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Abstract

INTRODUCTION: The study of Alzheimer’s disease (AD) has revealed biological pathways with 

implications for disease neuropathology and pathophysiology. Pathway-level effects may be 

mediated by covariates such as age or sex.

METHODS: Gene set enrichment methods test hypotheses at the level of biological pathways. We 

introduce a method for quantifying gene set enrichment ( gsLRT ), which accounts for covariate 

effects. We test for age and sex interactions with protein expression in the context of AD and 

compare results between human and mouse species.

RESULTS: Gene sets identified by gsLRT are validated by previous AD studies. Differences 

between gsLRT results on mouse and human datasets are observed.

DISCUSSION: Characterizing biological pathways involved in AD builds on important work 

involving single gene drivers. Our method highlights commonalities and differences between 

human AD and mouse models, which may inform the development of higher fidelity models for 

the study of AD.
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1 Background

Strategies for translational research in Alzheimers disease have moved from the 

characterization of individual variants (SNPs, metabolites, proteins) to the understanding of 

larger-scale genomic pathways that form the molecular basis of the disease [1–6]. A 

pathway model of late-onset Alzheimers Disease (LOAD) must integrate numerous genetic, 

clinical, and environmental factors to more accurately represent the etiology of human 

LOAD. Relevant factors include: (1) genetic risk factors, e.g. APOE genotype or sex, (2) 

environmental factors including education level and diet, (3) heterogeneity of biological-

behavioral symptoms, and (4) prolonged degenerative processes with pathophysiology 

beginning years before the onset of detectable symptoms [7] and with accompanying 

adaptive changes. The motivation for this study is to propose a pathway-based statistical 

approach to AD that accounts for these factors while informing the development and 

validation of clinically-relevant mouse models for late-onset or sporadic Alzheimers disease 

(LOAD).

The use of model systems to identify, describe, and design treatments for human diseases 

has expanded dramatically over the past 30 years. This increase has kept pace with the 

technological advancements that have permitted a wide range of advanced approaches to the 

study of human disease mechanisms. While critical to improving human health, the use of 

model systems comes with many assumptions. Of primary importance is the assumption that 

the model system’s pathophysiological pathways are either identical or closely related to 

those of humans. This assumption leads to the belief that experimental phenomena observed 

in an animal model, such as a mouse, will forecast similar phenomena in humans. However, 

clear exceptions exist, which impact the translation of animal model data to humans with 

disease. These exceptions may require re-evaluation of data generated in mouse studies, 

redesigning of mouse models, or the use of statistical methodologies that permit evaluation 

of the differences. In this study, we have developed and tested such a methodology, which 

permits pathway-level evaluation of differences between mouse and human responses to 

normal and disease conditions.

Our method uses gene-level data (proteomics, transcriptomics, imaging) collected from 

human or mouse models to generate significance scores at the level of biological pathways. 

Informally, the significance scores report the novelty of the observed experimental outcome 

under the assumption that there is no difference between normal and disease states. 

Moreover, our approach generates these scores while accounting for age-specific, sex-

specific and APOE genotype-specific differences in the human subjects or model systems. It 

can also test for the significance of the relationship between pathway-level interactions with 

each of these factors and presence of AD. We validate this method using human proteomic 

data on Alzheimers disease development and test for interactions with the factors of age, sex 

and APOE genotype. By applying the same approach to CVN-mouse proteomics data, we 

are able to compare the pathway significance scores from mouse models with a human-like 

immune background to those obtained from human Alzheimers patients.
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2 Methods

The driver of our pathway-based approach to understanding LOAD in humans and mice is a 

novel approach to gene set enrichment. Gene set enrichment methods are popular tools for 

addressing the challenge of finding biologically relevant relationships between sample 

phenotypes and underlying genomic factors. These methods condense gene-level statistics 

into gene set scores, each of which corresponds to a group of genes with a common 

annotation. Gene set annotations may be derived from experiment, computation, or 

literature-search, though the gene set annotations considered in this article are based on 

membership to signaling pathways.

Many gene set methods assume that the only piece of information known about a sample is 

its class label, for instance normal versus AD. However, experimental datasets often include 

additional sample information, which may be relevant to the particular biological 

mechanism through which a complex diesease manifests. Motivated by documented age- 

and sex-driven differences in Alzheimer’s Disease (AD) presentation, we developed a 

framework for gene set enrichment that takes this information into account. Unlike the 

method proposed by [8] (ROAST), which relies on the assumption of normally-distributed 

gene expression profiles, our method (gsLRT) generates likelihood ratio statistics from a pair 

of nested logistic regression models. The procedure is flexible enough to test for a wide 

number of complicated gene set hypotheses while adjusting for variation explained by the 

covariates included in both models.

2.1 Enrichment statistics and p-values

Existing methods that use linear models for gene set enrichment treat each gene expression 

profile as the response variable in a linear model [8, 9]. They assume that each gene 

expression profile is normally distributed within categories determined by the diagnosis and 

experimental design. We remove the assumption of normality by instead treating the 

diagnosis as the response variable for each of our models. Specifically, we assume a matrix 

G ∈ ℝn × m of measurement values (e.g. mRNA expression) for m genes and n samples, a 

matrix X ∈ ℝn × d of covariates for the samples, and a binary vector y ∈ ℝn × 1, which codes 

for the diagnosis (e.g. cognitively normal or AD) for each sample. For each gene j = 1,…,m, 

we fit the nested models

ℳ0: log ℙ yi = 1
1 − ℙ yi = 1 = xiβj

(1)

ℳ1: log ℙ yi = 1
1 − ℙ yi = 1 = xiβj + gi

jαj (2)

and find the maximum likelihood estimators of the model coefficients βℳ0
j

, βℳ1
j

, αℳ1
j .

We define statistics measuring the additional explanatory power of gene measurement 

profile gj over that of the fixed covariate matrix X as a difference in model log-likelihoods 

operating at the gene level, which we define as
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Λj = 2 ℓ βℳ1
j , αℳ1

j − ℓ βℳ0
j

(3)

where ℓ(·) denotes the log-likelihood of the logistic model. We define enrichment score for 

gene set γk as

ESk = ∑
j ∈ γk

Λj
(4)

Obtaining appropriate p-values for enrichment scores has been a matter of intense discussion 

in the literature on gene set testing [10–13]. Most of the discussion has centered around the 

choice of null hypothesis concerning the relationship among genes. While the assumption 

that the gene-level statistics Λj are independent leads to a computationally efficient testing 

procedure, correlation among gene expression profiles in a gene set—possibly due to a 

violation of independence—will give the corresponding enrichment statistic higher variance, 

producing overly optimistic levels of significance (Figure 1). We choose to report more 

conservative p-values obtained by permutation sampling, which is computationally 

expensive. In practice, one may want to use the independence assumption on larger data sets 

when computational speed and ranking of gene sets are priorities over type I error control.

The enrichment scores produced by gsLRT quantify the degree to which including the terms 

in ℳ1 alters the model log-likelihood. They capture how much the inclusion of effects from 

the genes within a gene set improves the ability to discriminate between diagnoses. They are 

directionless in the sense that the likelihood ratio test will reject when a significant 

improvement in the model likelihood is made, regardless of whether the expression profiles 

within a gene set are positively or negatively associated with the diagnosis.

The permutation p-values report a significance level with respect to the second null 

hypothesis described by [10], or equivalently the focused testing described by [8]. They 

represent the significance of the cumulative improvement in model log-likelihood with 

respect to the genes in a gene set without reference to other genes in the full collection. As 

such, permutation p-values from a focused test are particularly appropriate for assigning 

significance to gene sets when many genes in a dataset have a putative association with the 

diagnosis of interest, as is the case in our Alzheimer’s study. Gene sets with low permutation 

p-values are unlikely to contain only genes whose measurement levels have no association to 

the diagnosis.

2.2 Description of datasets used

After conducting simulation benchmarks (Appendix B), we applied gsLRT to the ADNI 

Biomarkers Consortium CSF Proteomics MRM data set. These data were obtained from the 

Alzheimers Disease Neuroimaging Initiative (ADNI1) database (adni.loni.usc.edu). The 

ADNI was launched in 2003 as a publicprivate partnership, led by Principal Investigator 

Michael W. Weiner, MD. The primary goal of ADNI has been to test whether serial 

magnetic resonance imaging (MRI), positron emission tomography (PET), other biological 

1ClinicalTrials.gov identifier, NCT00106899
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markers, and clinical and neuropsychological assessment can be combined to measure the 

progression of mild cognitive impairment (MCI) and early Alzheimers disease (AD). The 

ADNI study was conducted at multiple sites within North America with retrospective 

assessment of imaging (MRI and FDG-PET) and biomarkers from cognitively normal 

controls (CN), MCI subjects, and subjects with AD. MCI subjects defined by the ADNI 

protocol included subjects with MMSE scores >23, isolated memory impairment based on 

education adjusted memory scores on the Wechsler Memory Scale Logical Memory III scale 

and a Clinical Dementia Rating (CDR) [14] global score of 0.5. Study participants with AD 

were diagnosed using standard criteria (NINCDS/ADRDA criteria for probable AD [15]) 

and were of mild severity at enrollment, with MMSE scores between 20–26 and CDR scores 

between 0.5 and 1.0. The cohort in our study was comprised of 152 individuals, 86 classified 

as cognitively normal and 66 with a diagnosis of AD (following ADNI protocol of 

NINCDS/ADRDA criteria for probable AD).

Experimental details for the multiplexed proteomics assay including quality control criteria, 

normalization and the statistical analysis plan are described in [16]. The assay was designed 

to determine the ability of a panel of peptides in the cerebrospinal fluid (CSF) to 

discriminate among disease states (normal cognition, MCI and AD), using a targeted mass 

spectrometry-based assay to qualify the candidate AD biomarkers. The proteomics panel 

consisted of 567 peptides representing 222 proteins with 2 mass transitions monitored per 

peptide. The Biomarkers Consortium completed data processing, peptide quantification, 

mapping of peptides to proteins and normalization [16]. We used the normalized protein 

intensity data in our analysis.

The cohort of 12 mice used in our cross-species analysis contained 6 wildtype mice and 6 

APPSwDI/Nos2−/− (CVN) mice. Each cohort had 3 males and 3 females with a mean age 

across cohorts of 56.3 months, SD 4.6. Numerous mouse models have been generated to 

recreate the brain pathology observed in humans with Alzheimers disease. The most 

common approach to modeling has been to recreate the dominant AD pathologies, 

aggregated Abeta peptides and amyloid deposits and tau pathology. To generate these 

models, others have incorporated into mice mutations in specific genes that lead to amyloid 

or phospho tau accumulation in human brains. This approach clearly shows the 

accumulation of AD-like pathological deposits in mouse brain. Unfortunately, recreating 

human amyloid deposition has not led to the loss of neurons leading to brain volume 

changes in mice. These critical pathologies of human AD are not observed in the widely 

used AD mouse models. Thus, the commonly used available mouse models do not recreate 

human brain disease pathology and are unlikely to provide critical information to understand 

the underlying pathology of AD in humans.

It has been observed that mouse and human immune responses were different, both in the 

induction of the NOS2 gene and in the generation of NO by the NOS2 protein. Thus, we 

used a mouse strain that more closely represented human NOS2 activation and human NO 

production [17]. When this novel mouse strain was crossed to mice expressing a mutation in 

APP to generate the APPSwDI/mNos2−/− (CVN-AD) line, this relatively limited, but 

striking difference in NOS2 and NO production impacted immune-regulated metabolic 

profiles in the brain [18–20]. These changes lead to loss of neurons, loss of regional 
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connectivity and loss of regional brain volumes, which has been shown using Magnetic 

Resonance Imaging [21, 22]. Thus, brain changes in the CVN-AD mice closely mimic 

critical human AD pathology, which other commonly used models do not, that is, neuronal 

loss leading to significant brain volume changes, and loss of regional connectivity. Because 

of these structural and pathological commonalities between the APPSwDI/mNos2−/− mice 

and human AD, we have pushed further in our generation of mouse models by replacing the 

mouse NOS2 gene with the Human NOS2 gene which recreates a similar profile as our 

previous model.

The use of the APPSwDI/mNos2−/− model in this study was to compare mice that 

expressed AD-like pathology in the brain with available human data sets of the same kind. 

The importance was to uncover functional gene/protein networks that were significantly 

different from humans as well as to find those areas that were notably similar. The analysis 

methodology developed here and presented in this manuscript has enabled us to see where 

this mouse mimics corresponding human data sets and where it fails to mimic them. The 

data have pointed out very clearly that we have accomplished some of our modeling goals, 

but are missing other key elements. It shows us where to test and where to modify the 

genetic/protein landscape further. Overall, at the least, this combined approach of innovative 

modeling brings us closer to having in hand a more useful, testable model for drug 

development and translation of drug discovery to humans with AD.

We have used the human CSF for comparison with the mouse brain because CSF is robust 

surrogate of brain chemistry. The brains interstitial fluid is in direct contact with the CSF 

and the chemical composition of the CSF reflects the cellular chemical environment in the 

CNS, including metabolites that are entering or leaving. Because the CSF directly receives 

metabolites from the entire brain, its chemical composition is an average of all the different 

brain regions, but as we used whole brain extracts, this is not a major concern for our study. 

In confirmation of our arguments, [23] obtained comparable results in brain and CSF 

metabolomes from APPswe/PS1deltaE9 mice, validating the use of CSF as an accurate 

surrogate of the human brain for use in this study. Moreover, future studies will use 

analytical methods developed in this publication to compare different stages of disease, 

using CSF from living human subjects for comparison with animal models. Preparation of 

mouse brain tissue and subsequent proteomics analysis are each described in Appendix C.

3 Results

We first used gsLRT to test for AD gene set enrichment, including each individual’s age, 

sex, and APOE genotype as covariates, but not including any interactions between these 

covariates and protein expression levels. We then tested for AD gene set enrichment with 

respect to protein expression interactions with sex and age, respectively. For these latter 

tests, the reference models in the nested logistic regressions were those fitted with only main 

effects for the covariates and the protein expression profile. The gene sets considered in our 

analysis were downloaded from MSigDB [24, 25], a repository of annotated gene sets. The 

gene set collections used were the Hallmark, C2, and C5 collections, which include GO [26, 

27], KEGG [28], and REACTOME [29] pathways, among others. We then limited our 

reference set to include only those gene sets with an overlap of greater than 5 genes and 

Bryan et al. Page 6

Alzheimers Dement. Author manuscript; available in PMC 2022 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



fewer than 100 genes with the ADNI data set, yielding a total of 542 gene sets. Our results 

therefore extend only to the genes that appear in the filtered gene sets. Below we report the 

gene set annotations as they appeared in their original collections, but our interpretation 

focuses on the member genes that overlapped with those included in our study.

The study of sex-specific differences in the pathophysiology and epidemiology of AD has 

generated a large body of research [30–38]. We are particularly interested in how female 

biological sex interacts with age and APOE ϵ4 genotypes to affect susceptibility to AD. This 

is a contentious topic [35, 38], and we believe that addressing the interaction between these 

factors will help resolve the controversy, and possibly lead to strategies for AD prevention 

and treatment. We hypothesized that female biological sex and APOE genotype interact at 

an underlying, immune-regulated metabolic pathway in the brain. Immunity, like sex, age, 

and APOE genotype, is a primary disease factor in AD and impacts both the onset and 

pathological features of neurodegenerative events.

The five gene set enrichment results with the lowest permutation p-values for the class of 

models that did not include interaction terms for age, sex or APOE genotype are reported in 

Table 1. Importantly, because of the dependence among gene set tests with overlapping 

membership, the p-values reported here and in the following tables are not adjusted for 

multiple testing, and therefore do not have theoretical guarantees for control of False 

Discovery Rate (FDR). A group of related protein signatures involving lipid metabolism 

show the strongest enrichment. Most of these signatures include several apolipoproteins 

(APOE, APOB, APOD) and fatty acid binding protein (FABP3) (Figure 2). The signatures 

range in size from 5–14 proteins, constituting relatively small to moderate size biological 

networks. Several metabolic signatures are not identified as significantly enriched for this 

model. These signatures include glucose metabolism (p=0.34), metabolism of carbohydrates 

(p=0.37) and heme metabolism (p=0.38). The Gene Ontology pathway for locomotion is a 

good negative control since this pathway is not identified as significantly enriched (p=0.20) 

despite inclusion of the APOB and APP proteins in the pathway. This pathway consists of 14 

genes and the lack of a strong or moderate difference in protein concentration between the 

AD and control groups for neuronal and neural cell adhesion proteins (NRCAM, NCAM1), 

L1 cell adhesion (L1CAM) and neurexins (NRXN1, NRXN3) accounts for the lack of 

significance at the pathway level.

Protein set enrichment results for the model that included an interaction term for sex and 

protein level are reported in Table 2. The p-values for results including this interaction term 

assesses the statistical significance of the model coefficient that allows for sex-specific 

differences in the association between the protein expression levels and the disease state. 

The gene sets with the strongest association contain complement proteins (C2, C3, C4A, C5, 

C6, C8B, CFB). Several signatures associated with immune function are identified as 

statistically significant (p<0.05) for this model including immune effector process 

(p=0.0075) and the innate immune system (p=0.012). For the models that included 

interaction terms for age, no gene sets were identified as significantly associated (p<0.05) 

with the AD phenotype.
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3.1 Significance of gene sets across species

In order to compare mouse proteomics pathway signatures to those of humans, we applied 

gsLRT to data from a select population of mice that are useful models of human Alzheimers 

disease. We applied gsLRT to both the ADNI and mouse data adjusting for age and sex. We 

then compared the gene set significance results obtained from both datasets, limiting our 

analysis to only those gene sets corresponding to the intersection of the proteins contained in 

each dataset.

Interestingly, the mouse proteomics dataset yielded more significant pathways overall than 

the ADNI dataset. As shown in Figure 3, this may be explained by the fact that the human 

gene set results were driven by a select few proteins with very large Λj values—including 

Fatty Acid Binding Protein 3 (FABP3) and Neuronal Pentraxin Receptor (NPTXR)—while 

those for the mouse data were driven by a larger collection of more modest scores for a 

group of common AD drivers like APOE, APP, CLU, and PRDX6. Hence, pathways 

involving lipid metabolism were consistently observed as significantly enriched for both 

species and included regulation of lipid biosynthetic processes, cellular lipid metabolic 

process, lipid localization and lipid binding, while pathways enriched only in the mouse 

dataset included those corresponding to immune system processes, aging, and neuronal 

development. The full table of results is provided as Supplemental Table 2.

4 Discussion

Application of gsLRT for gene set enrichment in the absence of additional interaction terms 

(Table 1, Supp. Table 1) confirm known, highly relevant biological signatures and pathways 

involved in the development of Alzheimers disease [39–43]. Lipid metabolic changes in 

Alzheimers disease pathophysiology are well replicated. Genes involved in lipid metabolism 

are identified in large, well-powered genome-wide association studies [42, 43]. Studies of 

genetic pleiotropy have identified substantial overlap for genes involved with the regulation 

of serum lipids (LDL, HDL) and Alzheimers disease [44] or cognitive impairment [45]. The 

gene sets identified as not significantly associated with Alzheimers in Model 1 are not 

among the strongest genetic effects identified with disease pathophysiology. By contrast, 

there is compelling phenotypic evidence that these signatures are involved in the disease, 

most notable for glucose metabolism [46–48] and to a lesser extent for carbohydrate and 

heme metabolism [49, 50]. If the proteins (or their peptide fragments) that are linked with 

these signatures are leaked into the CSF, they may appear below the limits of detection in the 

targeted MS assays.

The inclusion of the protein FABP3 in many of the signatures identified as statistically 

significant is noteworthy. Increased FABP3 levels have been reported in patients with AD 

[51], and FABP3 mRNA was increased in microglia from 5XFAD mice compared with 

C57Bl/6 mice [52]. A specific FABP3 peptide was identified as the most significant peptide 

differentially expressed between AD and cognitively normal samples identified in the 

reference study of this proteomic dataset [16]. Lipids serve a variety of roles, from structural 

to metabolic to signaling [53, 54], and this effect is mediated in part by FABPs [55, 56]. It 

also has been suggested that one or more of the three FABPs in the brain (FABP3, FABP5, 

FABP7) may be involved in hippocampal neurogenesis, with a functional defect contributing 
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to hippocampal loss in AD [57]. The lipid metabolism results correlate well with previously 

reported changes in specific AD biomarkers in the CSF including beta amyloid and tau [58, 

59].

It is important to note that our analysis is based on a data set that measures differential 

protein expression in the CSF. Protein changes in the CSF may not mirror changes in the 

brain and, specifically, changes associated with glucose metabolism are specific to brain 

regions and protein changes in metabolism of carbohydrates and heme may be observed in 

serum [50] in addition to brain [47]. Identification of appropriate controls is both important 

and challenging for gene set enrichment analysis. Since the proteins chosen for the study had 

prior support for a role in the development of AD, any significant gene sets will necessarily 

contain AD-related proteins. However, the finding that a set of lipid metabolic gene sets, 

specifically (Figure 2a,b), demonstrates enrichment in contrast to the GO locomotion gene 

set (Figure 2c) suggests that our method of gene set testing confirms a significant role for 

lipid metabolic signatures involving specific sets of proteins and pathways reported in prior 

genetic and biochemical studies.

The observation that significant gene set enrichment results were observed for the class of 

models that included a sex interaction term (Table 2) suggests that the association between 

AD diagnosis and a subset of protein intensities differs among males and females. The 

involvement of the complement pathway in AD has strong precedent [60–62]. Prior studies 

have demonstrated significant sex related differences in complement levels and immune 

response in healthy individuals [61] and in mice [62]. For example, the clusterin protein is a 

member of the immune effector process signature, which has the strongest association in the 

model that includes the sex interaction. The association between clusterin and Alzheimers 

disease risk is reported in genetic studies [63–66] and in CSF protein level studies [67, 68]. 

A sex-specific effect of clusterin has been reported as a link between overall decreased 

bioenergetic metabolism and increased amyloid-related dyshomeostasis in female brains 

compared with male brains [37].

Since age is a significant risk factor for Alzheimers disease, our prior hypothesis was that we 

would observe significant enrichment results for the class of models including age 

interactions. However, the lack of significant results suggests that the interaction between 

age and protein expression levels does not yield substantial additional explanatory evidence 

for AD diagnosis beyond that provided by the marginal association between age and AD 

diagnosis. There are aspects of the study design that may explain the lack of a statistically-

significant interaction between age and protein expression. First, The ADNI study includes 

participants ages 55 to 90 years of age which limits study of changes in dynamic biomarkers 

such as proteins that occur earlier in life. Second, although the sample size would provide 

sufficient power for moderate effect size differences between AD and cognitively normal 

groups, the cohort size may be limiting to detect age-protein concentration level differences 

of smaller effect sizes. Generalization of the gsLRT statistical analysis to support 

longitudinal outcome measures would allow more comprehensive assessment of age-specific 

effects that occur later in life. Prior studies have examined proteomic changes in response to 

age. One study identified 30 out of 300 proteins in CSF with >20% change in concentrations 

between older and younger individuals [69], while another study found 248 out of 800 
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proteins where age differences were greater than twofold over background [70]. The age 

ranges for these studies were larger than the ADNI study, 22–85 years and 21–85 years 

respectively. Separating age and disease specific changes in dynamic biomarkers is a 

challenging problem, requiring large sample sizes to detect interactions between factors.

4.1 Conclusion

Here, we present a statistical approach to derive enrichment scores for biological pathways 

while accounting for sample covariates in the context of AD. A proof of concept study 

illustrates cross-species comparisons at the level of pathways or signatures by contrasting 

the gene-set enrichment results that allowed for interactions between key covariates (age, sex 

APOE genotype) and protein expression. These pathway-level analyses confirm known 

genetic interactions and provide unique and informative insights into the relationship 

between a mouse model of AD and humans with AD. It is clear that overlap in the statistical 

relevance of specific metabolic pathways can be found. However, it is also clear that, in the 

data considered for our study, certain pathways clarify critical differences between mouse 

and human brain. The proof of concept study illustrates that considering the interaction 

between the covariates and specific analytes that define molecular signatures is important in 

the development of mouse models that are reliable and consitute a useful model of human 

neurodegenerative diseases.

There are several caveats and cautions on interpreting the differences between the mouse and 

human pathway analysis. The genes included in the studies from which these data were 

drawn focused on specific hypotheses and did not involve an agnostic sampling of the 

proteome. Measurements were made in two different tissues, brain for the mouse sample and 

CSF for humans. Sample sizes for the mouse experiments were not adequately powered for 

stratified analysis by sex or by APOE genotype. The p-values need to be interpreted with 

caution since there was not a random sampling by the classification factors and since there 

were multiple comparisons for the number of pathways. The small sample size of the mouse 

experiments limits the power to detect all but the largest effect sizes. However, there was a 

substantial overlap (260) in the number of pathways covered by the human and mouse gene 

sets, supporting an adequate collection of background differences between the classification 

factors and statistical support for specific signatures is increased by coordinated coregulation 

or disease-specific differences for a set of proteins, rather than a single protein. For the 

human data, to be consistent with prior publications based on ADNI data and this specific 

proteomic dataset, we used the standard diagnostic criteria for AD (NINCDS/ADRDA 

criteria for probable AD), however future studies may be designed around changes in 

specific biomarkers including beta amyloid, tau and neurodegenerative markers in 

accordance with the ATN NIAAA framework [71] and to enable specific comparisons with 

mouse models that reflect these changes in neuropathology.

Interpretation of dynamic biomarkers such as protein concentrations is complex and cross-

species comparisons where there is considerable heterogeneity in the datasets introduces 

more complexity. As noted in this proof of concept study, there are mechanistic relationships 

between brain changes and plasma/blood/CSF metabolites that introduce complexities in the 

human/mouse comparison. Moreover, these studies are cross-sectional, rather than 
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longitudinal; the latter type of study would potentially elucidate age-specific changes and 

timing/sequencing patterns as a function of disease progression in the proteins 

concentration. While our study focuses on interactions between critical covariates and the 

biological signatures, other groups have reported on approaches to compare human and 

mouse model data, for example to identify of shared cell types across individuals, species, 

and multiple modalities (gene expression, epigenetic, or spatial data) where non-negative 

matrix factorization is performed to define a low-dimensional space in which each cell is 

defined by one set of dataset-specific factors, or metagenes [72] or to examine conserved 

epigenomic signals in mice and humans in the development of Alzheimers disease [73].

Our future studies will continue to test hypotheses that involve the interactions of four 

critical factors: age, sex, APOE genotype, and immunity. How these critical factors interact 

to initiate or accelerate LOAD pathology remains unknown and the approach that we have 

developed is well-suited to address this question by the field at large. It also facilitates 

evaluation and comparisons across species, potentially improving the use of animal models 

to uncover mechanisms of disease and the more rapid development of effective therapeutics 

for the human population.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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A: Implementation of gsLRT

A.1 Nested logistic regressions

For each gene in our dataset, we use the ‘glm’ function from the base R package ‘stats’ to fit 

the logistic regression models described above. We apply the Bartlett correction using the 

correction factor reported by [74]. The statistic used for testing is then

Λj

1 + αn/n
d χ1

2 (5)

where

Λj = 2 ℓ βℳ1
j , αℳ1

j − ℓ βℳ0
j

(6)

αn = n
2[Tr(Hℳ1

2 ) − Tr(Hℳ0
2 )] (7)

Here Hℳ1 denotes the diagonal matrix of leverage statistics for the alternative model and 

Hℳ0 denotes the diagonal matrix of leverage statistics for the null model. For a given model 

ℳ and corresponding design matrix Xℳ, the diagonal leverage matrix Hℳ has entries 

defined by

Hℳ ii = Xℳ Xℳ
T Xℳ

−1Xℳ
T

ii (8)

A.2 Permutation

Let ESk be an enrichment statistic computed for gene set k using the original (non-

permuted) data. Let the total number of permutations be B. Then the permutation p-value is 

given by

pk =
∑b1ESk

b > ESk + 1
B + 1

(9)

where ESk
b is the value of the enrichment statistic upon permutation of the covariate to be 

tested. For testing main effects, the gene expression profile is the “covariate” that gets 

permuted. For testing interaction terms, the column containing the product of the gene 

expression profile and the interacting covariate is permuted.

B: Simulation study

B.1 Dataset simulation

We used a simulation procedure to produce datasets of the same dimension as the 

proteomics dataset that we used in our Alzheimer’s investigation. For each simulation trial, 
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we generated gene expression data with 152 samples and 142 genes. The genes were split 

into 20 disjoint gene sets of random sizes. The expression values for each gene and sample 

gj in gene set γk were drawn independently from the multivariate normal with covariance 

matrix drawn from an inverse-Wishart distribution

gj N 0, Sk

Sk IW S0
k, 2 γk

where the entries of S0
k were set equal to 1 on the diagonal and set equal to uk, a random 

number on the unit interval, on the off-diagonal. This construction yields a random 

correlation structure for genes within gene sets. For each trial, we also generated a covariate 

matrix X with three continuous covariates drawn i.i.d. from a standard normal distribution 

and three binary covariates drawn i.i.d. from a Bernoulli distribution with success 

probability 1/2. Three gene sets were randomly chosen to be associated with the disease 

outcome through the non-linear relationship

yi Bernoulli expit xiβ + ∑
j ∈ J

gi
jαj

where expit(x) = ex/(1 + ex) and J denotes the set of genes included in the 3 enriched gene 

sets. Note that this means that each gene in the selected gene sets has some association to the 

disease outome, with magnitude depending on the size of the sampled coefficients α. The 

coefficients β and α were drawn i.i.d. from a standard normal distribution, which produced 

simulated disease outcome vectors with an average disease prevalence of 47%, comparable 

to the 43% observed in the ADNI dataset.

B.2 True and false positive rates compared to ROAST

We performed 50 trials following the procedure above and computed p-values using 200 

permutations in each trial. The number of permutations was chosen to limit computation 

time. The three gene sets per trial that were randomly selected to be associated with the 

disease outcome were the true positive cases; all other gene sets were considered true 

negatives. We then computed the average true positive rate (TPR) and false positive rate 

(FPR) for gsLRT at fixed p-value thresholds. For comparison, we also ran the ROAST 

methodology [8] using 200 rotations in each trial. ROAST achieved better Type I Error 

control than gsLRT, but was less sensitive on average (Figure 4). We ran a second and third 

round of trials using exponentially-distributed gene expression profiles and t-distributed 

gene expression profiles with five degrees of freedom. For a fixed FPR, gsLRT achieved 

comparable or modestly higher true positive rates than ROAST in all scenarios. The 

improvement was most marked in the region of low Type I Error (FPR < 0.1).
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Figure 4: 
Evaluation of gsLRT’s performance on simulated gene expression data versus that of 

ROAST methodology. On average, gsLRT (darker colors) achieves a higher true positive rate 

than ROAST (lighter colors) at each fixed false positive rate when evaluated on normally 

distributed gene expression profiles (red) exponentially distributed gene expression profiles 

(blue) and t-distributed gene expression profiles (green).

B.3 Validation under null

We modified the simulation setup as described above in order to sample from the null 

distribution that gsLRT is designed to test against. Specifically, we ran simulations with the 

same dimensions as above, but sampled gene expression values for the samples within gene 

set k from
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gj N 0, I γk

This reflects the independence assumption assumed by the gsLRT chi squared test (though 

this is not necessary for the permutation test). We also sampled the disease outcome 

independently of the gene expression profiles and covariates

yi Bernoulli(0.2)

so that the simulated data reflected the null hypothesis that the addition of the gene 

expression profiles offered no additional explanatory power. The empirical false positive rate 

at level 0.05 was observed to be 0.0479. In addition, we observed no bias in significance 

level as relates to the size of gene set (correlation between gene set size and gsLRT p-value 

was −0.02137, CI = [−0.09835,0.05586]).
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Figure 5: 
Evaluation of gsLRT’s performance on simulated gene expression data with no relationship 

to disease outcome (i.e. data conforming to the null model assumed by the gsLRT test). In 

addition to controlling Type I error at the nominal level (0.0479 vs. 0.05), the gsLRT p-

values show no bias towards assigning significance to gene sets of larger size. The blue line 

shows the line of best-fit, whose slope is proportional to the correlation between the gene set 

size and −log10(p).
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C: Proteomics Methods

C.1 Brain tissue preparation

Brain tissue samples stored in 1.5 mL tubes were delivered to the Duke Proteomics & 

Metabolomics Core Facility (n = 6 per genotype). 0.5% w/v ALS-1 surfactant in 50 mM 

ammonium bicarbonate (AmBic) was added to each sample at a volume of 10 uL/mg wet 

weight of tissue. Tissue homogenization and cell lysis was performed with probe sonication 

(Misonix) over three pulses at power level 3 for 5 seconds each with cooling on ice between 

pulses. A 5 uL aliquot of homogenate was diluted 25x in AmBic for determination of 

protein content by Bradford assay. Based on Bradford results, samples were 0.7±0.2 mg 

protein / mg tissue. Following normalization (100 μg protein at 1 mg/mL protein in 0.5% 

ALS-1/AmBic), samples were reduced with 10 mM dithiothreitol (DTT) at 80° C with 

shaking for 15 minutes, alkylated with 20 mM iodoacetamide (IAA) at room temperature in 

the dark for 30 minutes, and digested with 2 μg sequencing grade modified trypsin 

(Promega) overnight at 37° C with shaking. Digestion was stopped with the addition of 12 

μL 10/20/70 v/v/v TFA/MeCN/H2O and heating at 60° C for 2 hours. Diluted further with 

1/2/97 v/v/v TFA/MeCN/H2O for a final digested protein concentration of 0.5 ug/uL. A pool 

of all samples (Study Pool QC, SPQC) was created from equal volume of each sample, and 

analyzed at regular intervals throughout the study to allow observation of any experimental 

drift.

C.2 Proteomics Analysis

The samples were analyzed using a nanoAcquity UPLC system (Waters) coupled to a Q 

Exactive HF Orbitrap high-resolution accurate-mass tandem mass spectrometer (Thermo 

Scientific) via a nanoelectrospray ionization source. Each sample was analyzed once, and 

the SPQC was analyzed approximately every 6 samples. Briefly, the sample was first 

trapped and desalted on a Symmetry C18 180 um x 20 mm trapping column (5 uL/min at 

99.8/0.1/0.1 v/v water/acetonitrile/formic acid), then the analytical separation was performed 

using a 1.7 um Acquity HSS T3 C18 75 um x 250 mm column (Waters). The peptides on the 

column were eluted using a 90-minute gradient of 5–40% acetonitrile with 0.1% formic acid 

at a flow rate of 400 nanoliters/minute (nL/min) with a column temperature of 55° C. Data 

collection on the Q Exactive HF mass spectrometer was performed in a data-dependent 

MS/MS manner, using a 120,000 resolution precursor ion (MS1) scan followed by MS/MS 

(MS2) of the top 12 most abundant ions at 30,000 resolution. MS1 was accomplished using 

an automatic gain control (AGC) target of 3e6 ions and mass accumulation time of up to 50 

msec. MS2 used AGC target of 5e4 ions, up to 45 msec maxiumum ion accumulation, 1.2 

m/z isolation window, 27V normalized collision energy, and 20 sec dynamic exclusion.

Following the analyses, the data was imported into Rosetta Elucidator v 4.0 (Rosetta 

Biosoftware, Inc.), and all LC-MS files were aligned based on the accurate mass and 

retention time of detection ions (“features”) using a PeakTeller algorithm (Elucidator). The 

relative peptide abundance was calculated based on area-under-the-curve (AUC) of aligned 

features across all runs.
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The MS/MS data was searched against a custom built database based on the SwissProt 

database with Mus musculus taxonomy (downloaded April 28, 2017) with additional 

proteins, including yeast ADH1_YEAST (surrogate standard), ALBU_BOVIN 

(contaminant), APOE_HUMAN (genetic substitution), and additional mutated proteins 

expressed in the mice with sequences provided by the investigators, were also included in 

the custom database. An equal number of reversed-sequence decoys were appended to this 

forward DB for false discovery rate determination. A total of 3084 proteins were quantified, 

and 2118 (69%) proteins were quantified with 2 or more peptides (Supplementary Table 3).

References

[1]. Canchi Saranya, Raao Balaji, Masliah Deborah, Rosenthal Sara Brin, Sasik Roman, Fisch 
Kathleen M., De Jager Philip L., Bennett David A., and Rissman Robert A.. Integrating Gene and 
Protein Expression Reveals Perturbed Functional Networks in Alzheimers Disease. Cell Reports, 
28(4):1103–1116.e4, 7 2019. [PubMed: 31340147] 

[2]. Castrillo Juan I. and Oliver Stephen G.. Alzheimers as a Systems-Level Disease Involving the 
Interplay of Multiple Cellular Networks. In Castrillo Juan I. and Oliver Stephen G., editors, 
Systems Biology of Alzheimer’s Disease, volume 1303, pages 3–48. Springer New York, New 
York, NY, 2016. Series Title: Methods in Molecular Biology.

[3]. Ng Bernard, Casazza William, Patrick Ellis, Tasaki Shinya, Novakovsky Gherman, Felsky Daniel, 
Ma Yiyi, Bennett David A., Gaiteri Chris, De Jager Philip L., and Mostafavi Sara. Using 
Transcriptomic Hidden Variables to Infer Context-Specific Genotype Effects in the Brain. The 
American Journal of Human Genetics, 105(3):562–572, 9 2019. [PubMed: 31447098] 

[4]. Satizabal Claudia L., Adams Hieab H. H., Hibar Derrek P., White Charles C., Knol Maria J., Stein 
Jason L., Scholz Markus, Sargurupremraj Muralidharan, Jahanshad Neda, Roshchupkin Gennady 
V., Smith Albert V., Bis Joshua C., Jian Xueqiu, Luciano Michelle, Hofer Edith, Teumer 
Alexander, van der Lee Sven J., Yang Jingyun, Yanek Lisa R., Lee Tom V., Li Shuo, Hu Yanhui, 
Koh Jia Yu, Eicher John D., Desrivières Sylvane, Arias-Vasquez Alejandro, Chauhan Ganesh, 
Athanasiu Lavinia, Rentería Miguel E., Kim Sungeun, Hoehn David, Armstrong Nicola J., Chen 
Qiang, Holmes Avram J., den Braber Anouk, Kloszewska Iwona, Andersson Micael, Espeseth 
Thomas, Grimm Oliver, Abramovic Lucija, Alhusaini Saud, Milaneschi Yuri, Papmeyer Martina, 
Axelsson Tomas, Ehrlich Stefan, Roiz-Santiañez Roberto, Kraemer Bernd, Håberg Asta K., Jones 
Hannah J., Pike G. Bruce, Stein Dan J., Stevens Allison, Bralten Janita, Vernooij Meike W., 
Harris Tamara B., Filippi Irina, Witte A. Veronica, Guadalupe Tulio, Wittfeld Katharina, Mosley 
Thomas H., Becker James T., Doan Nhat Trung, Hagenaars Saskia P., Saba Yasaman, Cuellar-
Partida Gabriel, Amin Najaf, Hilal Saima, Nho Kwangsik, Mirza-Schreiber Nazanin, Arfanakis 
Konstantinos, Becker Diane M., Ames David, Goldman Aaron L., Lee Phil H., Boomsma Dorret 
I., Lovestone Simon, Giddaluru Sudheer, Hellard Stephanie Le, Mattheisen Manuel, Bohlken 
Marc M., Kasperaviciute Dalia, Schmaal Lianne, Lawrie Stephen M., Agartz Ingrid, Walton 
Esther, Tordesillas-Gutierrez Diana, Davies Gareth E., Shin Jean, Ipser Jonathan C., Vinke Louis 
N., Hoogman Martine, Jia Tianye, Burkhardt Ralph, Klein Marieke, Crivello Fabrice, Janowitz 
Deborah, Carmichael Owen, Haukvik Unn K., Aribisala Benjamin S., Schmidt Helena, Strike 
Lachlan T., Cheng Ching-Yu, Risacher Shannon L., Pütz Benno, Fleischman Debra A., Assareh 
Amelia A., Mattay Venkata S., Buckner Randy L., Mecocci Patrizia, Dale Anders M., Cichon 
Sven, Boks Marco P., Matarin Mar, Penninx Brenda W. J. H., Calhoun Vince D., Chakravarty M. 
Mallar, Marquand Andre F., Macare Christine, Masouleh Shahrzad Kharabian, Oosterlaan Jaap, 
Amouyel Philippe, Hegenscheid Katrin, Rotter Jerome I., Schork Andrew J., Liewald David C. 
M., de Zubicaray Greig I., Wong Tien Yin, Shen Li, Sämann Philipp G., Brodaty Henry, Roffman 
Joshua L., de Geus Eco J. C., Tsolaki Magda, Erk Susanne, van Eijk Kristel R., Cavalleri 
Gianpiero L., van der Wee Nic J. A., McIntosh Andrew M., Gollub Randy L., Bulayeva Kazima 
B., Bernard Manon, Richards Jennifer S., Himali Jayandra J., Loeffler Markus, Rommelse 
Nanda, Hoffmann Wolfgang, Westlye Lars T., Valdés Hernández Maria C., Hansell Narelle K., 
van Erp Theo G. M., Wolf Christiane, Kwok John B. J., Vellas Bruno, Heinz Andreas, Loohuis 
Loes M. Olde, Delanty Norman, Ho Beng-Choon, Ching Christopher R. K., Shumskaya Elena, 

Bryan et al. Page 18

Alzheimers Dement. Author manuscript; available in PMC 2022 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Singh Baljeet, Hofman Albert, van der Meer Dennis, Homuth Georg, Psaty Bruce M., Bastin 
Mark E., Montgomery Grant W., Foroud Tatiana M., Reppermund Simone, Hottenga Jouke-Jan, 
Simmons Andrew, Meyer-Lindenberg Andreas, Cahn Wiepke, Whelan Christopher D., van 
Donkelaar Marjolein M. J., Yang Qiong, Hosten Norbert, Green Robert C, Thalamuthu 
Anbupalam, Mohnke Sebastian, Pol Hilleke E. Hulshoff, Lin Honghuang, Jack Clifford R., 
Schofield Peter R., Mühleisen Thomas W., Maillard Pauline, Potkin Steven G., Wen Wei, 
Fletcher Evan, Toga Arthur W., Gruber Oliver, Huentelman Matthew, Smith George Davey, 
Launer Lenore J., Nyberg Lars, Jönsson Erik G., Crespo-Facorro Benedicto, Koen Nastassja, 
Greve Douglas N., Uitterlinden André G., Weinberger Daniel R., Steen Vidar M., Fedko Iryna 
O., Groenewold Nynke A., Niessen Wiro J., Toro Roberto, Tzourio Christophe, Longstreth 
William T., Ikram M. Kamran, Smoller Jordan W., van Tol Marie-Jose, Sussmann Jessika E., 
Paus Tomas, Hervé Lemaître Matthias L. Schroeter, Mazoyer Bernard, Andreassen Ole A., 
Holsboer Florian, Depondt Chantal, Veltman Dick J., Turner Jessica A., Pausova Zdenka, 
Schumann Gunter, van Rooij Daan, Djurovic Srdjan, Deary Ian J., McMahon Katie L., Müller-
Myhsok Bertram, Brouwer Rachel M., Soininen Hilkka, Pandolfo Massimo, Wassink Thomas H., 
Cheung Joshua W., Wolfers Thomas, Martinot JeanLuc, Zwiers Marcel P., Nauck Matthias, 
Melle Ingrid, Martin Nicholas G., Kanai Ryota, Westman Eric, Kahn René S., Sisodiya Sanjay 
M., White Tonya, Saremi Arvin, van Bokhoven Hans, Brunner Han G., Völzke Henry, Wright 
Margaret J., van t Ent Dennis, Nöthen Markus M., Ophoff Roel A., Buitelaar Jan K., Fernández 
Guillén, Sachdev Perminder S., Rietschel Marcella, van Haren Neeltje E. M., Fisher Simon E., 
Beiser Alexa S., Francks Clyde, Saykin Andrew J., Mather Karen A., Romanczuk-Seiferth Nina, 
Hartman Catharina A., DeStefano Anita L., Heslenfeld Dirk J., Weiner Michael W., Walter 
Henrik, Hoekstra Pieter J., Nyquist Paul A., Franke Barbara, Bennett David A., Grabe Hans J., 
Johnson Andrew D., Chen Christopher, van Duijn Cornelia M., Lopez Oscar L., Fornage 
Myriam, Wardlaw Joanna M., Schmidt Reinhold, DeCarli Charles, De Jager Philip L., Villringer 
Arno, Debette Stéphanie, Gudnason Vilmundur, Medland Sarah E., Shulman Joshua M., 
Thompson Paul M., Seshadri Sudha, and Ikram M. Arfan. Genetic architecture of subcortical 
brain structures in 38,851 individuals. Nat Genet, 51(11):1624–1636, 11 2019. [PubMed: 
31636452] 

[5]. Schadt Eric E., Friend Stephen H., and Shaywitz David A.. A network view of disease and 
compound screening. Nat Rev Drug Discov, 8(4):286–295, 4 2009. [PubMed: 19337271] 

[6]. Zhang Bin, Gaiteri Chris, Bodea Liviu-Gabriel, Wang Zhi, Joshua McElwee Alexei A. 
Podtelezhnikov, Zhang Chunsheng, Xie Tao, Tran Linh, Dobrin Radu, Fluder Eugene, Clurman 
Bruce, Melquist Stacey, Narayanan Manikandan, Suver Christine, Shah Hardik, Mahajan Milind, 
Gillis Tammy, Mysore Jayalakshmi, MacDonald Marcy E., Lamb John R., Bennett David A., 
Molony Cliona, Stone David J., Gudnason Vilmundur, Myers Amanda J., Schadt Eric E., 
Neumann Harald, Zhu Jun, and Emilsson Valur. Integrated Systems Approach Identifies Genetic 
Nodes and Networks in Late-Onset Alzheimers Disease. Cell, 153(3):707–720, 4 2013. 
[PubMed: 23622250] 

[7]. Khachaturian Zaven S., Mesulam M. Marsel, Khachaturian Ara S., and Mohs Richard C.. The 
Special Topics Section of Alzheimer’s & Dementia. Alzheimer’s & Dementia, 11(11):1261–
1264, 11 2015.

[8]. Wu Di, Lim Elgene, Vaillant François, Asselin-Labat Marie-Liesse, Visvader Jane E., and Smyth 
Gordon K.. ROAST: rotation gene set tests for complex microarray experiments. Bioinformatics, 
26(17):2176–2182, 9 2010. [PubMed: 20610611] 

[9]. Oron Assaf and Gentleman Robert. GSEAlm, 2017.

[10]. Tian L, Greenberg SA, Kong SW, Altschuler J, Kohane IS, and Park PJ. Discovering statistically 
significant pathways in expression profiling studies. Proceedings of the National Academy of 
Sciences, 102(38):13544–13549, 9 2005.

[11]. Barry WT, Nobel AB, and Wright FA. Significance analysis of functional categories in gene 
expression studies: a structured permutation approach. Bioinformatics, 21(9):1943–1949, 5 2005. 
[PubMed: 15647293] 

[12]. Efron Bradley and Tibshirani Robert. On testing the significance of sets of genes. The Annals of 
Applied Statistics, 1(1):107–129, 6 2007.

Bryan et al. Page 19

Alzheimers Dement. Author manuscript; available in PMC 2022 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



[13]. Tamayo Pablo, Steinhardt George, Liberzon Arthur, and Mesirov Jill P. The limitations of simple 
gene set enrichment analysis assuming gene independence. Stat Methods Med Res, 25(1):472–
487, 2 2016. [PubMed: 23070592] 

[14]. Morris JC. The Clinical Dementia Rating (CDR): Current version and scoring rules. Neurology, 
43(11):2412–2412, 11 1993.

[15]. McKhann G, Drachman D, Folstein M, Katzman R, Price D, and Stadlan EM. Clinical diagnosis 
of Alzheimer’s disease: Report of the NINCDS-ADRDA Work Group* under the auspices of 
Department of Health and Human Services Task Force on Alzheimer’s Disease. Neurology, 
34(7):939–939, 7 1984. [PubMed: 6610841] 

[16]. Spellman Daniel S., Wildsmith Kristin R., Honigberg Lee A., Tuefferd Marianne, Baker David, 
Raghavan Nandini, Nairn Angus C., Croteau Pascal, Schirm Michael, Allard Rene, Lamontagne 
Julie, Chelsky Daniel, Hoffmann Steven, Potter William Z., Alzheimer’s Disease Neuroimaging 
Initiative, and the Foundation for NIH (FNIH) Biomarkers Consortium CSF Proteomics Project 
Team. Development and evaluation of a multiplexed mass spectrometry based assay for 
measuring candidate peptide biomarkers in Alzheimer’s Disease Neuroimaging Initiative (ADNI) 
CSF. Prot. Clin. Appl, 9(7–8):715–731, 8 2015.

[17]. Colton Carol A., Wilson Joan G., Everhart Angela, Wilcock Donna M., Puoliväli Jukka, 
Heikkinen Taneli, Oksman Juho, Jääskeläinen Olli, Lehtimäki Kimmo, Laitinen Teemu, 
Vartiainen Nina, and Vitek Michael P.. mNos2 Deletion and Human NOS2 Replacement in 
Alzheimer Disease Models. J Neuropathol Exp Neurol, 73(8):752–769, 8 2014. [PubMed: 
25003233] 

[18]. Hoos Michael D., Richardson Brenna M., Foster Matthew W., Everhart Angela, Thompson J. 
Will, Moseley M. Arthur, and Colton Carol A.. Longitudinal Study of Differential Protein 
Expression in an Alzheimers Mouse Model Lacking Inducible Nitric Oxide Synthase. J. 
Proteome Res, 12(10):4462–4477, 10 2013. [PubMed: 24006891] 

[19]. Hoos Michael D, Vitek Michael P, Ridnour Lisa A, Wilson Joan, Jansen Marilyn, Everhart 
Angela, Wink David A, and Colton Carol A. The impact of human and mouse differences in 
NOS2 gene expression on the brains redox and immune environment. Mol Neurodegeneration, 
9(1):50, 2014.

[20]. Linnertz Colton, Anderson Lauren, Gottschalk William, Crenshaw Donna, Lutz Michael W., 
Allen Jawara, Saith Sunita, Mihovilovic Mirta, Burke James R., Welsh-Bohmer Kathleen A., 
Roses Allen D., and Chiba-Falek Ornit. The cis -regulatory effect of an Alzheimer’s disease-
associated poly-T locus on expression of TOMM40 and apolipoprotein E genes. Alzheimer’s & 
Dementia, 10(5):541–551, 9 2014.

[21]. Badea Alexandra, Wu Wenlin, Shuff Jordan, Wang Michele, Anderson Robert J., Qi Yi, Johnson 
G. Allan, Wilson Joan G., Koudoro Serge, Garyfallidis Eleftherios, Colton Carol A., and Dunson 
David B.. Identifying Vulnerable Brain Networks in Mouse Models of Genetic Risk Factors for 
Late Onset Alzheimers Disease. Front. Neuroinform, 13:72, 12 2019. [PubMed: 31920610] 

[22]. Badea Alexandra, Delpratt Natalie A., Anderson RJ, Dibb Russell, Qi Yi, Wei Hongjiang, Liu 
Chunlei, Wetsel William C., Avants Brian B., and Colton Carol. Multivariate MR biomarkers 
better predict cognitive dysfunction in mouse models of Alzheimer’s disease. Magnetic 
Resonance Imaging, 60:52–67, 7 2019. [PubMed: 30940494] 

[23]. Pan Xiaobei, Nasaruddin Muhammad Bin, Elliott Christopher T., McGuinness Bernadette, 
Passmore Anthony P., Kehoe Patrick G., Hölscher Christian, McClean Paula L., Graham Stewart 
F., and Green Brian D.. Alzheimer’s diseaselike pathology has transient effects on the brain and 
blood metabolome. Neurobiology of Aging, 38:151–163, 2 2016. [PubMed: 26827653] 

[24]. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, Paulovich A, 
Pomeroy SL, Golub TR, Lander ES, and Mesirov JP. Gene set enrichment analysis: A 
knowledge-based approach for interpreting genome-wide expression profiles. Proceedings of the 
National Academy of Sciences, 102(43):15545–15550, 10 2005.

[25]. Liberzon Arthur, Birger Chet, Helga Thorvaldsdóttir Mahmoud Ghandi, Mesirov Jill P., and 
Tamayo Pablo. The Molecular Signatures Database Hallmark Gene Set Collection. Cell Systems, 
1(6):417–425, 12 2015. [PubMed: 26771021] 

[26]. The Gene Ontology Consortium. The Gene Ontology Resource: 20 years and still GOing strong. 
Nucleic Acids Research, 47(D1):D330–D338, 1 2019. [PubMed: 30395331] 

Bryan et al. Page 20

Alzheimers Dement. Author manuscript; available in PMC 2022 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



[27]. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, 
Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, 
Richardson JE, Ringwald M, Rubin GM, and Sherlock G. Gene ontology: tool for the unification 
of biology. The Gene Ontology Consortium. Nat. Genet, 25(1):25–29, 5 2000. [PubMed: 
10802651] 

[28]. Kanehisa Minoru, Sato Yoko, Furumichi Miho, Morishima Kanae, and Tanabe Mao. New 
approach for understanding genome variations in KEGG. Nucleic Acids Research, 
47(D1):D590–D595, 1 2019. [PubMed: 30321428] 

[29]. Fabregat Antonio, Jupe Steven, Matthews Lisa, Sidiropoulos Konstantinos, Gillespie Marc, 
Garapati Phani, Haw Robin, Jassal Bijay, Korninger Florian, May Bruce, Milacic Marija, Corina 
Duenas Roca Karen Rothfels, Sevilla Cristoffer, Shamovsky Veronica, Shorser Solomon, Varusai 
Thawfeek, Viteri Guilherme, Weiser Joel, Wu Guanming, Stein Lincoln, Hermjakob Henning, 
and D’Eustachio Peter. The Reactome Pathway Knowledgebase. Nucleic Acids Res, 
46(D1):D649–D655, 1 2018. [PubMed: 29145629] 

[30]. Fan Chun Chieh, Banks Sarah J., Thompson Wesley K., Chen Chi-Hua, McEvoy Linda K., Tan 
Chin Hong, Kukull Walter, Bennett David A., Farrer Lindsay A., Mayeux Richard, Schellenberg 
Gerard D., Andreassen Ole A., Desikan Rahul, and Dale Anders M.. Sex-dependent polygenic 
effects on the clinical progressions of Alzheimers disease. preprint, Genetics, 4 2019.

[31]. for the Womens Brain Project and the Alzheimer Precision Medicine Initiative, Ferretti Maria 
Teresa, Iulita Maria Florencia, Cavedo Enrica, Chiesa Patrizia Andrea, Dimech Annemarie 
Schumacher, Chadha Antonella Santuccione, Baracchi Francesca, Girouard Hélène, Misoch 
Sabina, Giacobini Ezio, Depypere Herman, and Hampel Harald. Sex differences in Alzheimer 
disease the gateway to precision medicine. Nat Rev Neurol, 14(8):457–469, 8 2018. [PubMed: 
29985474] 

[32]. Jack Clifford R, Wiste Heather J, Weigand Stephen D, Therneau Terry M, Knopman David S, 
Lowe Val, Knopman David S, Val Lowe, Vemuri Prashanthi, Mielke Michelle M, Roberts 
Rosebud O, Machulda Mary M, Senjem Matthew L, Gunter Jeffrey L, Rocca Walter A, and 
Petersen Ronald C. Age-specific and sex-specific prevalence of cerebral beta-amyloidosis, 
tauopathy, and neurodegeneration in cognitively unimpaired individuals aged 5095 years: a cross-
sectional study. The Lancet Neurology, 16(6):435–444, 6 2017. [PubMed: 28456479] 

[33]. Mielke Michelle M.. Sex and Gender Differences in Alzheimer’s Disease Dementia. Psychiatr 
Times, 35(11):14–17, 11 2018. [PubMed: 30820070] 

[34]. Nebel Rebecca A., Aggarwal Neelum T., Barnes Lisa L., Gallagher Aimee, Goldstein Jill M., 
Kantarci Kejal, Mallampalli Monica P., Mormino Elizabeth C., Scott Laura, Wai Haung Yu 
Pauline M. Maki, and Mielke Michelle M.. Understanding the impact of sex and gender in 
Alzheimer’s disease: A. call to action. Alzheimer’s & Dementia, 14(9):1171–1183, 9 2018.

[35]. Neu Scott C., Pa Judy, Kukull Walter, Beekly Duane, Kuzma Amanda, Gangadharan 
Prabhakaran, Wang Li-San, Romero Klaus, Arneric Stephen P., Redolfi Alberto, Orlandi Daniele, 
Frisoni Giovanni B., Au Rhoda, Devine Sherral, Auerbach Sanford, Espinosa Ana, Boada Mercè, 
Ruiz Agustín, Johnson Sterling C., Koscik Rebecca, Wang Jiun-Jie, Hsu Wen-Chuin, Chen Yao-
Liang, and Toga Arthur W.. Apolipoprotein E Genotype and Sex Risk Factors for Alzheimer 
Disease: A Meta-analysis. JAMA Neurol, 74(10):1178, 10 2017. [PubMed: 28846757] 

[36]. Riedel Brandalyn C., Thompson Paul M., and Brinton Roberta Diaz. Age, APOE and sex: Triad 
of risk of Alzheimers disease. The Journal of Steroid Biochemistry and Molecular Biology, 
160:134–147, 6 2016. [PubMed: 26969397] 

[37]. Zhao Liqin, Mao Zisu, Woody Sarah K., and Brinton Roberta D.. Sex differences in metabolic 
aging of the brain: insights into female susceptibility to Alzheimer’s disease. Neurobiology of 
Aging, 42:69–79, 6 2016. [PubMed: 27143423] 

[38]. Kulminski Alexander M., Arbeev Konstantin G., Culminskaya Irina, Arbeeva Liubov, 
Ukraintseva Svetlana V., Stallard Eric, Christensen Kaare, Schupf Nicole, Province Michael A., 
and Yashin Anatoli I.. Age, Gender, and Cancer but Not Neurodegenerative and Cardiovascular 
Diseases Strongly Modulate Systemic Effect of the Apolipoprotein E4 Allele on Lifespan. PLoS 
Genet, 10(1):e1004141, 1 2014. [PubMed: 24497847] 

[39]. Karch Celeste M., Cruchaga Carlos, and Goate Alison M.. Alzheimers Disease Genetics: From 
the Bench to the Clinic. Neuron, 83(1):11–26, 7 2014. [PubMed: 24991952] 

Bryan et al. Page 21

Alzheimers Dement. Author manuscript; available in PMC 2022 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



[40]. Pimenova Anna A., Raj Towfique, and Goate Alison M.. Untangling Genetic Risk for Alzheimers 
Disease. Biological Psychiatry, 83(4):300–310, 2 2018. [PubMed: 28666525] 

[41]. the Alzheimer’s Disease Neuroimaging Initiative, CHARGE consortium, EADI1 consortium, 
Hollingworth Paul, Harold Denise, Sims Rebecca, Gerrish Amy, Lambert Jean-Charles, 
Carrasquillo Minerva M, Abraham Richard, Hamshere Marian L, Pahwa Jaspreet Singh, 
Moskvina Valentina, Dowzell Kimberley, Jones Nicola, Stretton Alexandra, Thomas Charlene, 
Richards Alex, Ivanov Dobril, Widdowson Caroline, Chapman Jade, Lovestone Simon, Powell 
John, Proitsi Petroula, Lupton Michelle K, Brayne Carol, Rubinsztein David C, Gill Michael, 
Lawlor Brian, Lynch Aoibhinn, Brown Kristelle S, Passmore Peter A, Craig David, McGuinness 
Bernadette, Todd Stephen, Holmes Clive, Mann David, Smith A David, Beaumont Helen, 
Warden Donald, Wilcock Gordon, Love Seth, Kehoe Patrick G, Hooper Nigel M, Vardy Emma R 
L C, Hardy John, Mead Simon, Fox Nick C, Rossor Martin, Collinge John, Maier Wolfgang, 
Jessen Frank, Ruther Eckart, Schurmann Britta, Heun Reiner, Kolsch Heike, van den Bussche 
Hendrik, Heuser Isabella, Kornhuber Johannes, Wiltfang Jens, Dichgans Martin, Frolich Lutz, 
Hampel Harald, Gallacher John, Hull Michael, Rujescu Dan, Giegling Ina, Goate Alison M, 
Kauwe John S K, Cruchaga Carlos, Nowotny Petra, John C Morris Kevin Mayo, Sleegers Kristel, 
Bettens Karolien, Engelborghs Sebastiaan, De Deyn Peter P, Van Broeckhoven Christine, 
Livingston Gill, Bass Nicholas J, Gurling Hugh, McQuillin Andrew, Gwilliam Rhian, Deloukas 
Panagiotis, Al-Chalabi Ammar, Shaw Christopher E, Tsolaki Magda, Singleton Andrew B, 
Guerreiro Rita, Muhleisen Thomas W, Nothen Markus M, Moebus Susanne, Jöckel Karl-Heinz, 
Klopp Norman, Wichmann H-Erich, Pankratz V Shane, Sando Sigrid B, Aasly Jan O, 
Barcikowska Maria, Wszolek Zbigniew K, Dickson Dennis W, Graff-Radford Neill R, Petersen 
Ronald C, van Duijn Cornelia M, Breteler Monique M B, Ikram M Arfan, DeStefano Anita L, 
Fitzpatrick Annette L, Lopez Oscar, Launer Lenore J, Seshadri Sudha, Berr Claudine, Campion 
Dominique, Epelbaum Jacques, Dartigues Jean-François, Tzourio Christophe, Alperovitch 
Annick, Lathrop Mark, Feulner Thomas M, Friedrich Patricia, Riehle Caterina, Krawczak 
Michael, Schreiber Stefan, Mayhaus Manuel, Nicolhaus S, Wagenpfeil Stefan, Steinberg Stacy, 
Stefansson Hreinn, Stefansson Kari, Snædal Jon, Björnsson Sigurbjörn, Jonsson Palmi V, 
Chouraki Vincent, Genier-Boley Benjamin, Hiltunen Mikko, Soininen Hilkka, Combarros 
Onofre, Zelenika Diana, Delepine Marc, Bullido Maria J, Pasquier Florence, Mateo Ignacio, 
Frank-Garcia Ana, Porcellini Elisa, Hanon Olivier, Coto Eliecer, Alvarez Victoria, Bosco Paolo, 
Siciliano Gabriele, Mancuso Michelangelo, Panza Francesco, Solfrizzi Vincenzo, Nacmias 
Benedetta, Sorbi Sandro, Bossù Paola, Piccardi Paola, Arosio Beatrice, Annoni Giorgio, Seripa 
Davide, Pilotto Alberto, Scarpini Elio, Galimberti Daniela, Brice Alexis, Hannequin Didier, 
Licastro Federico, Jones Lesley, Holmans Peter A, Jonsson Thorlakur, Riemenschneider 
Matthias, Morgan Kevin, Younkin Steven G, Owen Michael J, O’Donovan Michael, Amouyel 
Philippe, and Williams Julie. Common variants at ABCA7, MS4A6A/MS4A4E, EPHA1, CD33 
and CD2AP are associated with Alzheimer’s disease. Nat Genet, 43(5):429–435, 5 2011. 
[PubMed: 21460840] 

[42]. Alzheimer Disease Genetics Consortium (ADGC), The European Alzheimers Disease Initiative 
(EADI), Cohorts for Heart and Aging Research in Genomic Epidemiology Consortium 
(CHARGE), Genetic and Environmental Risk in AD/Defining Genetic, Polygenic and 
Environmental Risk for Alzheimers Disease Consortium (GERAD/PERADES),Kunkle Brian W., 
Grenier-Boley Benjamin, Sims Rebecca, Bis Joshua C., Damotte Vincent, Naj Adam C., Boland 
Anne, Vronskaya Maria, van der Lee Sven J., Amlie-Wolf Alexandre, Bellenguez Céline, Frizatti 
Aura, Chouraki Vincent, Martin Eden R., Sleegers Kristel, Badarinarayan Nandini, Jakobsdottir 
Johanna, Hamilton-Nelson Kara L., Moreno-Grau Sonia, Olaso Robert, Raybould Rachel, Chen 
Yuning, Kuzma Amanda B., Hiltunen Mikko, Morgan Taniesha, Ahmad Shahzad, Vardarajan 
Badri N., Epelbaum Jacques, Hoffmann Per, Boada Merce, Beecham Gary W., Garnier Jean-
Guillaume, Harold Denise, Fitzpatrick Annette L., Valladares Otto, Moutet Marie-Laure, Gerrish 
Amy, Smith Albert V., Qu Liming, Bacq Delphine, Denning Nicola, Jian Xueqiu, Zhao Yi, 
Zompo Maria Del, Fox Nick C., Choi Seung-Hoan, Mateo Ignacio, Hughes Joseph T., Adams 
Hieab H., Malamon John, Sanchez-Garcia Florentino, Patel Yogen, Brody Jennifer A., 
Dombroski Beth A., Naranjo Maria Candida Deniz, Daniilidou Makrina, Eiriksdottir Gudny, 
Mukherjee Shubhabrata, Wallon David, Uphill James, Aspelund Thor, Cantwell Laura B., Garzia 
Fabienne, Galimberti Daniela, Hofer Edith, Butkiewicz Mariusz, Fin Bertrand, Scarpini Elio, 
Sarnowski Chloe, Bush Will S., Meslage Stéphane, Kornhuber Johannes, White Charles C., Song 

Bryan et al. Page 22

Alzheimers Dement. Author manuscript; available in PMC 2022 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Yuenjoo, Barber Robert C., Engelborghs Sebastiaan, Sordon Sabrina, Voijnovic Dina, Adams 
Perrie M., Vandenberghe Rik, Mayhaus Manuel, Cupples L. Adrienne, Albert Marilyn S., De 
Deyn Peter P., Gu Wei, Himali Jayanadra J., Beekly Duane, Squassina Alessio, Hartmann 
Annette M., Orellana Adelina, Blacker Deborah, Rodriguez-Rodriguez Eloy, Lovestone Simon, 
Garcia Melissa E., Doody Rachelle S., Munoz-Fernadez Carmen, Sussams Rebecca, Lin 
Honghuang, Fairchild Thomas J., Benito Yolanda A., Holmes Clive, Karamuji-omi Hata, Frosch 
Matthew P., Thonberg Hakan, Maier Wolfgang, Roschupkin Gena, Ghetti Bernardino, Giedraitis 
Vilmantas, Kawalia Amit, Li Shuo, Huebinger Ryan M., Kilander Lena, Moebus Susanne, 
Hernández Isabel, Kamboh M. Ilyas, Brundin RoseMarie, Turton James, Yang Qiong, Katz 
Mindy J., Concari Letizia, Lord Jenny, Beiser Alexa S., Keene C. Dirk, Helisalmi Seppo, 
Kloszewska Iwona, Kukull Walter A., Koivisto Anne Maria, Lynch Aoibhinn, Tarraga Lluís, 
Larson Eric B., Haapasalo Annakaisa, Lawlor Brian, Mosley Thomas H., Lipton Richard B., 
Solfrizzi Vincenzo, Gill Michael, Longstreth WT, Montine Thomas J., Frisardi Vincenza, Diez-
Fairen Monica, Rivadeneira Fernando, Petersen Ronald C., Deramecourt Vincent, Alvarez 
Ignacio, Salani Francesca, Ciaramella Antonio, Boerwinkle Eric, Reiman Eric M., Fievet 
Nathalie, Rotter Jerome I., Reisch Joan S., Hanon Olivier, Cupidi Chiara, Uitterlinden A. G. 
Andre, Royall Donald R., Dufouil Carole, Maletta Raffaele Giovanni, de Rojas Itziar, Sano Mary, 
Brice Alexis, Cecchetti Roberta, St George-Hyslop Peter, Ritchie Karen, Tsolaki Magda, Tsuang 
Debby W., Dubois Bruno, Craig David, Wu Chuang-Kuo, Soininen Hilkka, Avramidou 
Despoina, Albin Roger L., Fratiglioni Laura, Germanou Antonia, Apostolova Liana G., Keller 
Lina, Koutroumani Maria, Arnold Steven E., Panza Francesco, Gkatzima Olymbia, Asthana 
Sanjay, Hannequin Didier, Whitehead Patrice, Atwood Craig S., Caffarra Paolo, Hampel Harald, 
Quintela Inés, Carracedo Angel, Lannfelt Lars, Rubinsztein David C., Barnes Lisa L., Pasquier 
Florence, Frölich Lutz, Barral Sandra, McGuinness Bernadette, Beach Thomas G., Johnston 
Janet A., Becker James T., Passmore Peter, Bigio Eileen H., Schott Jonathan M., Bird Thomas 
D., Warren Jason D., Boeve Bradley F., Lupton Michelle K., Bowen James D., Proitsi Petra, 
Boxer Adam, Powell John F., Burke James R., Kauwe John S. K., Burns Jeffrey M., Mancuso 
Michelangelo, Buxbaum Joseph D., Bonuccelli Ubaldo, Cairns Nigel J., McQuillin Andrew, Cao 
Chuanhai, Livingston Gill, Carlson Chris S., Bass Nicholas J., Carlsson Cynthia M., Hardy John, 
Carney Regina M., Bras Jose, Carrasquillo Minerva M., Guerreiro Rita, Allen Mariet, Chui 
Helena C., Fisher Elizabeth, Masullo Carlo, Crocco Elizabeth A., DeCarli Charles, Bisceglio 
Gina, Dick Malcolm, Ma Li, Duara Ranjan, Graff-Radford Neill R., Evans Denis A., Hodges 
Angela, Faber Kelley M., Scherer Martin, Fallon Kenneth B., Riemenschneider Matthias, Fardo 
David W., Heun Reinhard, Farlow Martin R., Kölsch Heike, Ferris Steven, Leber Markus, Foroud 
Tatiana M., Heuser Isabella, Galasko Douglas R., Giegling Ina, Gearing Marla, Michael Hüll, 
Geschwind Daniel H., Gilbert John R., Morris John, Green Robert C., Mayo Kevin, Growdon 
John H., Feulner Thomas, Hamilton Ronald L., Harrell Lindy E., Drichel Dmitriy, Honig 
Lawrence S., Cushion Thomas D., Huentelman Matthew J., Hollingworth Paul, Hulette Christine 
M., Hyman Bradley T., Marshall Rachel, Jarvik Gail P., Meggy Alun, Abner Erin, Menzies 
Georgina E., Jin Lee-Way, Leonenko Ganna, Real Luis M., Jun Gyungah R., Baldwin Clinton T., 
Grozeva Detelina, Karydas Anna, Russo Giancarlo, Kaye Jeffrey A., Kim Ronald, Jessen Frank, 
Kowall Neil W., Vellas Bruno, Kramer Joel H., Vardy Emma, LaFerla Frank M., Jöckel Karl-
Heinz, Lah James J., Dichgans Martin, Leverenz James B., Mann David, Levey Allan I., 
PickeringBrown Stuart, Lieberman Andrew P., Klopp Norman, Lunetta Kathryn L., Wichmann 
H-Erich, Lyketsos Constantine G., Morgan Kevin, Marson Daniel C., Brown Kristelle, Martiniuk 
Frank, Medway Christopher, Mash Deborah C., Nöthen Markus M., Masliah Eliezer, Hooper 
Nigel M., McCormick Wayne C., Daniele Antonio, McCurry Susan M., Bayer Anthony, 
McDavid Andrew N., Gallacher John, McKee Ann C., van den Bussche Hendrik, Mesulam 
Marsel, Brayne Carol, Miller Bruce L., Riedel-Heller Steffi, Miller Carol A., Miller Joshua W., 
Al-Chalabi Ammar, Morris John C., Shaw Christopher E., Myers Amanda J., Wiltfang Jens, 
OBryant Sid, Olichney John M., Alvarez Victoria, Parisi Joseph E., Singleton Andrew B., 
Paulson Henry L., Collinge John, Perry William R., Mead Simon, Peskind Elaine, Cribbs David 
H., Rossor Martin, Pierce Aimee, Ryan Natalie S., Poon Wayne W., Nacmias Benedetta, Potter 
Huntington, Sorbi Sandro, Quinn Joseph F., Sacchinelli Eleonora, Raj Ashok, Spalletta 
Gianfranco, Raskind Murray, Caltagirone Carlo, Bossù Paola, Orfei Maria Donata, Reisberg 
Barry, Clarke Robert, Reitz Christiane, Smith A David, Ringman John M., Warden Donald, 
Roberson Erik D., Wilcock Gordon, Rogaeva Ekaterina, Bruni Amalia Cecilia, Rosen Howard J., 

Bryan et al. Page 23

Alzheimers Dement. Author manuscript; available in PMC 2022 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Gallo Maura, Rosenberg Roger N., Ben-Shlomo Yoav, Sager Mark A., Mecocci Patrizia, Saykin 
Andrew J., Pastor Pau, Cuccaro Michael L., Vance Jeffery M., Schneider Julie A., Schneider Lori 
S., Slifer Susan, Seeley William W., Smith Amanda G., Sonnen Joshua A., Spina Salvatore, Stern 
Robert A., Swerdlow Russell H., Tang Mitchell, Tanzi Rudolph E., Trojanowski John Q., 
Troncoso Juan C., Van Deerlin Vivianna M., Van Eldik Linda J., Vinters Harry V., Vonsattel Jean 
Paul, Weintraub Sandra, Welsh-Bohmer Kathleen A., Wilhelmsen Kirk C., Williamson Jennifer, 
Wingo Thomas S., Woltjer Randall L., Wright Clinton B., Yu Chang-En, Yu Lei, Saba Yasaman, 
Pilotto Alberto, Bullido Maria J., Peters Oliver, Crane Paul K., Bennett David, Bosco Paola, Coto 
Eliecer, Boccardi Virginia, Lleo Alberto, De Jager Phil L., Lleo Alberto, Warner Nick, Lopez 
Oscar L., Ingelsson Martin, Deloukas Panagiotis, Cruchaga Carlos, Graff Caroline, Gwilliam 
Rhian, Fornage Myriam, Goate Alison M., Sanchez-Juan Pascual, Kehoe Patrick G., Amin Najaf, 
Ertekin-Taner Nilifur, Berr Claudine, Debette Stéphanie, Love Seth, Launer Lenore J., Younkin 
Steven G., Dartigues Jean-Francois, Corcoran Chris, Ikram M. Arfan, Dickson Dennis W., 
Nicolas Gael, Campion Dominique, Tschanz JoAnn, Schmidt Helena, Hakonarson Hakon, 
Clarimon Jordi, Munger Ron, Schmidt Reinhold, Farrer Lindsay A., Van Broeckhoven Christine, 
ODonovan Michael C., DeStefano Anita L., Jones Lesley, Haines Jonathan L., Deleuze Jean-
Francois, Owen Michael J., Gudnason Vilmundur, Mayeux Richard, Escott-Price Valentina, 
Psaty Bruce M., Ramirez Alfredo, Wang Li-San, Ruiz Agustin, van Duijn Cornelia M., Holmans 
Peter A., Seshadri Sudha, Williams Julie, Amouyel Phillippe, Schellenberg Gerard D., Lambert 
Jean-Charles, and Pericak-Vance Margaret A.. Genetic meta-analysis of diagnosed Alzheimers 
disease identifies new risk loci and implicates A-beta, tau, immunity and lipid processing. Nat 
Genet, 51(3):414–430, 3 2019. [PubMed: 30820047] 

[43]. European Alzheimer’s Disease Initiative (EADI), Genetic and Environmental Risk in 
Alzheimer’s Disease (GERAD), Alzheimer’s Disease Genetic Consortium (ADGC), Cohorts for 
Heart and Aging Research in Genomic Epidemiology (CHARGE), Lambert Jean-Charles, 
IbrahimVerbaas Carla A, Harold Denise, Naj Adam C, Sims Rebecca, Bellenguez Céline, Jun 
Gyungah, DeStefano Anita L, Bis Joshua C, Beecham Gary W, Grenier-Boley Benjamin, Russo 
Giancarlo, Thornton-Wells Tricia A, Jones Nicola, Smith Albert V, Chouraki Vincent, Thomas 
Charlene, Ikram M Arfan, Zelenika Diana, Vardarajan Badri N, Kamatani Yoichiro, Lin 
ChiaoFeng, Gerrish Amy, Schmidt Helena, Kunkle Brian, Dunstan Melanie L, Ruiz Agustin, 
Bihoreau Marie-Thérèse, Choi Seung-Hoan, Reitz Christiane, Pasquier Florence, Hollingworth 
Paul, Ramirez Alfredo, Hanon Olivier, Fitzpatrick Annette L, Buxbaum Joseph D, Campion 
Dominique, Crane Paul K, Baldwin Clinton, Becker Tim, Gudnason Vilmundur, Cruchaga 
Carlos, Craig David, Amin Najaf, Berr Claudine, Lopez Oscar L, De Jager Philip L, Deramecourt 
Vincent, Johnston Janet A, Evans Denis, Lovestone Simon, Letenneur Luc, Morón Francisco J, 
Rubinsztein David C, Eiriksdottir Gudny, Sleegers Kristel, Goate Alison M, Fiévet Nathalie, 
Huentelman Matthew J, Gill Michael, Brown Kristelle, Kamboh M Ilyas, Keller Lina, Barberger-
Gateau Pascale, McGuinness Bernadette, Larson Eric B, Green Robert, Myers Amanda J, 
Dufouil Carole, Todd Stephen, Wallon David, Love Seth, Rogaeva Ekaterina, Gallacher John, St 
George-Hyslop Peter, Clarimon Jordi, Lleo Alberto, Bayer Anthony, Tsuang Debby W, Yu Lei, 
Tsolaki Magda, Bossù Paola, Spalletta Gianfranco, Proitsi Petroula, Collinge John, Sorbi Sandro, 
Sanchez-Garcia Florentino, Fox Nick C, Hardy John, Naranjo Maria Candida Deniz, Bosco 
Paolo, Clarke Robert, Brayne Carol, Galimberti Daniela, Mancuso Michelangelo, Matthews 
Fiona, Moebus Susanne, Mecocci Patrizia, Del Zompo Maria, Maier Wolfgang, Hampel Harald, 
Pilotto Alberto, Bullido Maria, Panza Francesco, Caffarra Paolo, Nacmias Benedetta, Gilbert 
John R, Mayhaus Manuel, Lannfelt Lars, Hakonarson Hakon, Pichler Sabrina, Carrasquillo 
Minerva M, Ingelsson Martin, Beekly Duane, Alvarez Victoria, Zou Fanggeng, Valladares Otto, 
Younkin Steven G, Coto Eliecer, Hamilton-Nelson Kara L, Gu Wei, Razquin Cristina, Pastor Pau, 
Mateo Ignacio, Owen Michael J, Faber Kelley M, Jonsson Palmi V, Combarros Onofre, 
O’Donovan Michael C, Cantwell Laura B, Soininen Hilkka, Blacker Deborah, Mead Simon, 
Mosley Thomas H, Bennett David A, Harris Tamara B, Fratiglioni Laura, Holmes Clive, de 
Bruijn Renee F A G, Passmore Peter, Montine Thomas J, Bettens Karolien, Rotter Jerome I, 
Brice Alexis, Morgan Kevin, Foroud Tatiana M, Kukull Walter A, Hannequin Didier, Powell 
John F, Nalls Michael A, Ritchie Karen, Lunetta Kathryn L, Kauwe John S K, Boerwinkle Eric, 
Riemenschneider Matthias, Boada Mercè, Hiltunen Mikko, Martin Eden R, Schmidt Reinhold, 
Rujescu Dan, Wang Li-San, Dartigues Jean-François, Mayeux Richard, Tzourio Christophe, 
Hofman Albert, Nöthen Markus M, Graff Caroline, Psaty Bruce M, Jones Lesley, Haines 

Bryan et al. Page 24

Alzheimers Dement. Author manuscript; available in PMC 2022 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Jonathan L, Holmans Peter A, Lathrop Mark, Pericak-Vance Margaret A, Launer Lenore J, Farrer 
Lindsay A, van Duijn Cornelia M, Van Broeckhoven Christine, Moskvina Valentina, Seshadri 
Sudha, Williams Julie, Schellenberg Gerard D, and Amouyel Philippe. Meta-analysis of 74,046 
individuals identifies 11 new susceptibility loci for Alzheimer’s disease. Nat Genet, 
45(12):1452–1458, 12 2013. [PubMed: 24162737] 

[44]. Desikan Rahul S., Schork Andrew J., Wang Yunpeng, Thompson Wesley K., Dehghan Abbas, 
Ridker Paul M, Chasman Daniel I., McEvoy Linda K., Holland Dominic, Chen Chi-Hua, Karow 
David S., Brewer James B., Hess Christopher P., Williams Julie, Sims Rebecca, ODonovan 
Michael C., Choi Seung Hoan, Bis Joshua C., Ikram M. Arfan, Gudnason Vilmundur, DeStefano 
Anita L., van der Lee Sven J., Psaty Bruce M., van Duijn Cornelia M., Launer Lenore, Seshadri 
Sudha, Pericak-Vance Margaret A., Mayeux Richard, Haines Jonathan L., Farrer Lindsay A., 
Hardy John, Ulstein Ingun Dina, Dag Aarsland, Fladby Tormod, White Linda R., Sando Sigrid 
B., Rongve Arvid, Witoelar Aree, Djurovic Srdjan, Hyman Bradley T., Snaedal Jon, Steinberg 
Stacy, Stefansson Hreinn, Stefansson Kari, Schellenberg Gerard D., Andreassen Ole A., and Dale 
Anders M.. Polygenic Overlap Between C-Reactive Protein, Plasma Lipids, and Alzheimer 
Disease. Circulation, 131(23):2061–2069, 6 2015. [PubMed: 25862742] 

[45]. Lutz Michael W., Casanova Ramon, Saldana Santiago, Kuchibhatla Maragatha, Plassman Brenda 
L., and Hayden Kathleen M.. Analysis of pleiotropic genetic effects on cognitive impairment, 
systemic inflammation, and plasma lipids in the Health and Retirement Study. Neurobiology of 
Aging, 80:173–186, 8 2019. [PubMed: 31201950] 

[46]. Liu Xia, Wang Wei, Chen Hua-li, Zhang Hai-yan, and Zhang Nai-xia. Interplay between 
Alzheimers disease and global glucose metabolism revealed by the metabolic profile alterations 
of pancreatic tissue and serum in APP/PS1 transgenic mice. Acta Pharmacol Sin, 5 2019.

[47]. Swerdlow R, Marcus DL, Landman J, Kooby D, Frey W, and Freedman ML. Brain glucose 
metabolism in Alzheimer’s disease. Am. J. Med. Sci, 308(3):141–144, 9 1994. [PubMed: 
8074128] 

[48]. Szablewski Leszek. Glucose Transporters in Brain: In Health and in Alzheimers Disease. JAD, 
55(4):1307–1320, 12 2016.

[49]. Ghosh Chandradeep, Seal Manas, Mukherjee Soumya, and Dey Somdatta Ghosh. Alzheimers 
Disease: A HemeAbeta Perspective. Acc. Chem. Res, 48(9):2556–2564, 9 2015. [PubMed: 
26252621] 

[50]. Mueller Claudius, Zhou Weidong, VanMeter Amy, Heiby Michael, Magaki Shino, Ross Mark M., 
Espina Virginia, Schrag Matthew, Dickson Cindy, Liotta Lance A., and Kirsch Wolff M.. The 
Heme Degradation Pathway is a Promising Serum Biomarker Source for the Early Detection of 
Alzheimer’s Disease. JAD, 19(3):1081–1091, 1 2010. [PubMed: 20157261] 

[51]. Chiasserini Davide, Biscetti Leonardo, Eusebi Paolo, Salvadori Nicola, Frattini Giulia, Simoni 
Simone, De Roeck Naomi, Tambasco Nicola, Stoops Erik, Vanderstichele Hugo, Engelborghs 
Sebastiaan, Mollenhauer Brit, Calabresi Paolo, and Parnetti Lucilla. Differential role of CSF fatty 
acid binding protein 3, alpha-synuclein, and Alzheimers disease core biomarkers in Lewy body 
disorders and Alzheimers dementia. Alz Res Therapy, 9(1):52, 12 2017.

[52]. Rangaraju Srikant, Dammer Eric B., Syed Ali Raza Tianwen Gao, Xiao Hailian, Betarbet Ranjita, 
Duong Duc M., Webster James A., Hales Chadwick M., Lah James J., Levey Allan I., and 
Seyfried Nicholas T.. Quantitative proteomics of acutely-isolated mouse microglia identifies 
novel immune Alzheimers disease-related proteins. Mol Neurodegeneration, 13(1):34, 12 2018.

[53]. Hotamisligil Gökhan S. and Erbay Ebru. Nutrient sensing and inflammation in metabolic 
diseases. Nat Rev Immunol, 8(12):923–934, 12 2008. [PubMed: 19029988] 

[54]. Moore Sherri, Kremer Michael, Sanderlin Edward, Wheeler Michael, and Hines Ian. Emerging 
Roles for Lipids in the Hepatic Innate Immune Response. Journal of Human Nutrition and Food 
Science, 1, 2013.

[55]. Zhang Yuwen and Li Bing. E-FABP: regulator of immune function. Oncoscience, 1:398, 6 2014. 
[PubMed: 25594037] 

[56]. Furuhashi Masato and Hotamisligil Gökhan S.. Fatty acid-binding proteins: role in metabolic 
diseases and potential as drug targets. Nat Rev Drug Discov, 7(6):489–503, 6 2008. [PubMed: 
18511927] 

Bryan et al. Page 25

Alzheimers Dement. Author manuscript; available in PMC 2022 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



[57]. Matsumata Miho, Inada Hitoshi, and Osumi Noriko. Fatty acid binding proteins and the nervous 
system: Their impact on mental conditions. Neuroscience Research, 102:47–55, 1 2016. 
[PubMed: 25205626] 

[58]. Walter Jochen and van Echten-Deckert Gerhild. Cross-talk of membrane lipids and Alzheimer-
related proteins. Mol Neurodegeneration, 8(1):34, 2013.

[59]. Huang Yadong and Mahley Robert W.. Apolipoprotein E: Structure and function in lipid 
metabolism, neurobiology, and Alzheimer’s diseases. Neurobiology of Disease, 72:3–12, 12 
2014. [PubMed: 25173806] 

[60]. Hong S, Beja-Glasser VF, Nfonoyim BM, Frouin A, Li S, Ramakrishnan S, Merry KM, Shi Q, 
Rosenthal A, Barres BA, Lemere CA, Selkoe DJ, and Stevens B. Complement and microglia 
mediate early synapse loss in Alzheimer mouse models. Science, 352(6286):712–716, 5 2016. 
[PubMed: 27033548] 

[61]. da Costa Mariana Gaya, Poppelaars Felix, van Kooten Cees, Mollnes Tom E., Tedesco Francesco, 
Würzner Reinhard, Trouw Leendert A., Truedsson Lennart, Daha Mohamed R., Roos Anja, and 
Seelen Marc A.. Age and Sex-Associated Changes of Complement Activity and Complement 
Levels in a Healthy Caucasian Population. Front. Immunol, 9:2664, 11 2018. [PubMed: 
30515158] 

[62]. Mangold Colleen A., Wronowski Benjamin, Du Mei, Masser Dustin R., Hadad Niran, Bixler 
Georgina V., Brucklacher Robert M., Ford Matthew M., Sonntag William E., and Freeman 
Willard M.. Sexually divergent induction of microglial-associated neuroinflammation with 
hippocampal aging. J Neuroinflammation, 14(1):141, 12 2017. [PubMed: 28732515] 

[63]. Foster Evangeline M., Dangla-Valls Adrià, Lovestone Simon, Ribe Elena M., and Buckley Noel 
J.. Clusterin in Alzheimers Disease: Mechanisms, Genetics, and Lessons From Other 
Pathologies. Front. Neurosci, 13:164, 2 2019. [PubMed: 30872998] 

[64]. Lee Joseph H., Cheng Rong, Barral Sandra, Reitz Christiane, Medrano Martin, Lantigua Rafael, 
Jiménez-Velazquez Ivonne Z., Rogaeva Ekaterina, St. George-Hyslop Peter H., and Mayeux 
Richard. Identification of Novel Loci for Alzheimer Disease and Replication of CLU, PICALM, 
and BIN1 in Caribbean Hispanic Individuals. Arch Neurol, 68(3), 3 2011.

[65]. Wijsman Ellen M., Pankratz Nathan D., Choi Yoonha, Rothstein Joseph H., Faber Kelley M., 
Cheng Rong, Lee Joseph H., Bird Thomas D., Bennett David A., Ramon Diaz-Arrastia Alison M. 
Goate, Farlow Martin, Ghetti Bernardino, Sweet Robert A., Foroud Tatiana M., Mayeux Richard, 
and The NIA-LOAD/NCRAD Family Study Group. Genome-Wide Association of Familial Late-
Onset Alzheimer’s Disease Replicates BIN1 and CLU and Nominates CUGBP2 in Interaction 
with APOE. PLoS Genet, 7(2):e1001308, 2 2011. [PubMed: 21379329] 

[66]. Yu Jin-Tai and Tan Lan. The Role of Clusterin in Alzheimers Disease: Pathways, Pathogenesis, 
and Therapy. Mol Neurobiol, 45(2):314–326, 4 2012. [PubMed: 22274961] 

[67]. Nordengen Kaja, Kirsebom Bjørn-Eivind, Henjum Kristi, Selnes Per, Gísladóttir Berglind, 
Wettergreen Marianne, Torsetnes Silje Bøen, Grøntvedt Gøril Rolfseng, Waterloo Knut K., 
Aarsland Dag, Nilsson Lars N. G., and Fladby Tormod. Glial activation and inflammation along 
the Alzheimers disease continuum. J Neuroinflammation, 16(1):46, 12 2019. [PubMed: 
30791945] 

[68]. Slot Rosalinde E.R., Kester Maartje I., Van Harten Argonde C., Jongbloed Wesley, Bouwman 
Femke H., Teunissen Charlotte E., Scheltens Philip, van der Flier Wiesje M., and Veerhuis 
Robert. ApoE and clusterin CSF levels influence associations between APOE genotype and 
changes in CSF tau, but not CSF Abeta42, levels in non-demented elderly. Neurobiology of 
Aging, 79:101–109, 7 2019. [PubMed: 31029938] 

[69]. Zhang Jing, Goodlett David R., Peskind Elaine R., Quinn Joseph F., Zhou Yong, Wang Qin, Pan 
Catherine, Yi Eugene, Eng Jimmy, Aebersold Ruedi H., and Montine Thomas J.. Quantitative 
proteomic analysis of age-related changes in human cerebrospinal fluid. Neurobiology of Aging, 
26(2):207–227, 2 2005. [PubMed: 15582749] 

[70]. Baird Geoffrey S., Nelson Sally K., Keeney Tracy R., Stewart Alex, Williams Stephen, Kraemer 
Stephan, Peskind Elaine R., and Montine Thomas J.. Age-Dependent Changes in the 
Cerebrospinal Fluid Proteome by Slow Off-Rate Modified Aptamer Array. The American Journal 
of Pathology, 180(2):446–456, 2 2012. [PubMed: 22122984] 

Bryan et al. Page 26

Alzheimers Dement. Author manuscript; available in PMC 2022 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



[71]. Jack Clifford R., Bennett David A., Blennow Kaj, Carrillo Maria C., Feldman Howard H., Frisoni 
Giovanni B., Hampel Harald, Jagust William J., Johnson Keith A., Knopman David S., Petersen 
Ronald C., Scheltens Philip, Sperling Reisa A., and Dubois Bruno. A/T/N: An unbiased 
descriptive classification scheme for Alzheimer disease biomarkers. Neurology, 87(5):539–547, 8 
2016. [PubMed: 27371494] 

[72]. Welch Joshua D., Kozareva Velina, Ferreira Ashley, Vanderburg Charles, Martin Carly, and 
Macosko Evan Z.. Single-Cell Multi-omic Integration Compares and Contrasts Features of Brain 
Cell Identity. Cell, 177(7):1873–1887.e17, 6 2019. [PubMed: 31178122] 

[73]. Gjoneska Elizabeta, Pfenning Andreas R., Mathys Hansruedi, Quon Gerald, Kundaje Anshul, 
Tsai Li-Huei, and Kellis Manolis. Conserved epigenomic signals in mice and humans reveal 
immune basis of Alzheimers disease. Nature, 518(7539):365–369, 2 2015. [PubMed: 25693568] 

[74]. Cordeiro Gauss M. and Montenegro Lourdes Coral C.. BARTLETT COR-RECTED 
LIKELIHOOD RATIO TESTS IN LOCATION-SCALE NON-LINEAR MODELS. 
Communications in Statistics - Theory and Methods, 30(7):1353–1372, 6 2001.

Bryan et al. Page 27

Alzheimers Dement. Author manuscript; available in PMC 2022 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Highlights

• Development of novel gene set enrichment method (gsLRT) to discover 

biological pathways relevant to AD.

• Gene set enrichment analysis of ADNI proteomics data.

• Test for interactions with covariates including age and sex, which may 

mediate pathway activity.

• Comparison of gene set enrichment between human AD and mouse models.
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Research in Context

Systematic review:

The authors reviewed literature describing biological pathways involved with AD. 

Pathway activity related to AD may be mediated by factors like age or sex.

Interpretation:

The manuscript proposes a novel statistical approach to derive enrichment scores for 

biological pathways while accounting for covariates like age and sex in the context of 

AD. The pathway-level analyses performed on proteomics data confirm known genetic 

interactions and provide informative insights into the relationship between a mouse 

model of AD and humans with AD.

Future directions:

Future studies will develop methods to integrate several genomics data modalities to 

identify animal models with optimal pathway-specific correspondence to human AD, 

while accounting for relevant covariates.
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Figure 1: 
Comparison of p-values obtained from the independence assumption test (x-axis) and the 

permutation test (y-axis) run on 542 gene sets in Alzheimer’s proteomics data (Section 5). 

Black color indicates that neither test rejects, gold indicates that both tests reject, and light 

blue indicates that only one test rejects. Note the difference in ranges on the axes: the 

permutation test is more conservative than the independence assumption test.
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Figure 2: 
Gene-level enrichment statistics for two gene sets with significant enrichment (a, b) and one 

gene set with no significant level of enrichment (c). The inclusion of FABP3 is one of the 

primary drivers of significance.
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Figure 3: 
Gene-level enrichment statistics for genes that appear both in the mouse and human 

proteomics data. The 10 proteins with greatest deviation from equality (dotted line) between 

species are labeled.
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Table 1:

gsLRT results on ADNI data with no interaction term

Gene Set p

GO_GLYCEROLIPID_METABOLIC_PROCESS 0.0009995

GO_CELLULAR_LIPID_METABOLIC_PROCESS 0.0019990

GO_REGULATION_OF_LIPID_BIOSYNTHETIC_PROCESS 0.0029985

GO_LIPID_CATABOLIC_PROCESS 0.0029985

GO_REGULATION_OF_LIPID_METABOLIC_PROCESS 0.0044978
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Table 2:

gsLRT results on ADNI data with sex interaction

Gene Set p

GO_IMMUNE_EFFECTOR_PROCESS 0.0074963

GO_REGULATION_OF_PROTEIN_MATURATION 0.0084958

REACTOME_COMPLEMENT_CASCADE 0.0089955

HALLMARK_COAGULATION 0.0094953

REACTOME_INITIAL_TRIGGERING_OF_COMPLEMENT 0.0094953
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Table 3:

gsLRT results on ADNI data with age interaction

Gene Set p

HALLMARK_ESTROGEN_RESPONSE_LATE 0.0569715

GO_SERINE_HYDROLASE_ACTIVITY 0.1429285

GO_COFACTOR_METABOLIC_PROCESS 0.1504248

GO_BLOOD_MICROPARTICLE 0.1559220

GO_REGULATION_OF_CELLULAR_RESPONSE_TO_STRESS 0.1739130
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