Skip to main content
. 2020 Nov 5;31(5):3306–3314. doi: 10.1007/s00330-020-07439-8

Table 3.

Performance of prediction models with and without biological tumor markers

Model AIC R2 Brier AUC DS Int Slope
M1 94.7 0.140 0.158 0.657 0.083 0.086 0.817
M2 97.4 0.103 0.163 0.654 0.058 0.047 0.826
M3 92.3 0.173 0.151 0.685 0.105 0.035 0.895
M4 = M1 + HER2 90.9 0.133 0.153 0.700 0.075 0.041 0.894
M5 = M2 + HER2 92.3 0.115 0.155 0.694 0.063 0.033 0.880
M6 = M3 + HER2 89.1 0.162 0.147 0.700 0.094 0.030 0.894
M7 = M1 + CD44 45.1 0.127 0.163 0.739 0.046 0.072 0.758
M8 = M2 + CD44 47.3 0.087 0.174 0.748 0.017 0.064 0.701
M9 = M3 + CD44 46.5 0.114 0.175 0.737 0.016 0.080 0.643
M10 = M1 + HER2 + CD44 40.5 0.221 0.146 0.759 0.106 0.069 0.763
M11 = M2 + HER2 + CD44 41.2 0.270 0.135 0.857 0.134 0.036 0.834
M12 = M3 + HER2 + CD44 42.0 0.225 0.150 0.816 0.073 0.060 0.724

Abbreviations: M1, clinical reference model; M2, radiomic reference model; M3, clinico-radiomic reference model; HER2, human epidermal growth factor receptor 2; CD44, cluster of differentiation 44; AIC, Akaike Information Criterion; R2, Nagelkerke R2; Brier, Brier score; AUC, area under the receiver operating characteristic; DS, discrimination slope; Int, intercept