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Abstract
Alzheimer’s disease (AD) is neuropathologically characterized by the intracellular accumulation of hyperphosphorylated tau 
and the extracellular deposition of amyloid-β plaques, which affect certain brain regions in a progressive manner. The locus 
coeruleus (LC), a small nucleus in the pons of the brainstem, is widely recognized as one of the earliest sites of neurofibrillary 
tangle formation in AD. Patients with AD exhibit significant neuronal loss in the LC, resulting in a marked reduction of its 
size and function. The LC, which vastly innervates several regions of the brain, is the primary source of the neurotransmitter 
norepinephrine (NE) in the central nervous system. Considering that NE is a major modulator of behavior, contributing to 
neuroprotection and suppression of neuroinflammation, degeneration of the LC in AD and the ultimate dysregulation of the 
LC–NE system has detrimental effects in the brain. In this review, we detail the neuroanatomy and function of the LC, its 
essential role in neuroprotection, and how this is dysregulated in AD. We discuss AD-related neuropathologic changes in the 
LC and mechanisms by which LC neurons are selectively vulnerable to insult. Further, we elucidate the neurotoxic effects of 
LC de-innervation both locally and at projection sites, and how this augments disease pathology, progression and severity. 
We summarize how preservation of the LC–NE system could be used in the treatment of AD and other neurodegenerative 
diseases affected by LC degeneration.
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Abbreviations
Aβ	� Amyloid-β
AD	� Alzheimer’s disease
BDNF	� Brain-derived neurotrophic factor
DHF	� 7,8-Dihydroxyflavone
DSP-4	� N-(2-Chloroethyl)-N-ethyl-bromo-benzylamine
GABA	� γ-Aminobutyric acid
GSK	� Glycogen synthase kinase
iNOS	� Inducible nitric oxide synthase
LC	� Locus coeruleus
l-DOPS	� l-3,4-Dihydroxyphenylserine

MRI	� Magnetic resonance imaging
nbM	� Nucleus basalis of Meynert
NE	� Norepinephrine
NFκB	� Nuclear factor-κB
NFT	� Neurofibrillary tangle
PiB-PET	� C-Pittsburgh Compound-B-positron emission 

tomography
PPARγ	� Peroxisome proliferator-activated receptor 

gamma
p-tau	� Hyperphosphorylated tau
SubC	� Subcoeruleus

Introduction

The locus coeruleus (LC) is a small brainstem pontine 
nucleus of neuromelanin-containing neurons, widely rec-
ognized as the primary source of the mono-aminergic neu-
rotransmitter norepinephrine (NE). NE plays an important 
role in modulating many behavioral functions, including 
attention, mood, motivation, stress and arousal [96, 134]. 
Furthermore, NE influences blood flow, heart rate, sleep and 
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waking patterns [80, 91], and regulates neuroinflammation 
and neuronal survival [94]. Thus, the noradrenergic system 
was established as one of the most pivotal neuromodulators 
in the brain.

Current research supports that dysregulation of the 
noradrenergic system is a significant player in the develop-
ment of psychiatric and neurodegenerative disorders, includ-
ing Alzheimer’s disease (AD), Parkinson’s disease, Lewy 
body dementia, and frontotemporal lobar degeneration with 
tau. Analyses of AD brains from progressive stages of the 
disease have reported significant neuronal and volume loss 
in the LC [64, 154]. Previous studies have suggested that 
LC degeneration is age related [50, 85, 93, 157, 164]. How-
ever, it is of note that some of these findings were based 
on a small cohort (n = 5–13) [50, 85] and did not exclude 
cases with neuropathology elsewhere. Intriguingly, recent 
unbiased stereological approaches indicated that there are no 
significant associations between normal aging and changes 
in the LC [16, 106, 116, 154], suggesting a disease-specific 
phenomenon.

AD is neuropathologically characterized by extracellular 
amyloid-β (Aβ) plaque deposits and abnormal accumula-
tion of intracellular hyperphosphorylated tau (p-tau) that 
form neurofibrillary tangles (NFTs) [103]. In 1991, Braak 
and Braak defined the six-stage pattern of NFT deposition 
across the course of AD neuropathologic progression [10]. 
In 2011, Braak et al. revised the standardized staging scheme 
to include pretangle stages a–c, which denote the accumu-
lation of subcortical p-tau in the LC that occurs before any 
cortical tau pathology [12]. This observation situates the LC, 
together with other interconnected neuromodulatory subcor-
tical structures [143, 153], as one of the first structures to 
accumulate AD-tau as neuronal inclusions [12], a pathology 
that ultimately results in neuronal death. The subsequent loss 
of LC neurons, which occurs with a topographical gradient, 
is associated with increased Aβ plaque deposition and NFT 
load in the cortices [8]. Dysfunction of the LC noradrener-
gic system was also found to be associated with the onset 
of memory dysfunction and cognitive impairment in AD 
[55]. Interestingly, LC degeneration correlated better with 
AD onset and duration than degeneration of the choliner-
gic nucleus basalis of Meynert (nbM) in the basal forebrain 
[100, 169], which is also highly vulnerable to tau pathology 
in AD, indicating that noradrenergic deficits in AD play a 
major role in disease progression. These findings show that 
the connection between loss of LC noradrenergic innerva-
tion and subsequent onset of neurodegeneration in AD, as 
well as the detection and treatment of noradrenergic deficits 
in patients, are important disease aspects that require further 
research and understanding.

The LC has a unique therapeutic value in AD as it is one 
of the earliest subcortical regions affected by tau lesions, 
and prevention of neuropathologic changes in this nucleus 

could prevent the spread of irreversible changes in the brain 
[61, 67]. With this in mind, this review will summarize the 
neuroanatomy of the LC and its function within the noradr-
energic system, stating the mechanisms by which NE exerts 
its responsibility as a key neuromodulator, as well as its role 
in neuroprotection. We will discuss which AD-related neuro-
pathologic changes are observed in the LC, how the LC–NE 
system’s dysregulation leads to AD neuropathology, onset 
and progression, and possible therapeutic interventions to 
prevent or lessen LC degeneration and NE deficits in AD.

Neuroanatomy and function of the locus 
coeruleus

The LC is a “tube-like” collection of noradrenergic neu-
rons located in the dorsolateral pontine tegmentum, begin-
ning rostrally at the inferior colliculus level and continu-
ing caudally to the lateral face of the fourth ventricle [50, 
68]. The LC forms part of the isodendritic core, a group of 
interconnected and phylogenetically conserved subcortical 
nuclei [125, 153]. This group also includes the dorsal raphe 
nucleus, substantia nigra in the midbrain, and nbM in the 
forebrain [125, 153]. The isodendritic core network plays 
an important role in neuromodulation by regulating behavior 
and homeostasis through aminergic and cholinergic projec-
tions to the cortices [153].

Unbiased stereological estimates of the total LC cell pop-
ulation showed an average of 98,000 neurons, constituting an 
overall volume of approximately 13 mm3 [154]. LC neurons 
are identifiable by their neuromelanin pigment, as well as 
immunolabeling with dopamine β-hydroxylase, the enzyme 
that converts dopamine to NE [138, 146] or tyrosine hydrox-
ylase, the enzyme that catalyzes the rate-limiting step in NE 
biosynthesis [121] (Fig. 1). Using such methods, several 
studies have identified distinct cellular heterogeneity within 
the LC, characterizing two classes of medium-sized neurons; 
the large multipolar cells (~ 35 μm) and smaller fusiform 
cells (~ 20 μm) [138, 145]. Their distinct cellular morpholo-
gies could indicate differences in their characteristics and 
function. Though both cell types are dispersed throughout 
the LC, the small fusiform cells dominate the densely packed 
rostral portion, indicating a cytoarchitectonic bias [145]. In 
addition, recent studies have indicated phenotypic variability 
among subsets of LC neurons [17, 124, 165]. Hippocampal 
and prefrontal-innervating LC neurons differ in their physi-
ological response to the α2-adrenoreceptor agonist clonidine, 
suggesting a functional heterogeneity within the LC neuron 
population [165].

The structure and organization of neurons within the 
LC and adjacent subcoeruleus (SubC) are essential for its 
function as the primary source of NE. Retrograde labeling 
techniques using radioactive or fluorescent tracers have 
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established that each single LC axon innervates extensively 
into several brain regions, in particular the forebrain, cer-
ebellum, brainstem and spinal cord [122] (Fig. 2), with 
90% of these LC efferent projections remaining ipsilateral 
[95, 128]. Several groups have identified that topographic 
organization of the LC neurons are dependent on their output 
target, with rostrally located cells projecting to the forebrain 
region, innervating the hippocampus and septum; whereas, 
cells in the middle and caudal portions of the LC project to 
the cerebellum, basal ganglia and spinal cord, and regulate 
autonomic function [86, 95, 122, 136] (Fig. 2).

LC neuronal projections to the cortex occur in three 
ways: (1) monosynaptically, whereby the axons innervate 
the region directly [38, 112]; (2) through the thalamus, using 
this structure as a ‘hub’ [47, 76]; or (3) via the cholinergic 
basal forebrain nuclei, including the nbM [53]. At the pro-
jection target area, NE is released by two different types 
of LC axonal terminals; typical synaptic transmission and 
varicosities [41, 94, 134]. Axonal varicosities may permit 

the extra-synaptic release of NE commonly referred to as 
volume transmission, which refers to the diffuse release of 
neurotransmitters [41, 94, 134]. This method of release is an 
important and essential characteristic of neuromodulatory 
neurons as it influences the excitability and synaptic plastic-
ity of a vast range of proximal cells [41, 94, 134].

Once released, NE exerts its neuromodulatory effects 
through binding to G-coupled α- and β-adrenoreceptors 
(Fig. 1), which are present on neurons, glia and immune 
cells, and can be detected in cerebral microvessels [124, 127, 
147]. One of the most important receptors in mediating the 
downstream effects of NE is the α2-adrenoreceptor [57, 127] 
that functions as both inhibitory autoreceptor on noradren-
ergic neurons and modulator of noradrenergic innervation 
on postsynaptic cells [127]. α2-Adrenoreceptors are also 
highly expressed by LC neurons, contributing to the neu-
romodulatory effects of NE [138]. The α2-adrenoreceptor 
subtype, α2A-adrenoreceptor, is found abundantly in the 
cortex, hippocampus, hypothalamus, amygdala, brainstem, 
and spinal cord; regions that are highly innervated by LC-
projecting axon terminals [78, 87, 127]. The abundance of 
the α2A-adrenoreceptor subtype in such regions suggests that 
it may play an important role in mitigating NE signaling 
[78, 87, 127]. On binding to adrenoreceptors, NE initiates a 
vast array of downstream pathways, leading to further neu-
rotransmitter release, regulation of inflammatory processes 
and growth factor expression, all of which are important in 
modulating its many roles in the brain [94, 127].

It is widely recognized that NE plays a critical role in 
regulating neuroinflammation. For example, LC axonal ter-
minals were found in close contact to astrocytes and micro-
glia [23, 83], suggesting a modulatory relationship. In early 
in vitro studies, NE was shown to inhibit the induction of 
MHC class II antigen expression on astrocytes by IFN-γ, 
indicating that NE downregulates the immune response in 
the brain [45]. Since then, several studies have shown that 
NE plays a fundamental role in reducing a number of inflam-
matory genes, including NOS2, IL-1β, ICAM-1, adhesion 
molecules, and TNF-α, in cells such as microglia, astrocytes 
and endothelial cells [27, 40, 99].

Findings indicate that much of the neuromodulatory 
effects of NE occur through downstream cAMP pathways. 
Through the induction of this pathway, NE was shown to 
increase the expression of peroxisome proliferator-activated 
receptor gamma (PPARγ) in astrocytes and neurons, and 
research suggests that this upregulation partly mediates the 
anti-inflammatory effects of NE [74]. This is supported by 
the findings which suggest that treatment with PPARγ ago-
nists restores the depleted levels of inflammatory markers 
that are observed in LC-lesioned animal models, as well as 
inhibiting the activation of proinflammatory molecules such 
as nuclear factor-κB (NFκB) [59] (Table 1). Another mech-
anism by which NE exhibits its neuromodulatory effects 

Fig. 1   Norepinephrine biosynthetic and signaling pathways in locus 
coeruleus neurons. l-tyrosine is converted into norepinephrine  by a 
series of enzymatic reactions [70, 113]. Antibody immunoreactivity 
to key enzymes in the norepinephrine pathway is commonly used as 
markers of norepinephrine neurons [24]. norepinephrine is released 
at the synapse, where it binds to G-coupled α- and β-adrenoreceptors 
to exert its neuromodulatory effects. Agents such as l-3,4-dihydroxy-
phenylserine [149] can bypass the pathway and directly increase lev-
els of norepinephrine and, thus, could be used as a potential therapy 
to compensate for norepinephrine loss following locus coeruleus de-
innervation. Created with BioRender.com
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includes increased IκBα expression, a protein involved in 
inhibiting the NFκB pathway whose action is highly immu-
nosuppressive [48]. This is supported by findings that ani-
mals with LC degeneration have reduced basal levels of 
inhibitory IκB proteins [59].

In addition to releasing neurotransmitters, the LC also 
co-transmits a variety of neuropeptides, most namely neu-
ropeptide Y and galanin [79], which are expressed in 20% 
and 80% of neurons, respectively [62]. Studies have sug-
gested that the co-expression of these neuropeptides helps 
regulate central adrenergic transmission mediated through 
α2-adrenoreceptors [163]. Furthermore, these cells express 
essential neurotrophins, including brain-derived neuro-
trophic factor (BDNF), which dictates neuronal survival and 
differentiation [18, 25], as well as receptors for neuropeptide 
Y, galanin, somatostatin and hypocretin/orexin [41].

AD‑related neuropathologic changes 
in the locus coeruleus

Hyperphosphorylated tau accumulation in the locus 
coeruleus

During the development of AD, NFT pathology progresses 
in the cortex in six stages: in stages I/II, NFTs are present 
in the transentorhinal and entorhinal cortex; stages III/IV, 
NFTs appear in the limbic system and temporal cortices; 
and finally stages V/VI, where NFTs are present through-
out the association and primary cortices [10]. However, a 
recent revision of the original staging system by Braak and 
colleagues in 2011 has incorporated the LC as the earliest 
site of p-tau accumulation [12]. According to the updated 
staging, ‘pretangle stage a/b’ refers to p-tau accumulation 
confined only to the pontine tegmentum, in or in close prox-
imity to the LC [12]. In ‘pretangle stage a’, the LC cell pro-
cesses are positive for AT8 immunoreactivity; whereas in 
‘pretangle stage b’, p-tau has extended further down the axon 
with spiked protrusions along the neuron outer somatic rim 
[12]. Further research indicated that at Braak stage 0, 8% 
of LC neurons are p-tau-positive, which doubled by Braak 

Fig. 2   Locus coeruleus projections release norepinephrine through-
out the central nervous system. The organization of noradrenergic 
neurons within the locus coeruleus is indicative of their projection 
destination. Rostral locus coeruleus neurons supply norepinephrine to 

the forebrain region (green), middle locus coeruleus neurons to the 
pons (red) and caudal locus coeruleus neurons project to the spinal 
cord and cerebellum (blue). Adapted from [37, 41, 94]. Created with 
BioRender.com
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stage I [32]. By Braak stage VI, 100% of LC neurons had 
tau pathology [5] (Fig. 3).

Recent studies have shown that p-tau begins to accu-
mulate in the LC early in life, in some cases as young as 

10 years of age, with up to 90% of individuals having some 
tau pathology in the LC by the age of thirty [11] (Fig. 3). 
Similar findings were reported by other groups who observed 
tau lesions, including NFTs and neuropil threads, in 72% of 

Table 1   Animal model studies used in locus coeruleus research

LC locus coeruleus, DSP-4 N-(2-chloroethyl)-N-ethyl-bromo-benzylamine, APP amyloid precursor protein, PS1 presenilin-1, DBH dopamine 
β-hydroxylase, BDNF brain-derived neurotrophic factor, SSTR2 Somatostatin Receptor 2 gene, GAL galanin gene, MAPT tau gene, AEP Aspara-
gine endopeptidase

References in order of appearance Model(s) Species LC Lesion type Section(s)

Heneka et al. 2003 [59] Control Rat DSP-4 Neuroanatomy and function of the locus 
coeruleus

Heneka et al. 2006 [61] APP23 Mouse DSP-4 Locus coeruleus atrophy in Alzheimer’s 
disease

Kalinin et al, 2007 [67] APP V717F Mouse DSP-4 Locus coeruleus atrophy in Alzheimer’s 
disease

Kelly et al. 2019 [72] Tg344-19 Rat DBH-sap Locus coeruleus atrophy in Alzheimer’s 
disease

Hammerschmidt et al. 2013 [56] APP/PS1 Mouse DBH−/− Locus coeruleus atrophy in Alzheimer’s 
disease;  l-DOPS (droxidopa)

Chalermpalanupap et al. 2018 [19] Tau P301S Mouse DSP-4 Locus coeruleus atrophy in Alzheimer’s 
disease

Heneka et al. 2002 [58] Control Rat DSP-4 Locus coeruleus atrophy in Alzheimer’s 
disease

Heneka et al. 2010 [60] APP V717I & APP/PS1 Mouse DSP-4 Locus coeruleus atrophy in Alzheimer’s 
disease

Kang et al. 2020 [69] Tau P301S & MAPT/AEP−/− Mouse DBH−/− Neuronal vulnerability in the locus 
coeruleus

Castren et al. 1995 [18] Control Rat None The role of locus coeruleus in neuropro-
tection

Fawcett et al. 1998 [39] DBH–BDNF Mouse None The role of locus coeruleus in neuropro-
tection

Mastsunaga et al. 2004 [97] Control Rat None The role of locus coeruleus in neuropro-
tection

Nakai et al. 2006 [114] Control Rat None The role of locus coeruleus in neuropro-
tection

Ádori et al. 2015 [1] SSTR2−/− Mouse None The role of somatostatin in neuroprotec-
tion

O’Meara et al. 2000 [115] GAL−/− Mouse None Neuropeptides expressed by the locus 
coeruleus exhibit neuroprotective 
effects

Elliott-Hunt et al. 2004 [33] GAL−/− & GAL overexpression Mouse None Neuropeptides expressed by the locus 
coeruleus exhibit neuroprotective 
effects

Kalinin et al. 2012 [68] 5xFAD Mouse None l-DOPS (droxidopa)
Devi et al. 2012 [28]; Zhang et al. 2014 

[171]
5xFAD Mouse None 7,8-Dihydroxyflavone

Takeda et al. 1984 [150] Control Mouse None Vindeburnol
Labatut et al. 1988 [77] Control Rat None Vindeburnol
Braun et al. 2014 [13] 5xFAD Mouse None Vindeburnol
Wang et al. 2010 [166]; Sun et al. 2012 

[144]
3xTgAD Mouse None Allopregnanolone

Torres-Sanchez et al. 2018 [158] Control Rat None Brain stimulation technologies
Follesa et al. 2007 [42] Control Rat None Brain stimulation technologies
Rorabaugh et al. 2017 [129] TgF344-AD Rat None Brain stimulation technologies
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individuals aged 31–40 years, and 94% of individuals aged 
41–50 years [123]. In terms of the onset of AD, it is sug-
gested that NFT formation in the LC occurs 10 years prior 
to any cognitive changes [20, 55, 153] and at least 25 years 
before significant neuronal loss [16].

The presence of NFTs in the LC can have a multitude of 
effects regarding differential gene expression. NFT accumu-
lation in the LC is associated with colocalized expression 
of tau kinases, including MAPK/ERK, SAPK-JNK, p38, 
glycogen synthase kinase (GSK) and GSK-3β, with sev-
eral kinases showing immunoreactivity restricted to neu-
rons bearing p-tau [2]. In addition, NFTs in the LC have 
increased colocalization with neuroketal adducts (oxidation 
product of docosahexenoic acid) [2], which was shown to 
rapidly induce protein cross-linking and aggregation, and 
are markers of age-related neurodegeneration [29]. Further, 
NFT accumulation in the LC was shown to correlate with 
decreased expression of superoxide dismutase 1, suggesting 
a reduced response to oxidative stress [2]. LC neurons con-
taining truncated tau were shown to have decreased levels of 

voltage-dependent anion channels, suggesting a decrease in 
the number of functional mitochondria [2]. Whole-transcrip-
tome analysis of the LC at Braak stage IV identified upreg-
ulated expression of proteins associated with heat shock 
protein-binding and ATP metabolism, and downregulation 
of DNA-binding and members of the small nucleolar RNAs 
family protein expression [2]. This suggests that abnormal 
tau accumulation triggers multiple dynamic changes in LC 
neurons, perhaps as compensatory mechanisms or to induce 
cell death. Similarly, active caspase-6 antibody positivity, a 
marker of apoptosis, was shown to increase in NFT-bearing 
LC neurons with advancing Braak stage [155]. In contrast, 
macroautophagy, identified by the autophagosome marker 
LC3, was found to be decreased during AD progression 
[155]. As macroautophagy is responsible for the degrada-
tion of misfolded proteins and was shown to reduce p-tau 
accumulation in affected neurons [66], dysregulation of this 
system could contribute to the formation of NFTs in the LC, 
ultimately leading to activation of caspase-6 and subsequent 
neuronal death [155]. Furthermore, neurons associated with 

Fig. 3   Histopathologic changes in the locus coeruleus during Alz-
heimer’s disease. a Macroscopic examination of the locus coeruleus 
in an 81-year-old nondemented female revealed a darkly pigmented 
nucleus due to the presence of neuromelanin (circle). b Microscopic 
inspection of routine hematoxylin and eosin (H&E) stained sec-
tion  demonstrates a well-populated nucleus with neuromelanin-con-
taining neurons (arrow). c Isolated neurofibrillary tangles (arrow-
head) were identified using tau immunohistochemistry (dark brown), 
which contrasts with the more yellow–brown appearance of healthy, 
neuromelanin-containing neurons (arrow). d No amyloid deposits 
were identified in the nondemented control. e Macroscopic examina-
tion of the brain of an 80-year-old female neuropathologically diag-

nosed with Alzheimer’s Disease revealed a significantly depigmented 
locus coeruleus (circle), f reflective of the decrease in the population 
of pigmented neurons (arrow) observed microscopically on an H&E-
stained section. Neurofibrillary tangles visibly displace neuromelanin 
(arrowhead). g Tau immunostaining reveals neurofibrillary tangles 
(arrowhead), which contrast in comparison to the yellowish-brown 
neuromelanin pigment observed in surviving neurons. h An isolated 
amyloid-β deposit was visible (dotted arrow). Case characteristics—
Nondemented control: Braak stage = 0, Thal phase = 0; Sporadic 
Alzheimer’s disease: Braak stage = V, Thal phase = 5; Immunohis-
tochemistry—Tau marker: PHF-1, Amyloid-β marker: 6F/3D; Scale 
bar— Macroscopic = 8 mm; Microscopic—100 μm
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aggrecan-containing perineuronal nets are spared from the 
formation of NFTs [14]. Perineuronal nets are assemblies 
of extracellular matrix proteins that are implicated in neu-
roprotection and neural activity regulation [168], thus sug-
gesting a protective mechanism against the development of 
AD pathology [14]. Interestingly, the LC, which is highly 
affected by tau pathology, is devoid of perineuronal nets, and 
its neurons are not contacted by aggrecan-immunoreactive 
axonal coats, indicating a heightened vulnerability to tau-
associated neuronal death [104].

Amyloid‑β in the locus coeruleus

Despite the early implications of p-tau and the LC, Aβ 
plaques do not occur in this region until Thal amyloid phase 
5 [152], where 62% of cases were found to have Aβ depos-
its (Fig. 3). However, studies by Muresan and Muresan 
indicated that LC-derived cell lines are prone to intracel-
lular Aβ accumulation in both the neurites [109] and at the 
axonal terminals [110]. Interestingly, intracellular Aβ accu-
mulation in these cells did not induce apoptosis or necrosis 
[109]. With projection sites from LC neurons innervating 
the entire brain, the group hypothesized that early intracel-
lular accumulation of Aβ at axonal terminals could serve 
as seeds for further Aβ propagation and aggregation [110]. 
Furthermore, recent findings have indicated that Aβ oligom-
ers may be involved in the abnormal phosphorylation of tau 
[170]. Aβ oligomers were shown to bind to an allosteric site 
on α2A-adrenoreceptor, which are present on LC neurons, 
inducing a redirection of NE-induced signaling to GSK-3β 
[170]. GSK-3β induces tau phosphorylation, and therefore, 
activation of this pathway by Aβ oligomers may lead to tau 
hyperphosphorylation and the development of tau-related 
pathology in AD [170]. This could implicate Aβ oligomers 
in the susceptibility of noradrenergic neurons of the LC to 
NFT formation, a hypothesis that needs to be explored in 
the future.

Neuronal cell loss

The AD brain was shown to have marked reductions 
in the size and volume of the LC (Fig. 3). Early stud-
ies reported that the rostrocaudal extent of the nucleus 
shrinks by an average of 6 mm in these patients [49]. More 
recently, using unbiased stereological analysis, reports 
have shown that as the Braak stage increases by one unit, 
the LC volume decreases by 8.4% [154]. Furthermore, 
3T magnetic resonance imaging (MRI) assessment of LC 
signal intensity, which is determined by the intrinsic neu-
romelanin-driven contrast and, thus, may correlate with 
LC neuron population [7], showed a marked decrease in 
the LC signal in AD dementia patients. This finding was 
regardless of clinical presentation and independent of the 

[11C]-Pittsburgh Compound-B-positron emission tomog-
raphy (PiB-PET) Aβ load, which correlated with memory 
performance in typical AD [117]. Although it did not 
reach significance, AD dementia patients with an atypical 
(non-amnestic) clinical presentation were observed to have 
a lower LC signal than typical AD dementia patients [117]. 
It will be important for future studies to further investigate 
whether potential differences exist in atypical AD demen-
tia patients; especially given they are more commonly 
younger at symptom onset [111]. A recent study using 
MRI to examine brainstem volumetric changes indicated 
that participants with neuropsychologically confirmed 
mild cognitive impairment or clinically diagnosed AD 
dementia had smaller LC volumes as compared to cogni-
tively normal individuals [31].

Reduction in LC volume can be reflected by a vast loss 
of noradrenergic neurons or neuronal shrinkage. Stud-
ies have shown that LC neuronal loss can average 63% in 
AD [49] and occurs midway through disease progression 
[154]. Increased neuronal loss is also associated with earlier 
age of onset [169], increased disease duration, and earlier 
age of death [8]. In terms of clinical presentation, 30% of 
LC neurons are lost between progression from cognitively 
unimpaired to amnestic mild cognitive impairment, with an 
additional 25% reduction of LC neurons during progres-
sion to mild/moderate AD [71]. An unbiased stereologi-
cal study using neuropsychological and neuropathologic 
measures to determine AD stage reported that LC neuronal 
loss is detectable at preclinical stages, and that progressive 
loss of LC neurons parallels the progression of the disease 
to severe dementia [3]. Interestingly, Hoogendijk and col-
leagues reported that AD dementia patients exhibit an 82% 
and 39% decrease in the number of large multipolar and 
small fusiform neurons, respectively [64]. This manifested 
in a reduction in the large to small pigmented neuron ratio, 
suggesting that decreased LC volume and neuronal count 
in AD is not entirely due to cell death, but also cell shrink-
age and phenotype loss [64]. Similarly, it was reported that 
LC neurons display characteristic morphological changes 
in the early stages of AD, such as contracted dendrites and 
swollen cell bodies, which could also augment noradrenergic 
dysfunction [153].

It is widely recognized that a vulnerability gradient of 
the LC across the rostrocaudal axis exists in AD and differs 
between neurodegenerative diseases. The rostral portion is 
affected to a greater extent in AD [32], with an 83% loss of 
length, as compared to the middle and caudal parts (23% and 
15%, respectively) [64]. The degree of rostral degeneration 
was shown to correlate with aggressive behavior in patients 
with dementia [98]. With rostral neurons projecting to the 
forebrain and cortical structures, degeneration of this portion 
could explain behavioral changes observed in AD dementia 
patients.
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To reduce the consequences of LC pathology, many com-
pensatory mechanisms are implemented by the remaining 
noradrenergic neurons in order to maintain its essential role 
within the brain. Evidence from postmortem AD and Lewy 
body disease brain studies with significant LC neuronal loss 
indicated that the noradrenergic system undergoes major 
changes that are consistent with compensation [149]. This 
includes increased tyrosine hydroxylase mRNA expression 
and NE synthesis, reduced NE uptake at synaptic terminals 
within the surviving neurons, as well as dendritic sprouting 
into the peri-LC dendritic zone and axonal sprouting in pro-
jection areas [148, 149]. Upregulation of neurotransmitter 
biosynthesis could explain the increase in NE levels in the 
cerebrospinal fluid of AD dementia patients with severe LC 
degeneration, which is also associated with poor cognitive 
function [35, 63, 153].

Locus coeruleus atrophy in Alzheimer’s 
disease

LC neuronal dysfunction in neurodegenerative diseases can 
have a multitude of effects, both locally and at the projec-
tion areas. On a local basis, many cellular changes may 
augment the dysregulation of the noradrenergic system. 
Unbiased stereological methods have indicated that LC 
neurons positive for p-tau have significant reductions in 
synaptic connectivity, as shown by a loss of approximately 
50% of synaptophysin-immunoreactive perineuronal dots 
[2]. Furthermore, microarray analysis using mRNA from 
LC neurons displayed a significant reduction in expression 
of genes associated with neuritic and structural plasticity, 
as well as mitochondrial respiration and redox gene expres-
sion, in patients with amnestic mild cognitive impairment 
and mild/moderate AD as compared to controls [71]. The 
downregulation of such genes was found to be associated 
with cognitive deficits [71]. These findings suggest that LC 
neurons have a lessened functional capacity, especially in 
terms of receiving activating inputs, which can ultimately 
lead to decreased noradrenergic signaling.

Loss of NE concentration throughout the brain was 
reported by many groups. In AD, NE concentrations in the 
mid-temporal cortices are decreased by 31% [98] and up to 
50% only two years after dementia onset [49]. In addition, 
AD dementia patients who died before the age of 79 and 
those with greater loss of LC neurons were found to have a 
NE deficit in the cingulate cortex [8, 131].

LC and NE network dysfunction can also contribute to 
the early behavioral alterations seen in preclinical AD, such 
as sleep disturbances and mood changes. During the awake 
state, LC neurons are highly active, and consistent fluctua-
tions are observed throughout the day for certain waking 
behaviors [4]. The LC firing frequency then decreases during 

slow-wave and non-REM sleep, and is completely dimin-
ished by the REM stage and throughout paradoxical sleep [4, 
156]. Clinical studies have reported a high frequency of AD 
dementia patients exhibiting sleep disturbances [159], which 
is associated with disease severity [102, 130] that could be 
in part due to loss of LC neurons. In addition to sleep defi-
cits, it is widely recognized that noradrenergic dysfunction 
can lead to the development of mood disorders [126]. NE 
upregulation was shown to have antidepressant effects in 
patients with major depression, and with depression being 
an early symptom of AD dementia, it is possible that early 
noradrenergic de-innervation could augment this behavioral 
phenotype [44, 126, 156, 174].

Diminished signaling to projection areas can result in 
varied phenotypes. In AD, although α2-adrenoreceptor 
expression is increased in the hippocampus at Braak stage 
I, its expression is reduced at Braak stage IV [2]. Tyrosine 
hydroxylase expression also declines with age and disease 
progression, especially within the hippocampus and amyg-
dala at Braak stages III and IV [2]. A study using APP/PS1 
mice crossbred with dopamine β-hydroxylase (–/–) mice, 
which resulted in a mouse with reduced NE production, 
showed that depletion of NE impaired long-term synaptic 
plasticity in the hippocampus, leading to spatial memory 
deficits [56]. NE deficiency also modified the expression 
of plasticity-related synaptosomal subunit proteins, such as 
CAMKII and NMDAR [56]. Similarly, inducing LC degen-
eration using N-(2-chloroethyl)-N-ethyl-bromo-benzylamine 
(DSP-4) in an APP transgenic mouse reduced cerebral glu-
cose metabolism, acetylcholinesterase activity and neuronal 
integrity, leading to increased memory deficits [61]. LC 
degeneration also led to increased levels of inducible nitric 
oxide synthase (iNOS) in the projection areas, resulting 
in augmented neuronal loss in the frontal cortex and hip-
pocampus [61]. Furthermore, lesioning of the LC in a P301S 
mouse model of tauopathy resulted in spatial and associative 
memory deficits, as well as exacerbated hippocampal tau 
burden and increased lethality, suggesting a direct role of LC 
degeneration in potentiating cognitive deficits and inducing 
AD-related pathology and mortality [19].

Research has shown, both in human [8, 92, 157] and 
animal studies [61, 67], that loss of LC neurons leads to 
increased Aβ deposition. In human studies, neuronal loss 
across the rostrocaudal axis of the LC was shown to topo-
graphically correspond to the distribution of Aβ plaques 
within the cerebral cortex of AD brains [92]. Post-mortem 
analysis have shown that loss of neurons from the ros-
tral, middle and caudal portions of the LC correlates with 
increased Aβ plaque burden in the frontal cortex, temporal 
cortex and occipital cortex, respectively [92].

In animal models, DSP-4-treated mice display a five-
fold increase in Aβ plaque burden and increased aver-
age plaque size [67]. Furthermore, LC-lesioned animals 
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exhibit increased levels of APP C-terminal cleavage frag-
ments, as well as decreased expression and activity of the 
Aβ-degrading enzyme neprilysin, both of which correlated 
with augmented Aβ pathology [67]. Similarly, other studies 
using LC-lesioned rats revealed 30% and 20% increases in 
the deposition of Aβ in the cortex and hippocampus, respec-
tively [72]. Interestingly, mice with diminished abilities to 
produce NE do not exhibit exacerbated Aβ deposition, sug-
gesting that LC degeneration itself causes the increase in Aβ 
levels, and it is probable that such mechanisms are independ-
ent of NE signaling, specifically [56].

With the noradrenergic system highly innervating the cer-
ebrovasculature, it is no surprise that LC degeneration can 
have a major effect on its integrity. Loss of the neural plexus 
originating from the LC results in increased immunologic 
infiltration of the brain parenchyma microvasculature and 
thickening of capillary walls, subsequently leading to the 
development of microangiopathy and alterations to normal 
blood–brain barrier functions, a common phenotype of AD 
[137]. In animal models, lesioning of the LC resulted in 
vast Aβ deposition within the prefrontal cortex microves-
sels, indicating the neuropathologic onset of cerebral amy-
loid angiopathy [72]. In addition, LC-lesioned rats exhib-
ited increased albumin staining, which suggests decreased 
blood–brain barrier integrity and increased microvasculature 
permeability and leakage [72]. Moreover, loss of LC–NE 
signaling also resulted in significant compensatory remod-
eling of the arterioles in these animals, as displayed by a 
45% increase in wall-to-lumen ratio [72]. Together, these 
findings suggest that LC degeneration plays a key role in the 
dysregulation of the cerebrovascular system, as seen in AD.

Many studies have suggested that the dysfunction of the 
noradrenergic system potentiates the neurotoxic proinflam-
matory condition seen in AD. The presence of NFTs in the 
LC is associated with the upregulation of inflammatory 
markers, as well as increased microglia infiltration into the 
LC [2]. LC-lesioned P301S mice exhibit increased activa-
tion of microglia and astrocytes in the hippocampus, which 
may contribute to hippocampal degeneration in this model 
[19]. LC cell loss also resulted in amplified microglial and 
astroglial activation in the frontal cortex and hippocampus 
in mutant APP mouse models [67] and, thus, the dysregula-
tion of the LC–NE system may play a major role in disease-
related inflammation.

Studies have indicated that LC degeneration exacerbates 
the proinflammatory response to Aβ deposition in the cor-
tex sooner, more robustly, and with longer duration than 
in control animals [58]. Intriguingly, Aβ injection induced 
expression of iNOS in microglia in control animals, as com-
pared to LC-lesioned animals whose iNOS expression was 
localized to neurons, which is in parallel to AD brains [58]. 
The proinflammatory condition was attenuated by injection 
of either NE or a β-adrenergic receptor agonist, suggesting 

that both NE depletion and LC degeneration enhance neuro-
inflammation and neuronal cell death in AD [58]. Similarly, 
research shows that NE protects cortical neurons from cyto-
toxic microglia by decreasing NOS2 production, leading to 
reduced cell death [88]. Further studies by the same group 
revealed that LC lesioning leads to increased glial inflam-
mation and Aβ deposition in LC projection areas, including 
the hippocampus and frontal cortex; whereas, non-projection 
areas such as the paraventricular thalamus remain unaffected 
[61]. Findings suggest that increased Aβ deposition follow-
ing LC degeneration may be in part due to impaired recruit-
ment of microglia to Aβ plaque sites, as well as diminished 
capabilities of the glial cells to phagocytose Aβ [60]. These 
findings suggest LC degeneration contributes substantially 
to the development of AD pathology and disease onset.

Neuronal vulnerability in the locus coeruleus

The extent to which the LC is affected in AD suggests that 
its neurons are especially vulnerable to neuropathologic 
changes [167]. One hypothesis that could confer this sus-
ceptibility is the cytoarchitecture of these cells, as LC neu-
rons have long and thin axons that have poor or incomplete 
myelination [153]. Such a characteristic forces the cell to 
increase its energy output to perform efficient action poten-
tials that lead to increased cellular oxidative stress, and gaps 
in the myelin sheath allow greater exposure to environmental 
toxins [153].

Research has shown that the LC innervates the vast 
majority of the brain microvasculature, with the estimation 
that, on average, each LC neuron is responsible for innervat-
ing 20 m of capillaries, a coverage that surpasses any other 
neuron [118]. The exposure of LC neurons to the circula-
tory system of the brain suggests that they can readily take 
up environmental toxins from the blood, and the extent to 
which this occurs can be increased when blood–brain bar-
rier integrity is lost, such as in AD [73, 135]. Furthermore, 
the LC is in close proximity to the fourth ventricle, which 
enhances its exposure to the toxins present in the cerebrospi-
nal fluid [107]. Research has shown that the LC is sensitive 
to the presence of environmental toxins, and increased levels 
of heavy metals, such as mercury, bismuth and silver, were 
reported in the LC neurons of AD brains [41, 119]. Studies 
suggest that accumulation of heavy metals may lead to the 
development of AD pathology within the LC [141]. Interest-
ingly, AD brains have approximately the same proportion 
of LC neurons that contain heavy metals (19%) as those 
that contain p-tau (21%) [119], suggesting that insult to the 
LC via the accumulation of environmental toxins plays an 
important role in its degeneration and dysfunction.

Research has suggested that molecular mechanisms may 
contribute to the development of early tau pathology in 
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selectively vulnerable LC neurons. 3,4-Dihydroxyphenylg-
lycolaldehyde, a metabolic product of NE that is produced 
exclusively in noradrenergic neurons, was shown to activate 
asparagine endopeptidase cleavage of tau into aggregation- 
and propagation-prone forms [69]. 3,4-Dihydroxyphenylg-
lycolaldehyde-induced tau aggregation resulted in LC neu-
rotoxicity, propagation of tau pathology to interconnected 
brain regions and cognitive impairment in an AD mouse 
model [69]. Furthermore, activation of asparagine endo-
peptidase and subsequent tau cleavage required the presence 
of NE [69], suggesting that production and ultimately the 
metabolism of NE by noradrenergic neurons could potenti-
ate the selective vulnerability of the LC to neuropathologic 
changes.

Another factor that may exacerbate the vulnerability 
of LC neurons is their high bioenergetic need [167]. To 
conserve their essential physiological function within the 
brain, LC neurons sustain their spiking rate by exhibit-
ing autonomous activity in the absence of glutamate and 
γ-aminobutyric acid (GABA) inputs [133]. This is achieved 
through activity-dependent Ca2+ entry, which upon activa-
tion, leads to the induction of mitochondrial oxidative stress 
and results in increased LC neuronal vulnerability [133].

Epidemiological studies have also identified a link 
between NE availability and an increased risk of devel-
oping AD dementia. Polymorphisms in the dopamine 
β-hydroxylase gene, which influences NE availability in the 
brain, cause a significant decrease in NE concentration and 
individuals carrying such polymorphism exhibit a twofold 
increased risk of developing AD dementia [24].

The role of locus coeruleus 
in neuroprotection

NE was shown to have an essential role in neuroprotec-
tion by modulating inflammation, stress, and Aβ-mediated 
neurotoxicity [26, 82, 88, 162]. To exert its neuroprotec-
tive effect, NE binds to β1- and β2-adrenergic receptors to 
activate downstream signaling pathways involving cAMP 
response element-binding protein, subsequently leading to 
the expression of endogenous nerve growth factor (NGF) 
and BDNF [26]. Interestingly, NGF was found to inhibit 
tau accumulation and phosphorylation in rat hippocampal 
neurons by activating cAMP-dependent pathways [172]. Sig-
nificant loss of NE levels following LC degeneration can, 
therefore, exacerbate many mechanisms involved in inducing 
neuronal death and subsequent brain atrophy.

Several studies have shown that many of the neuroprotec-
tive mechanisms of NE are implemented by BDNF, which 
plays a major role in influencing axonal branching, out-
growth and synaptic plasticity [65, 84]. Accumulating evi-
dence suggests that the Trk family of tyrosine protein kinase 

receptors, namely TrkB, is activated by BDNF to mediate its 
biological function [6]. This is supported by findings which 
show that the neuroprotective effects of NE are inhibited by 
the Trk receptor antagonist K252a [82].

The involvement of the noradrenergic system in the 
production of BDNF could follow the neurotrophic fac-
tor hypothesis, which states that such factors are produced 
and released by neurons to modulate differentiation and 
survival of the neurons that they innervate [39]. In animal 
models, LC neurons were shown to produce a large amount 
of BDNF [18], which is transported from the cell soma into 
the noradrenergic projection terminals that widely innervate 
many regions of the brain [39]. Furthermore, the upregula-
tion of BDNF in noradrenergic neurons leads to increased 
activation of TrkB throughout the innervated neocortex, 
which results in long-term cortical morphologic alterations 
[39]. Interestingly, exogenous BDNF infusion induced a 
substantial increase in noradrenergic axon density within 
the frontal cortex of aged rats, which is not recapitulated 
in young or middle-aged animals, suggesting that BDNF is 
essential for maintaining noradrenergic cells within the aged 
brain [97]. Similarly, exogenous BDNF increased multiple-
threshold antidromic response in rat LC neurons, indicat-
ing that BDNF stimulates remodeling of presynaptic axon 
terminals, leading to the functional changes seen within the 
projection areas of the aging rat brain [114].

Despite their high expression in adult rodent LC neu-
rons, it was reported that BDNF and TrkB expression is 
very low in adult human LC neurons [151]. However, NE-
induced expression of BDNF and TrkB, or lack of, may 
still be of importance in other brain regions innervated by 
the noradrenergic system. In terms of neurodegenerative 
disease, mounting evidence has indicated that the expres-
sion of BDNF and TrkB is downregulated in the AD brain 
[46], especially in hippocampal and neocortical areas that 
are highly innervated by noradrenergic LC neurons [140]. 
Likewise, TrkB expression is markedly downregulated in the 
cholinergic neurons of the nbM throughout AD progression, 
indicating a fundamental function in disease development 
[52]. Intriguingly, BDNF immunoreactivity was found in Aβ 
plaques and NFT-bearing neurons [108] and stimulation of 
the BDNF/TrkB pathway in mouse cells caused significant 
dephosphorylation of tau [34], suggesting a neuroprotective 
role in AD.

Norepinephrine protects against Aβ‑induced 
neurotoxicity

Recent studies support a significant role of NE in preventing 
Aβ-induced neurotoxicity. NE was shown to protect human 
neuroteratocarcinoma cultures from Aβ1-42 and Aβ25-35 tox-
icity by preventing increases in intracellular reactive oxy-
gen species, mitochondrial membrane depolarization and 
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caspase activation [26]. Similar results were replicated in 
human SK-N-SH cells [171].

In animal models, exposing primary rat cortical neurons 
to oligomeric Aβ1-42 peptide resulted in cellular damage, 
which can be moderately reduced by NE co-treatment [89]. 
NE incubation upregulated expression of γ-glutamylcysteine 
ligase but downregulated glutathione peroxidase expression, 
leading to increased levels of neuronal glutathione [89]. As 
glutathione plays a major role in neuroprotection by reduc-
ing oxidative damage [43], increasing glutathione produc-
tion is a central mechanism by which NE exerts its protective 
action against Aβ-induced neuronal death.

Other mechanisms by which NE may enact its neuropro-
tective effects include modulating the expression of certain 
chemokines by astrocytes. By binding to β-adrenergic recep-
tors and initiating the downstream effects of cAMP signal-
ing, NE induced a significant increase in chemokine CCL2 
expression, which is observed at the level of mRNA and 
protein [90]. Astrocyte-derived CCL2 was found to prevent 
neuronal damage induced by glutamate, which is found to 
be in high concentrations within the AD brain, thus indicat-
ing that the protective actions of NE are mediated partially 
through its activation of astrocytic CCL2 expression [90].

Using dopaminergic neurons in vitro to assess the neu-
roprotective actions of NE, Troadec and colleagues found 
that low concentrations of the neurotransmitter promoted 
long-term survival and function of these cells [162]. The 
protective mechanism employed was similar to the effect 
induced by a caspase-8 inhibitor, suggesting that NE may 
rescue dopaminergic neurons from cell death by inhibiting 
the activation of apoptosis [162]. Furthermore, NE treatment 
of dopaminergic neurons resulted in a significant decrease in 
intracellular reactive oxygen species, indicating that NE can 
exhibit antioxidant attributes, perhaps through its diphenolic 
structure [162]. Similar results were replicated in cholinergic 
neurons [160]. These studies provide mechanistic evidence 
to support the role of LC degeneration in dopaminergic and 
cholinergic deficits seen in neurodegenerative diseases.

The role of somatostatin in neuroprotection

LC neurons express high levels of somatostatin receptors, 
the binding partner of somatostatin [1]. Somatostatin is a 
regulatory peptide that is widely expressed throughout the 
brain and exhibits many different functions [36]. Somatosta-
tin immunoreactivity was observed within Aβ plaques [105] 
and was shown to modulate Aβ metabolism by activating 
proteolytic degradation [132]. Interestingly, somatostatin is 
the most consistently reduced neuropeptide in the brain and 
cerebrospinal fluid of AD dementia patients [15], and soma-
tostatin receptor expression was shown to be downregulated 
in the frontal and temporal cortices of AD brains [75].

Somatostatin expression was found to be greatly reduced 
in the temporal cortex of AD brains in association with aber-
rant clustering and bulging of tyrosine hydroxylase-positive 
afferents [1]. Decreasing somatostatin receptor 2 mRNA 
expression in the LC was observed from Braak stages III/
IV and throughout the progression of the disease [1]. Fol-
lowing the generation of animal models, somatostatin recep-
tor knockout mice were found to exhibit selective loss of 
noradrenergic innervation on a global scale [1]. As expres-
sion levels of other major LC transcripts, such as tyrosine 
hydroxylase, dopamine β-hydroxylase and galanin, remain 
unchanged, these findings suggest that somatostatin recep-
tor loss plays a major role in LC neuronal vulnerability and 
contributes to dysfunction of the noradrenergic system as 
a whole.

Neuropeptides expressed by the locus coeruleus 
exhibit neuroprotective effects

Galanin is one of the most abundant neuropeptides in the 
brain, is highly expressed by LC neurons, and was shown to 
have implications in the development of neurodegenerative 
diseases. In AD, studies have observed that galanin expres-
sion is preserved within the remaining neurons of the LC, 
suggesting a neuroprotective effect [101]. Furthermore, 
galanin-containing fibers are found to be in close proximity 
to cholinergic basal forebrain neurons, and this innervation 
is enriched in AD brains, which may suggest neurodegen-
erative compensation [9]. In animal models, loss of galanin 
function resulted in vast cholinergic degeneration in the 
medial septum and basal forebrain and cognitive deficits 
[115]. Galanin overexpression and activation of its receptor 
using a high-affinity agonist reduced chemically-induced cell 
death in the hippocampus of transgenic animals [33]. This 
provides evidence suggestive of a major role of galanin in 
the neuroprotective effects of the LC.

Neuromelanin: toxic or protective?

Neuromelanin, a pigment commonly used to identify noradr-
energic neurons, slowly accumulates in the LC with age, 
followed by a significant decrease within individuals aged 
60 and older [139]. Intriguingly, research has shown that 
neuromelanin may play a neuroprotective and/or a neuro-
toxic role in AD progression [175]. In this ill-fated rescue, 
the protective mechanism set in place is hypothesized to 
initiate a cascade of events that ultimately leads to a toxic 
state that overwhelms the neuron. In a neuroprotective 
sense, neuromelanin chelates heavy metals such as mer-
cury, cadmium, lead and iron, and diminishes their toxic 
nature [175]. However, the accumulation of heavy metals in 
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neuromelanin-containing organelles can result in a neuro-
degenerative response by which the neurons die and release 
the toxins into the extracellular space, activating microglia 
and inducing neurotoxic inflammation [175].

Possible therapy implication

To compensate for the significant loss of NE following LC 
de-innervation, several studies have demonstrated that cer-
tain therapies could partially reverse the dysregulation of the 
noradrenergic system, thus minimizing the neurodegenera-
tive process [120, 161] (Table 2). Such treatments could be 
a promising therapy for not only AD, but also other neu-
rodegenerative diseases where loss of NE and LC atrophy 
is observed, such as Parkinson’s disease and Lewy body 
dementia.

l‑DOPS (droxidopa)

l-3,4-Dihydroxyphenylserine (l-DOPS), a synthetic cat-
echolamine that is a precursor of NE, can be used to directly 
increase levels of NE [41]. l-DOPS can be administered 
orally and can readily permeate the blood–brain barrier, 
where it is converted by carboxylation to NE [54] (Fig. 1) 
and was shown to effectively treat dopamine β-hydroxylase 
deficiency and neurogenic orthostatic hypotension [41].

In a 5xFAD transgenic mouse model, co-treatment of 
l-DOPS and the NE reuptake inhibitor atomoxetine was 
found to increase NE levels in the brain, as well as improve 
cognitive functions, reduce neuronal cell death, decrease 
astrocyte activation and increase BDNF and NGF levels 
in the cortex and hippocampus [68]. In addition, l-DOPS 
and atomoxetine co-treatment upregulated the expression 
of neprilysin, leading to an increase of Aβ degradation and, 

thus, a reduction in Aβ plaque burden [68]. l-DOPS treat-
ment of NE-depleted APP/PS1 mice also partially rescued 
spatial memory impairment [56], as well as restored micro-
glial migration and Aβ phagocytosis [60]. Together, these 
findings suggest that l-DOPS is an encouraging therapeutic 
method in the treatment of AD.

Norepinephrine transporter inhibitors

The NE transporter, located in the plasma membrane of 
noradrenergic neurons, facilitates the removal of excess NE 
from the synaptic cleft and is, thus, the primary mechanism 
of noradrenergic signaling inactivation [173]. Targeting the 
NE transporter, which in turn inhibits the reuptake of NE 
and increases synaptic NE concentration, was shown to alle-
viate the symptoms of neuropsychiatric disorders such as 
depression and attention deficit hyperactivity disorder [173]. 
Therefore, NE transporter inhibitors such as atomoxetine 
are routinely used as treatment strategies in these diseases. 
An ongoing clinical trial (ClinicalTrials.gov Identifier: 
NCT01522404) is evaluating the efficacy of atomoxetine in 
participants diagnosed with mild cognitive impairment, to 
reverse the loss of NE in the brain and slow neurodegenera-
tion. As atomoxetine is already an FDA-approved drug that 
is safe in the elderly, this is a promising therapeutic measure 
for treating LC–NE dysregulation in AD.

7,8‑Dihydroxyflavone

BDNF plays an important role in exhibiting the neuropro-
tective actions of NE. Therefore, increasing brain levels of 
BDNF could act as a therapeutic mechanism in AD. When 
given orally, BDNF is degraded by digestive enzymes [30]. 
When given systemically, BDNF administration is hindered 
by its inability to penetrate the blood–brain barrier and its 

Table 2   Possible therapeutic interventions

LC locus coeruleus, NE norepinephrine, BDNF brain-derived neurotrophic factor, GABA γ-aminobutyric acid

References in order of appearance Therapeutic method Target Mechanism of action

Feinstein et al. 2016 [41]; Hammerschmidt et al. 2013 
[56]; Heneka et al. 2010 [60]; Kalinin et al. 2012 [68]

l-DOPS (droxidopa) DOPA decarboxylase Increase levels of NE

Zhou 2004 [173]; ClinicalTrials.gov, NCT01522404 Atomoxetine NE transporter Increase levels of NE at synapse
Devi et al. 2012 [28]; Du and Hill, 2015 [30]; Liu et al. 

2010 [81]; Zhang et al. 2014 [171]
7,8-Dihydroxyflavone TrkB receptor Increase levels of BDNF

Braun et al. 2014 [13]; Ginovart et al. 1996 [51]; Labatut 
et al. 1988 [77]; Takeda et al. 1984 [150]; Zyzek et al. 
1990 [176]

Vindeburnol Unknown Increase NE turnover

Charalampopoulos et al. 2005 [22]; Singh et al. 2012 
[142]; Sun et al. 2012 [144]; Wang et al. 2010 [166]

Allopregnanolone GABAA receptor Increase levels of NE

Torres-Sanchez et al. 2018 [158] Deep brain stimulation Multiple brain regions Increase NE release
Chang et al. 2018 [21]; Follesa et al. 2007 [42] Vagus nerve stimulation Vagus nerve Increase levels of NE and BDNF
Rorabaugh et al. 2017 [129] Chemogenetics LC neurons Rescue impaired reversal learning
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incredibly short half-life [30]. Therefore, there is a need for 
alternative drugs that can exhibit the same effects as BDNF. 
Recently, 7,8-Dihydroxyflavone (DHF), a small molecular 
weight BDNF mimetic, was shown to successfully permeate 
the blood–brain barrier, as well as displaying heightened 
stability [30].

DHF was shown to effectively induce TrkB phosphoryla-
tion and activation [81] and in a 5xFAD mouse model of 
AD, administration of DHF for 10 days restored TrkB sign-
aling, reduced Aβ burden, and improved cognitive deficits 
[28]. Using the same mouse model, chronic administration 
of DHF was found to activate TrkB signaling and prevent Aβ 
accumulation, leading to restoration of hippocampal synapse 
number and synaptic plasticity, as well as amending memory 
deficits [171]. Further, in vitro research indicated DHF treat-
ment of primary neurons protected them from Aβ-induced 
cell death, as well as promoting synaptogenesis and den-
dritic branching [171]. Although more research is needed 
to translate these results to the clinic due to the difference 
in BDNF levels between humans and rodents, these find-
ings suggest that DHF could be a possible oral therapeutic 
measure for treating AD.

Vindeburnol and allopregnanolone

Research has indicated that  a select amount of drugs can 
selectively increase the number of LC neurons, as well as 
improve their physiological function.

Vindeburnol (also known as RU24722 and BC-19) treat-
ment in animal models increased NE turnover [150], as well 
as upregulated tyrosine hydroxylase protein expression and 
its subsequent activity [77]. In the LC, cell count, volume 
and tyrosine hydroxylase concentration was increased fol-
lowing administration of vindeburnol [51, 176]. In a 5xFAD 
AD mouse model, vindeburnol treatment induced neuronal 
maturation in the LC, restored BDNF levels in the hip-
pocampus, and reduced Aβ deposition throughout the brain 
[13], suggesting that this treatment influences both the LC 
itself and its noradrenergic projection sites. Interestingly, 
in  vitro studies indicated that vindeburnol upregulates 
BDNF expression selectively in astrocytes, suggesting that 
these cells are the drug’s direct target [13].

Allopregnanolone, a neurosteroid that acts as a positive 
allosteric modulator of the GABAA receptor, was shown 
to increase NE and dopamine levels and upregulate the 
expression of tyrosine hydroxylase in vitro [22]. In addition, 
although studies of allopregnanolone have not elucidated 
its effects on LC degeneration, animal studies have shown 
that it is able to induce neurogenesis [166], in addition to 
promoting regeneration of dopaminergic neurons in the sub-
stantia nigra [144] and restoring hippocampal-dependent 
learning and cognitive deficits [142, 166].

Brain stimulation technologies

Pilot studies have suggested that brain stimulation tech-
nologies, which are used to modulate cognitive function in 
neuropsychiatric disorders, could help ameliorate cognitive 
deficits in AD.

In animal studies, deep brain stimulation was reported to 
increase NE release in the area of stimulation [158]. Deep 
brain stimulation of the ventromedial prefrontal cortex was 
shown to increase tyrosine hydroxylase expression in the 
LC, as well as increase LC neuron activity [158]. Addition-
ally, vagus nerve stimulation was shown to lessen cogni-
tive deficits in AD dementia patients [21]. In a rat model, 
acute vagus nerve stimulation was shown to increase NE 
concentration, as well as increase BDNF expression in the 
hippocampus and cerebral cortex [42]. As it projects to the 
LC, it is possible that stimulation of the vagus nerve could 
directly activate the LC, leading to increased NE at projec-
tion sites. In addition, stimulation of the LC using chemo-
genetic approaches could also be an important therapeutic 
strategy in AD. In a TgF344-AD rat model, impaired rever-
sal learning was rescued by chemogenetic LC activation 
[129]. Thus, brain stimulation technologies could be used 
as essential therapeutic strategies in alleviating the cognitive 
effects of LC–NE deinnervation in AD.

Conclusion

In conclusion, research has shown that LC degeneration and 
subsequent loss of the noradrenergic system play a major 
role in AD pathogenesis. Lack of noradrenergic innerva-
tion leads to a multitude of effects, including neurotoxic 
inflammation, increased neuropathologic burden and vast 
neuronal death, especially in the cortical projection areas 
of the LC. This de-innervation can enhance the progres-
sion of cognitive deficits and memory impairment in AD. 
LC signal intensity, as assessed by MRI, could be used as 
an early biomarker for AD. Furthermore, the implementa-
tion of therapeutics such as l-DOPS and brain stimulation 
technologies could alleviate the neuropathologic processes 
and symptoms of this disease. Since the LC-NE system is 
a key player in modulating neuroprotection and regulating 
neuroinflammation, and its degeneration plays an essential 
role in the development of AD, a better understanding of the 
mechanistic link between LC loss and onset of AD could be 
vital for the diagnosis and therapeutic efforts against disease 
progression.
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