutral-
ized each μM of dopamine added during up to 24 h (Sup-
plementary Fig. 6c, d, online resource).

Parkin binds dopamine radicals predominantly 
at primate‑specific cysteine 95

We next explored which thiols of parkin were involved in 
the neutralization of dopamine radicals. Covalent conjuga-
tion of RES metabolites at parkin residues had been previ-
ously suggested [51, 104], but not yet mapped by LC–MS/
MS examining the whole protein. Aliquots of r-parkin were 
exposed to increasing levels of the relatively stable dopa-
mine metabolite aminochrome. As expected, this led to the 
loss of protein solubility and HMW species formation at 
the highest dose tested (Fig. 6a, b). These reaction prod-
ucts were then used to map modified residues by LC–MS/
MS. Specifically, proteins corresponding to r-parkin mono-
mer (51–53 kDa) and two HMW bands, one at ~ 100 kDa, 
the other near the loading well, were gel-excised (Fig. 6a), 
trypsin digested and analyzed.

There, we made the following four related observations: 
(i) Increasing aminochrome concentrations led to a signifi-
cant decline in the total number of spectra readily identi-
fied by LC–MS/MS as parkin-derived peptides, both in the 
monomeric and HMW bands (P < 0.001 and P < 0.0001), 
respectively (Fig. 6c). This indicated to us either a marked 
loss in solubility (and thus, lesser accessibility by trypsin) 
or a rise in heterogenous, complex modifications, which ren-
dered the analyte undetectable by LC–MS/MS, or both; (ii) 
Despite fewer spectra recorded, we identified a significant 
increase in the number of oxidized cysteines (such as irre-
versibly modified to sulfonic acid) following aminochrome 
exposure, in particular within the HMW bands of r-parkin 
(P < 0.0001; Fig. 6d); (iii) Under these conditions, four 
distinct forms of dopamine metabolites were found conju-
gated to parkin cysteines. Mass shifts of + 145, + 147, + 149 
and + 151 were identified, which represented covalent 
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attachment by indole-5,6-quinone, two variants of amino-
chrome (O = ; HO–), and dopamine quinone itself, respec-
tively (Fig. 6e; Supplementary Fig. 7a, online resource); 
and (iv) Unexpectedly, we identified in Cys95 the most 

frequently dopamine-conjugated parkin residue (P < 0.0001; 
n = 98 spectra; Fig. 6e–g; Supplementary Fig. 7b–g, online 
resource). Other residues of r-parkin, which we identified 
to carry any one of the dopamine metabolites we tracked, 

Fig. 6   Human parkin conjugates dopamine radicals foremost at resi-
due Cys95. a, b Silver staining (a) and Western blot (b) of r-parkin 
in soluble (supernatant) and insoluble (pellet) phases following expo-
sure to increasing concentrations of aminochrome (AM; 0–200 μM) 
and analyzed under non-reducing conditions. See lane number for 
corresponding samples. c Mean total number of parkin spectra, as 
identified by LC–MS/MS following trypsin digestion, of control 
vs. monomeric vs. high molecular weight (HMW), AM-modified 
r-parkin. Data represent the mean of n = 3 runs ± SEM. *p < 0.05; 
***p < 0.001; ****p < 0.0001 by one-way ANOVA with Tukey’s 
post-hoc test [F (2,6) = 64.73, p < 0.0001]. d Percentage of peptides 
carrying a sulfonic acid modification in control vs. monomeric and 
HMW, AM-modified r-parkin. Each point represents one gel speci-
men submitted to MS. The percentage was calculated using only 
the subset of peptides that were ever detected as carrying a sulfonic 
acid modification. Statistics were done as in (c) [F (2,15) = 96.87, 

p < 0.0001]. e Table summarizing LC–MS/MS-based detection of 
adducts representing dopamine metabolites conjugated to cysteines 
identified in human r-parkin following exposure to aminochrome 
in  vitro. Chemical structures for identified cysteine-conjugated 
adducts are shown in Supplementary Fig.  7b, online resource. Indi-
vidual quantification of each peptide with adduct listed is shown on 
the right side of the table. f Frequency of occurrences for dopamine-
metabolite adducts being detected on Cys95 vs. all other cysteine 
residues, as detected by LC–MS/MS and individually shown in (e). g 
LC–MS/MS-generated spectrum following trypsin digestion of AM-
exposed r-parkin highlighting a dopamine (+ 151 mass gain) adduct 
covalently bound to Cys95. See also Supplementary Fig. 7c–p, online 
resource, for additional spectra. h Species comparison for wild-type 
parkin proteins covering sequence alignment of aa90-104, with pri-
mate-specific residue Cys95 highlighted in red
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included Cys166, Cys169, Cys182, Cys212, Cys238, 
Cys293, Cys360 and Cys365, but at a much lesser frequency 
(Fig. 6e, f; Supplementary Fig. 7h–o, online resource). No 
dopamine metabolite-related mass shifts were detected in 
the control samples that had not been exposed to amino-
chrome, as expected. We noted with interest that residue 
Cys95 of wild-type parkin, as the most frequently catalogued 
one to be modified by dopamine metabolites, is also primate 
sequence-specific (Fig. 6g, h).

Parkin augments melanin formation in vitro, which 
involves residue cysteine 95

The oxidation of dopamine in the presence of cysteine-con-
taining proteins, which generates covalent adduct-carrying 

proteins, underlies structural characteristics during the 
formation of neuromelanin pigment in the human mid-
brain (and pons), of which biochemical aspects have been 
modeled ex vivo [18, 19]. Given the observed relations 
between r-parkin, dopamine radical conjugation, aggre-
gate formation and protein insolubility, we next examined 
whether melanin formation was altered by the presence 
of parkin. Indeed, wild-type r-parkin augmented total 
melanin formation in a protein concentration- and time-
dependent manner in vitro (Fig. 7a). Like the wild-type 
protein, two ARPD-linked, full-length r-parkin variants, 
p.C431F and p.G328E, also augmented melanin formation 
in vitro, when monitored over 60 min, whereas r-DJ-1 and 
BSA showed no effect under these conditions (Fig. 7b).

Fig. 7   Parkin-dependent increase in melanin formation involves 
residue cysteine 95. a Kinetic curve of melanin production (read at 
absorbance 405  nm) over time in the absence of exogenous protein 
(dopamine (DA Ctrl) alone) vs. increasing molar concentrations of 
wild-type (WT), full-length human r-parkin shown for three con-
centrations (0.5, 1, 2  μm). Each condition was performed in tripli-
cate. b Total melanin formation for indicated recombinant proteins 
at 60  min, as expressed relative to its production under dopamine 
only control (Ctrl) condition. Data represent the mean of tripli-
cates ± SEM. ***p < 0.05 by 1-way ANOVA with Tukey’s post-hoc 
test [F(6,15) = 40.05, p < 0.0001]. c Silver gel for the analysis of His-
SUMO-tagged, full-length, human r-parkin proteins of wild-type 
sequence and its variant carrying a p.C95A mutation. SDS/PAGE 
was performed under reducing conditions. d, e Representative kinetic 
curve for melanin production (d) and relative total melanin formation 

at 60  min (e), where production in the presence of wild-type (WT) 
or p.C95A mutant r-parkin (each, 2  μM) is shown relative to dopa-
mine (DA) (Ctrl) alone. Data represent mean of n = 2, each performed 
in triplicate ± SEM. ***p < 0.05 by 1-way ANOVA with Tukey’s 
post-hoc test [F(2,3) = 24.96, p = 0.0135]. f, g Protein expression, as 
shown by Western blotting (f), and fold change in H2O2 levels (g) for 
dopamine-treated M17 cells -relative to vehicle-treated sister wells- 
that transiently express either flag-control, or WT vs. p.C95A-mutant 
human parkin-encoding cDNA plasmids. Results are shown as 
mean ± SEM (n = 3) and all dopamine-treated samples (200 μm dopa-
mine) were normalized to their respective untreated samples. Anti-
GAPDH immunoblotting served as a loading control (in f). A one-
way ANOVA with Tukey’s post hoc test (*p < 0.05 and ***p < 0.001) 
was used for statistical analysis; [F (2, 6) = 36.86, p = 0.0004]
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Interestingly, mutagenesis of residue Cys95 to alanine 
(p.C95A; Fig. 7c), which was confirmed by nucleotide- and 
protein sequencing (by LC–MS/MS), completely abrogated 
the enhancing effect by r-parkin on the polymerization rate 
of dopamine to melanin (Fig. 7d, e). Of note, in our study all 
the recombinant proteins heretofore analyzed were used after 
their N-terminal His-SUMO-tag had been removed; how-
ever, the p.C95A-mutant was resistant to enzymatic diges-
tion of the tag from the parkin holoprotein. Therefore, both 
His-SUMO-r-parkin and His-SUMO-p.C95A were utilized 
(Fig. 7c–e). Importantly, in parallel experiments we saw 
no difference in the kinetics of melanin formation between 
wild-type r-parkin proteins that either carried a His-SUMO-
tag or were tag-less (not shown). We concluded that under 
these in vitro conditions, residue Cys95 was highly relevant 
to enhanced melanin polymerization by human parkin.

Furthermore, when the p.C95A-variant of parkin was 
expressed in M17 cells and examined in our dopamine tox-
icity assay, the mutant protein showed only a partial effect 
in H2O2 lowering capacity when compared to wild-type par-
kin, even when p.C95A was expressed at much higher levels 
(Fig. 7f, g). These results were consistent with our collec-
tive LC–MS/MS results of oxidative modifications of parkin 
at Cys95 (shown in: Figs. 3h, 4c; Supplementary Table 2, 
online resource). We reasoned from these complementary 
ex vivo results that wild-type parkin could be associated 
with the synthesis of neuromelanin in vivo. Therefore, we 
sought to explore this further in dopamine neurons of human 
midbrain.

Anti‑parkin reactivity localizes to neuromelanin 
in the Substantia nigra of adult control brain

Subcellular localization studies of parkin in human brains 
had previously been hindered by the lack of renewable anti-
bodies (Abs) that reliably detect the protein in situ [73, 77, 
81, 85]. We, therefore, developed and extensively character-
ized several, monoclonal Abs of the IgG2b-subtype using 
preparations of untagged, full-length, human r-parkin as 
immunogen. To this end, we generated four stable, epitope-
mapped clones, i.e., A15165B, A15165D, A15165G, and 
A15165E. The performance and specificity of these clones 
had been confirmed by ELISA, dot blot analyses, SDS/
PAGE/Western blotting under reducing conditions, which 
included the usage of ARPD brain extracts, immunoprecipi-
tation from the human brain and indirect immunofluores-
cence in cellular studies (Supplementary Fig. 8a–c, online 
resource; Tokarew et al., manuscript in preparation). Impor-
tantly, clones A15165D, A15165G, and A15165E were able 
to specifically detect human parkin in human brain sections 
by immunohistological methods (see below).

Serial sections of adult, human midbrain from 
control subjects were developed by traditional 

immunohistochemistry (IHC) using metal-enhanced 
3–3′-diaminobenzadine (eDAB), which generates a black 
signal for positive immunoreactivity. There, anti-parkin 
clones A15165D, A15165G and A15165E revealed dark, 
granular staining throughout the cytoplasm of pigmented 
cells (ages, ≥ 55 years) (Fig. 8a, b, d). Using sections of ante-
rior midbrains from nine adult control subjects, ≥ 83% of 
the anti-tyrosine hydroxylase (TH)-positive neurons were 
also positive for parkin, as quantified by double labelling 
(Fig. 8c). Under these conditions and Ab concentrations, 
no anti-parkin signal was generated by clone A15165B, 
which had been successfully used in IP experiments above 
(Fig. 4a). Further, in brainstem nuclei outside the S. nigra, 
for example in neurons of cranial nerve III (CNIII) and the 
periaquaductal grey, as well as in sections of control cortices 
anti-parkin clones A15165D, -G and -E also stained vesicu-
lar structures adjacent to the nucleus, albeit at a much lesser 
intensity than pigmented neurons (Tokarew et al., manu-
script in preparation).

Intriguingly, sections from younger control subjects 
(ages, ≤ 33 years) that were processed in parallel revealed 
less intense, anti-parkin reactivity in S. nigra neurons, which 
matched the paucity of their intracellular pigment (Fig. 8e); 
of note, mature neuromelanin consistently generates a brown 
color in sections developed without any primary Ab. The 
different immunoreactivities seen between younger vs. 
older midbrains suggested that the three anti-parkin clones 
(A15165D, -G and -E) likely reacted with an age-related, 
modified form of parkin in situ, because the PRKN gene is 
already expressed in dopamine cells at a young age (Fig. 1b; 
Supplementary Fig. 1a–d, online resource).

To confirm the specificity of the new anti-parkin clones, 
we serially stained midbrain sections from a 71 year-old, 
male ARPD patient, who was entirely deficient in parkin 
protein due to compound heterozygous deletions of PRKN 
exons 2 and 3 (Fig. 8f; Supplementary Fig. 9a–c, online 
resource) [38]. Development of serial sections with anti-
parkin clones A15165E, -D and -G revealed no immunoreac-
tivity in surviving midbrain neurons of the S. nigra from this 
ARPD subject. In the absence of parkin, there was no signal 
overlap between eDAB reactivity (black color) and either 
intracellular neuromelanin granules in surviving dopamine 
cells or with extracellular pigment (brown; Fig. 8f; Supple-
mentary Fig. 9c, online resource). In parallel, development 
of midbrain sections from individuals with the diagnoses 
of dementia with Lewy bodies, of non-PRKN-linked, spo-
radic PD as well as of cases with incidental Lewy bodies 
readily demonstrated eDAB reactivity overlapping with 
neuromelanin for all three anti-parkin clones (Supplemen-
tary Fig. 9d–g, online resource; and data not shown). These 
results demonstrated that the staining by the three anti-par-
kin clones in our microscopy studies of post mortem human 
brain appeared specific.
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Parkin frequently localizes to LAMP‑3+‑lysosomes 
within Substantia nigra neurons

Neuromelanin granules have been shown to occur in spe-
cialized autolysosomes [111]. When screening for co-
localization of parkin reactivity with a variety of markers 
for subcellular organelles in sections of adult control brain, 
we detected that immunofluorescent signals by anti-parkin 
(green) and anti-CD63/LAMP-3 (red) antibodies strongly 
overlapped with pigmented granules of nigral neurons 
(Fig. 8g–i; see also Supplementary Fig. 9h, online resource).

Using confocal microscopy, we demonstrated that in 
adult midbrain anti-parkin signals, as generated by clone 
A15165E, and neuromelanin granules were frequently sur-
rounded by circular, ~ 2 μM (in diameter)-sized rings of anti-
LAMP-3 reactivity (Fig. 8i, j). A z-stack video for the parkin 
and LAMP-3 co-labelling studies is appended (Supplemen-
tal Information_video, online resource). We concluded that 
in the adult, human midbrain from neurologically healthy 
controls and in surviving neurons of subjects, who suffer 
from parkinsonism that is not linked to bi-allelic PRKN dele-
tion, a pool of parkin appears physically associated with neu-
romelanin pigment in close association with juxtanuclear, 
lysosomal structures.

Discussion

Here, we demonstrate that posttranslational modifications 
of parkin contribute to its age-related decline in solubility, 
and in exchange, to redox homeostasis in the human brain. 
Our study also provides insights into the native processing 

of the PD-linked parkin protein in the adult midbrain. Par-
kin’s progressive insolubility in the ageing human brain is 
relatively unique when compared to other PD-linked pro-
teins and several other cellular constituents, which include 
mitochondrial proteins. It is also tissue and species-specific. 
Unlike in the brain, approximately 50% of detectable par-
kin remain soluble in the spinal cord and in skeletal muscle 
from aged human subjects, and a comparable loss of parkin 
solubility is not observed in aged rodent brain and adult 
monkey cortex (Fig. 1a–d, i; Supplementary Fig. 1d, online 
resource).

In human control brain, the loss of parkin solubility in 
post mortem tissue correlates with a rise in H2O2 concen-
trations and with age, but not with the subject’s sex or the 
length of PMI (Figs. 1e, j, 2a–c). Although we have analyzed 
autopsy material with a PMI as short as 2 h (Supplementary 
Table 1, online resource), in future work we will also extend 
our efforts to the analysis of specimens removed from living 
subjects during neurosurgical procedures. Using our cohort 
of specimens, we found that the transition to parkin insolu-
bility in frontal lobe cortices occurs between the ages of 28 
and 42 years (Fig. 1b; Supplementary Fig. 1a–b; Supple-
mentary Table 1, online resource). The age at which parkin 
transitions in the S. nigra will require a larger number of 
midbrain specimens from young, neurologically normal sub-
jects. While we were unable to assess its solubility in mid-
brains from subjects younger than 20 years, parkin’s relative 
distribution in adult midbrain specimens matched the results 
of control cortices (Fig. 1b). Of note, in the brainstem nuclei 
that we examined (i.e., S. nigra; L. coeruleus; red nucleus; 
CN III nucleus; periaqueductal grey), we found that parkin’s 
distribution was not visibly affected by disease state per se 
(11 control cases vs. 9 neuropathological cases; Fig. 1b; 
Supplementary Table 1, online resource). However, parkin’s 
total abundance was lower in the S. nigra of cases from sub-
jects with various forms of neurodegenerative illnesses, as 
expected (not shown). In mice, brain parkin showed partial 
partitioning when oxidative stress had been induced sys-
temically, either acutely or chronically (Fig. 2c–i). In future 
work, we will examine parkin distribution in larger numbers 
of brainstem specimens of autopsy material with different 
neuropathological diagnoses.

In accordance, we demonstrate that a key contributor to 
parkin insolubility is thiol-oxidation and that the resulting, 
posttranslational modifications are linked to three protec-
tive outcomes: (i) the neutralization of a range of poten-
tially toxic, pro-oxidant radicals (ROS, RES); (ii) the effec-
tive lowering of H2O2 concentrations, including its direct 
reduction in vitro; and (iii) the apparent effect that parkin 
has on dopamine metabolism through Cys95-mediated con-
jugation of its radicals and enhanced melanin formation. 
We have modeled parkin’s redox chemistry-based function 
in vitro, in cells and in mice, and provide evidence that these 

Fig. 8   Parkin localizes to neuromelanin pigment in S. nigra neurons 
of normal human midbrain. a, b Immunohistochemical detection of 
parkin in the adult human brain including dopamine neurons of the S. 
nigra using anti-parkin monoclonal antibody clones A15165E (a) and 
-G (b). c Double labelling for tyrosine hydroxylase (TH) and parkin 
(clone A15165E) in the S. nigra from an adult control subject using 
indirect immunofluorescence microscopy. d–f Immunohistochemi-
cal reactivities generated by no primary antibody vs. two anti-parkin 
(Clones A15165E, -D) antibodies on sections of the S. nigra from 
two control subjects, aged (d) 66 years and (e) 24 years, as well as 
(f) from a parkin-deficient ARPD case, aged 71  years. In the indi-
cated panels, immunoreactivity was detected by metal-enhanced DAB 
(eDAB; generating black colour) and hematoxyline as a counterstain 
(blue). No primary antibody added generates a pigment-induced sig-
nal for neuromelanin (brown). Scale bars represent 100  μm, or as 
indicated. g–j Immunofluorescent signals, as generated by double-
labelling of human S. nigra sections containing dopamine neurons, 
using anti-parkin (clone A15165E; green colour) and anti-LAMP-3/
CD63 (red colour) antibodies; (blue colour, Hoechst stain). Bright-
field microscopy image in the same field (neuromelanin pigment is 
visible; left panel) and a no primary antibody (h) run in parallel are 
shown. i Higher magnification of a single dopamine neuron and (j) 
further magnification for visualization of subcellular signals within a 
neighbouring dopamine neuron is shown, as indicated

◂
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outcomes are physiologically relevant to the human brain. 
From these observations, we propose that insoluble parkin 
represents a functionally important protein of the ageing 
human brain including the S. nigra. Further, our findings 
integrate the early literature related to parkin mutations and 
stress-induced modifications vis a vis its insolubility, which 
included a wide range of complementary investigations [6, 
9, 28, 29, 60, 92, 98, 99, 103, 104], such as findings from 
induced pluripotent stem cell-derived, human dopamine 
neurons [32, 35, 68]. Our discovery of a function for parkin 
in redox homeostasis also helps explain seemingly disparate 
evidence of previous observations made in studies of flies, 
mice [70, 74] and humans [73].

The reactivity of cysteine thiols is governed by their 
own redox state as well as by the surrounding electrostatic 
environment, which includes the charges of neighbouring 
residues [105]. Unlike parkin, 34 out of 35 cysteines found 
in BSA are engaged in disulphide bonds [37, 72]. BSA was 
not able to reduce H2O2, nor did it enhance the formation 
of insoluble melanin polymers in vitro under these condi-
tions. Two other Zn2+-coordinating, cysteine-containing 
proteins that we tested, RNF43 and HOIPCD (Fig. 5c), also 
did not lower H2O2, thus suggesting that select cysteines 
in parkin have a high affinity for ROS and, as discussed 
below, RES molecules. When mapping the redox state of 
parkin cysteines under progressively pro-oxidant condi-
tions in vitro, we found that Zn2+-coordinating residues at 
its RING domains are not protected from modifications by 
ROS [56] (Supplementary Table 2, online resource). This 
observation suggests that oxidative changes of parkin in vivo 
could occur continuously in the form of a gradient, rather 
than representing a binary event.

Based on our results, we also estimated the levels of pro- 
vs. anti-oxidant forces. There, the ratio of H2O2-to-r-parkin 
(0.1–1.0 mM of H2O2 per 1 ng of r-parkin) was within the 
physiological range of what we had measured for human 
control brain extracts (i.e., 0.4–6.0 mM of H2O2 per 1 ng of 
parkin). In the latter, H2O2 concentrations were calculated 
to lie between 0.7 and 9.1 mM/mg of tissue (see Supple-
mentary Table 1, online resource). Using semiquantitative 
Western blotting with aliquots of the same Ab lot (Prk8), 
parkin concentrations were estimated to be ~ 1.42 ng/mg 
brain tissue using r-parkin dilutions as standards; these had 
been run in parallel with brain lysates of ARPD cortices to 
demonstrate specificity for the detection of the ~ 51–53 kDa 
holoprotein. These estimates represent a first approximation 
of the concentration of wild-type parkin in the adult human 
brain; these numbers may need to be revised in the future 
based on controlling for potentially confounding variables, 
such as the presence of truncated species and modified forms 
(not detected by our antibodies), and/or due to marked vari-
ability in parkin’s turnover rate in different regions of the 
cortex and between subjects.

As was observed for r-parkin, we also found cysteine resi-
dues that were oxidized in parkin proteins after their affinity 
isolation from human control cortices and mouse brains, 
including of Zn2+-binding ones. For example, Cys253 
(Cys252 in mice), which helps coordinate Zn2+ within par-
kin’s RING1 domain, was frequently identified by us as 
being oxidized (Figs. 3i, 4e, g). We predict that variable 
modifications of non-Zn2+-coordinating residues in human 
parkin could induce early, conformational changes in par-
kin’s tertiary structure, such as at Cys95, which is located in 
the—heretofore structurally understudied—linker region, or 
Cys59, as positioned in its ubiquitin-like (UbL) domain [17] 
(see Figs. 6e–h, 7c–g). Such N-terminally located changes 
could profoundly affect both the structure and function of 
other domains in wild-type parkin, as has been convinc-
ingly delineated in studies of parkin’s E3 ligase activity as 
a readout following modifications at its UbL domain [7, 8, 
51, 60, 69, 71, 101, 104, 107] (and reviewed by Yi et al. 
[108].). Our results do not exclude the possibility that other 
non-thiol-based, posttranslational modifications alter par-
kin’s solubility, such as phosphorylation at Ser65 [46], or at 
Ser77 [17], which we found in brains of MPTP-treated mice. 
Currently, ongoing experiments seek to answer the question 
as to how structural changes caused by select ARPD-linked 
parkin mutants, e.g., p.C431F and p.G328E, as determined 
by far-UV-circular dichroism, dynamic-light scattering and 
NMR techniques, could alter redox functions in vitro. Their 
completion will add to our understanding as to how these 
mutants alter solubility and half-life of nascent parkin pro-
teins in cell-based studies [9, 92].

As mentioned above, PRKN-linked ARPD is thought to 
be pathologically restricted to catecholamine producing cells 
of the brainstem [15, 40, 45, 53, 55]. Dopamine neurons of 
the S. nigra have unique biophysical properties that lead to 
high bioenergetic demands and the related rise in oxidative 
stress [23]. Further, unlike in other animals, dopamine is 
not completely catabolized in the human brain, and neu-
romelanin is thought to be essential for the sequestration 
and long-term storage of its otherwise toxic metabolites 
[110]. We found parkin to be involved in mitigating two 
well-established, PD-linked stressors (i.e., ROS; dopamine 
radicals), which is indirectly supported by our findings in 
the human brain.

We show that parkin functions as a classical redox mol-
ecule that is able to lower H2O2 in a thiol-dependent manner. 
In the absence of wild-type parkin, H2O2 concentrations are 
elevated in the human brain (Fig. 5i), in dopaminergic cells 
(Fig. 5j, k) and in brains from mice exposed to MPTP-toxin 
(Fig. 5h). There, acute MPTP exposure not only correlated 
with a decline in parkin solubility but also with the oxidation 
of select cysteines (Fig. 4a). Hence, PRKN expression con-
tributes to anti-oxidant activity in vivo through a net reduc-
tion in H2O2 levels, which can occur in part through its direct 
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reduction, as shown by us in vitro (Fig. 5; Supplementary 
Fig. 5, online resource).

Because both MPTP toxin exposure and Sod2 gene func-
tion affect mitochondrial integrity [12, 20], we reason that 
redox homeostasis in the cytosol, as coregulated by parkin 
oxidation, could also indirectly influence the health of mito-
chondria, in addition to E3 ligase-associated mitophagy (and 
MITAP). Such a cross-talk between cytosol and mitochon-
dria likely includes glutathione metabolism-linked path-
ways, in which we and others found parkin cysteines to be 
involved in as well [11, 17, 25, 34, 79, 89].

A role for PRKN expression in the neutralization and 
sequestration of dopamine metabolites may explain why 
dopamine synthesizing neurons are at greater risk in humans 
born with parkin deficiency. Previously, parkin has been 
shown to be uniquely sensitive to dopamine stress leading 
to aggregate formation [51, 104] (Supplementary Fig. 6a, b, 
online resource). In both cells and mice, prkn gene expres-
sion has been indirectly implicated in the metabolism of 
this neurotransmitter, in particular under ex vivo conditions, 
such as induced by high dopamine level-induced stress [25, 
34–36, 43, 51] (see also Supplementary Fig. 6c, d, online 
resource).

Our results, and those by others, suggest that dopamine-
mediated stress in neural cells is ameliorated when parkin 
undergoes irreversible modifications by dopamine metabo-
lites. However, in contrast to current interpretations, which 
stipulate oxidation by quinones is equal to a loss of par-
kin activity, we posit that such oxidation is part of parkin’s 
physiological role within post-mitotic cells of the adult 
brain based on two principal findings. First, we demon-
strate that wild-type parkin directly interacts with highly 
electrophilic dopamine metabolites at specific residues, 
foremost Cys95 (Fig. 6e–h). This primate-specific cysteine 
is located within the linker region next to charged residues 
that impact its electrostatic properties and likely its redox 
reactivity [24, 105]. In support, we found that in addition 
to dopamine adduct conjugation, Cys95 is vulnerable to 
ROS attacks (Figs. 3h,  4b, c), and in parallel studies, is 
S-glutathionylated when exposed to rising concentrations of 
oxidized glutathione [17]. Strikingly, we found that Cys95 
is not only required for parkin-dependent enhanced melanin 
formation, but also for participation in effective H2O2 reduc-
tion in M17 cells during dopamine stress-mediated toxicity 
(Figs. 6e–g,  7f–g).

Second, our finding that parkin augments melanin for-
mation in vitro, together with our finding that the protein 
is closely associated with neuromelanin granules within 
LAMP-3+- lysosomes of human brain (Fig. 8g–j; Supple-
mentary Fig. 9h, online resource), suggest a role for parkin 
in dopamine metabolism-linked neuroprotection (Supple-
mentary Fig. 10, online resource). We have noted with 
interest that several autopsy reports have described lesser 

neuromelanin content in surviving neurons of the S. nigra 
in PRKN-linked ARPD [22, 27, 30, 95, 106, 109] (Fig. 8f). 
Intriguingly, variants at the LAMP3/CD63 locus, as well as 
of other dopamine metabolism-related genes, e.g., GCH-1, 
have been recently identified as modifiers of susceptibil-
ity to late-onset, typical PD [33, 66, 100]. However, proof 
of the concept that parkin plays an important, contribut-
ing role in the formation of neuromelanin in human brain 
awaits a suitable animal model.

To date, parkin is best known for its function as an E3 
ligase and the ubiquitin ligation-dependent involvement 
in mitophagy. Because ubiquitin-ligating activity occurs 
via cysteine-mediated trans-thiolation, controlling the cel-
lular redox state and functioning as an E3 ligase may not 
be mutually exclusive. For example, low concentrations 
of pro-oxidants, as well as sulfhydration, can activate par-
kin’s E3 activity in vitro [71, 97, 107]. A similar duality 
in functions, i.e., regulating ubiquitylation and redox state 
in cells, has been previously described for the sensitive-
to-apoptosis gene (SAG) product, also known as RBX2/
ROC2/RNF7 [93, 94]. It contains a RING finger, and simi-
lar to parkin, was found to form HMW oligomers through 
oxidation of its cysteines [93, 94]. SAG protein protects 
cells from oxidative stress in a thiol-mediated manner in 
addition to functioning as an E3 ligase.

From this analogy, we postulate that parkin’s cytopro-
tective E3 function and its role in mitophagy are possibly 
linked to its soluble form within the cytosol, which could 
be most important during early developmental stages, such 
as during organ development [26], in dividing striated 
muscle cells [80], and in relatively younger, neural cells 
including glia [89]. In support, Yi et al. recently described 
a strong correlation between parkin point mutants, their 
impact on structure and protein stability vs. ubiquitin 
ligase activity and the degree of mitophagy efficiency 
[108]. Conversely, redox-based neutralization of radicals 
by wild-type parkin could be more essential to the sus-
tained health of long-lived, postmitotic cells, e.g., S. nigra 
neurons.

In summary, we have shown that parkin fulfils criteria 
of a typical redox molecule: the sensing of oxidative (and 
reducing) stress via its thiols; and the direct, reciprocal 
redox regulation of its environment, thus conferring pro-
tective outcomes. If confirmed by future work, this redox 
chemistry-based expansion of parkin functions in the 
ageing human midbrain (Supplementary Fig. 10, online 
resource) may open the door to testing its anti-oxidant 
role in related neurodegenerative conditions, such as late-
onset, non-PRKN-linked PD [13]. Most important, our 
findings emphasize the need for early identification of 
persons afflicted by bi-allelic PRKN gene mutations for 
the prioritization of appropriate interventions in the future, 
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such as via gene therapy [44] and polyvalent, anti-oxidant 
therapy [78].

Supplementary Information  The online version contains supplemen-
tary material available at https​://doi.org/10.1007/s0040​1-021-02285​-4.
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