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Abstract

Segmentation of brain structures from magnetic resonance (MR) scans plays an important role in 

the quantification of brain morphology. Since 3D deep learning models suffer from high 

computational cost, 2D deep learning methods are favored for their computational efficiency. 

However, existing 2D deep learning methods are not equipped to effectively capture 3D spatial 

contextual information that is needed to achieve accurate brain structure segmentation. In order to 

overcome this limitation, we develop an Anatomical Context-Encoding Network (ACEnet) to 

incorporate 3D spatial and anatomical contexts in 2D convolutional neural networks (CNNs) for 

efficient and accurate segmentation of brain structures from MR scans, consisting of 1) an 

anatomical context encoding module to incorporate anatomical information in 2D CNNs and 2) a 

spatial context encoding module to integrate 3D image information in 2D CNNs. In addition, a 

skull stripping module is adopted to guide the 2D CNNs to attend to the brain. Extensive 

experiments on three benchmark datasets have demonstrated that our method achieves promising 

performance compared with state-of-the-art alternative methods for brain structure segmentation 

in terms of both computational efficiency and segmentation accuracy.
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Introduction

Deep learning methods have achieved huge success in a variety of image segmentation 

studies, including brain structure segmentation from magnetic resonance (MR) scans 

(Brosch et al., 2016; Chen et al., 2017; Chen et al., 2018; Dai et al., 2019; Huo et al., 2019; 

Kamnitsas et al., 2017; Lafferty et al., 2001; Li et al., 2017; Moeskops et al., 2016; 

Wachinger et al., 2018; Zhang et al., 2018; Zhang et al., 2015; Zhao et al., 2017; Zheng et 

al., 2015). Previous studies on the brain structure segmentation have favored volumetric 

segmentation based on 3D convolutional neural networks (CNNs) (Brosch et al., 2016; Dai 

et al., 2019; Huo et al., 2019; Kamnitsas et al., 2017; Li et al., 2017; Moeskops et al., 2016; 
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Wachinger et al., 2018; Zhang et al., 2015). These methods typically build deep learning 

models on overlapped 3D image patches. In particular, DeepNAT was proposed to predict 

segmentation labels of 3D image patches under a hierarchical classification and multi-task 

learning setting (Wachinger et al., 2018); a 3D whole brain segmentation method was 

developed to segment the brain structures using spatially localized atlas network tiles 

(SLANT) (Huo et al., 2019); and a transfer learning method was developed to segment the 

brain structures by learning from partial annotations (Dai et al., 2019). Although these 3D 

segmentation methods have achieved promising segmentation performance, they are 

computationally expensive for both model training and inference, and their applicability is 

potentially hampered by the memory limitation of typical graphics processing units (GPUs).

In order to improve the computational efficiency of deep learning models for the brain image 

segmentation, a variety of deep learning methods have been developed for segmenting 2D 

image slices of 3D MRI brain images (Roy et al., 2019; Roy et al., 2017; Roy et al., 2018), 

in addition to quantized 3D neural networks (Paschali et al., 2019). Particularly, QuickNAT 

(Roy et al., 2019) was proposed to segment 2D brain image slices in multiple views 

(Coronal, Axial, Sagittal) using a modified U-Net framework (Ronneberger et al., 2015) 

with densely connected blocks (Huang et al., 2017). Furthermore, a modified version was 

developed to improve its performance (Roy et al., 2018) with a joint spatial-wise and 

channel-wise Squeeze-and-Excitation (SE) module to fuse both spatial and channel 

information within local receptive fields (Hu et al., 2018). These 2D segmentation methods 

could segment a whole brain image in ~20 seconds on a typical GPU. However, the 2D 

segmentation methods ignore intrinsic 3D contextual information of 3D brain MR images, 

which could potentially improve the segmentation performance if properly utilized.

Most deep learning-based brain structure segmentation methods focus on segmentation of 

coarse-grained brain structures, and it remains largely unknown if they work well for 

segmenting the MRI brain images into fine-grained structures. Whereas the fine-grained 

brain structure segmentation could provide richer neuroanatomy information than a coarse-

grain brain structure segmentation in neuroimaging studies of brain development, aging, and 

brain diseases (Li et al., 2019; Pomponio et al., 2019), it is more challenging as the fine-

grained structures are relatively small and with similar image appearances, especially for the 

2D segmentation methods that do not utilize 3D contextual information.

To achieve fast and accurate segmentation of fine-grained brain structures from MR scans, 

we develop a deep neural network for segmenting 2D slices of MR scans by integrating 3D 

spatial and anatomical contexts in 2D CNNs, inspired by the success of deep learning with 

contextual information for image segmentation (Chen et al., 2017; Chen et al., 2018; Zhang 

et al., 2018; Zhao et al., 2017; Zhao et al., 2018; Zheng et al., 2015). Particularly, anatomical 

context is encoded in 2D CNNs through an attention module with a global anatomy 

classification supervision and 3D spatial context is encoded in 2D multi-channel input of 

spatially consecutive image slices. Additionally, the segmentation network also integrates a 

skull stripping auxiliary task to guide the network to focus on the brain structures. The 

method has been compared with state-of-the-art competing deep learning methods in terms 

of computational efficiency and segmentation accuracy based on 3 public datasets, including 

2012 Multi-Atlas Labelling Challenge (MALC) dataset (Landman and Warfield, 2012), 

Li et al. Page 2

Med Image Anal. Author manuscript; available in PMC 2022 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Mindboggle-101 dataset (Klein and Tourville, 2012), and Schizophrenia Bulletin 

(SchizBull) 2008 dataset (Kennedy et al., 2012). Based on these datasets, we directly 

compared our method with Skip-DeconvNet (SD-Net) (Roy et al., 2017), 2D Unet 

(Ronneberger et al., 2015), QuickNAT V2 (Roy et al., 2018), and 3D Unet (Çiçek et al., 

2016), with a focus on methods built upon 2D CNNs for computational efficiency. We also 

reported image segmentation performance of MO-Net (Dai et al., 2019), SLANT (Huo et al., 

2019), 3DQuantized-Unet (Paschali et al., 2019), and DeepNAT (Wachinger et al., 2018) 

that were evaluated on the 2012 MALC dataset with the same training and testing images, 

except SLANT. Source code of this study is available at https://github.com/ymli39/ACEnet-

for-Neuroanatomy-Segmentation.

Methods

We develop a deep learning method, referred to as Anatomy Context-Encoding network 

(ACEnet), for segmenting both coarse-grained and fine-grained anatomical structures from 

brain MR scans. ACEnet is a 2D network for segmenting brain MR scans slice by slice. As 

illustrated in Fig. 1-(a), ACEnet is built upon a densely connected encoder-decoder 

backbone, consisting of 1) a 3D spatial context encoding module as shown in Fig. 1-(b) to 

integrate spatial appearance information using 2D CNNs; 2) an anatomical context encoding 

module as shown in Fig. 1-(c) to incorporate anatomical information in 2D CNNs with a 

classification loss of brain structures; and 3) a skull stripping module as shown in Fig. 1-(d) 

to guide 2D CNNs to attend the brain. Image features learned by these 2D CNNs are finally 

fused to segment brain structures as illustrated in Fig. 1-(e). In the present study, we focus 

on image slices in coronal plane. For clarity, we use “3D” to denote input of a stack of 

multiple 2D slices to 2D CNNs hereafter.

A. Network Backbone

The network backbone is an U-Net (Ronneberger et al., 2015) with 4 densely connected 

blocks for both the encoder and the decoder, as illustrated in Fig. 1-(a). Each dense block 

contains 2 padded 5 × 5 convolutions followed by a 1 × 1 convolution layer. Particularly, 

max-pooling layers are adopted in the encoder blocks and up-sampling layers are adopted in 

the decoder blocks. Skip connections are adopted between the encoder and the decoder 

blocks with the same spatial dimensions. To fuse both spatial-wise and channel-wise 

information within local receptive fields, spatial and channel Squeeze-and-Excitation (sc-

SE) (Roy et al., 2018) is applied to each encoder, bottleneck, and decoder dense blocks. The 

sc-SE is built upon Spatial Squeeze and Channel Excitation (c-SE) (Hu et al., 2018) and 

Channel Squeeze and Spatial Excitation (s-SE) (Roy et al., 2018) that are fused by a Max-

Out operation to effectively learn both spatial-wise and channel-wise information. The c-SE 

block has a hyper-parameter r that was set to 2 in the present study for all experiments as 

suggested in (Roy et al., 2018). In this backbone setting, our goal is to learn image features 

for effective brain structure segmentation.

B. Spatial Context Encoding Module

To utilize 3D spatial information of MR scans in ACEnet, 3D image blocks of consecutive 

image slices are used as input to the spatial context encoding module, as illustrated in Fig. 1-
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(b). The consecutive image slices are regarded as a stack of 2D images with dimensions of H 
× W × C, where H and W are spatial dimensions of the 2D image slices and C is the number 

of 2D image slices, rather than as a 3D volume with dimensions of H × W × C × 1. 

Therefore, the input to the spatial context encoding module is of the same dimensions as the 

2D input. Particularly, we set C = 2s + 1, where s is the number of consecutive 2D image 

slices stacked on top and bottom of the center slice that is the image slice to be segmented. 

For an image slice without top or bottom adjacent slices, we used the image slice itself as its 

adjacent slices. Instead of directly implementing a 3D CNN module, which is 

computationally expensive, the spatial context encoding module acquires intrinsic spatial 

context information with less computation cost. This module takes the 3D input to the 

encoder and outputs 2D feature representation with 3D spatial context that is used as input to 

the anatomical context encoding module (Fig. 1-(c)) and the decoder.

C. Anatomical Context Encoding Module

The anatomical context encoding module is developed to integrate global anatomical 

information in ACEnet. As illustrated in Fig. 1-(c), the output of the network bottleneck is 

used as input to the anatomical context encoding module, consisting of a convolutional 

block, referred to as encoding layer, a fully connected layer, and an activation function. The 

anatomical context encoding module is applied to output of the network bottleneck that 

contains high level information learned from the data with a reduced dimensionality. The 

anatomical context is learned through the encoding layer and is then passed through the fully 

connected layer followed by a sigmoid activation function that detects the presence of 

specific brain structures in the center slice of the input. Particularly, the detection of the 

presence of specific brain structures is formulated as a classification problem with an 

anatomical context encoding loss (ACE-loss) to optimize the network under a direct 

supervision. It specifically focuses on the brain structures present in the 3D input’s center 

image slice under consideration, rather than all the brain structures to be segmented. The 

output of the anatomical context encoder is referred to as encoded anatomical context.

To facilitate the semantic segmentation, the encoded anatomical context is utilized to extract 

the global semantic context represented by a scaling attention factor as shown in Fig. 1. This 

scaling attention factor, denoted by γ, is the output of a sigmoid function σ(·), i.e., γ = 

σ(We), where W is the layer weight and e is the encoded anatomical context. This scaling 

attention factor provides the network with the global anatomical context to squeeze the 

intensity ambiguity between brain structures with similar appearances, and to selectively 

highlight the learned feature maps associated with specific brain structures present in the 

input of 3D image block’s center slice. This scaling factor is also utilized to recalibrate the 

decoded output, calculated as Y = X⊗γ, where X denotes feature maps generated from the 

decoder and ⊗ is a channel-wise multiplication. We refer to this recalibrated output as fused 

semantics.

D. Skull Stripping Module

In order to guide the brain structure segmentation network to focus on the brain structures, 

rather than non-brain structures such as nose and neck region, we include a skull stripping 

module as an auxiliary task to extract the brain from MR scans, as illustrated in Fig. 1-(d). 
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The first three decoders of the Skull Stripping Module share the same weight as the model 

backbone’s decoders and only its last decoder block is trained with separate weight 

parameters to reduce the model complexity. The skull stripping module learns informative 

features in a supervised manner with a skull stripping loss function. The learned image 

features are combined with the recalibrated output as illustrated in Fig. 1-(e) to generate the 

brain structure segmentation labels.

E. Loss Function

We use three loss functions to train the network, including (i) a pixel-wise cross-entropy loss 

Lce, (ii) a multi-class Dice loss Ldice, and (iii) an anatomical context encoding classification 

loss Lsec. The pixel-wise cross-entropy loss measures similarity between output 

segmentation labels and manual labeled ground truth (Shore and Johnson, 1980). Denote the 

estimated probability of a pixel x belonging to a class l by pl(x) and its ground truth label by 

gl(x), the pixel-wise cross-entropy loss is:

Lce = − ∑xgl(x)log pl(x) .

The multi-class Dice score is often used as an evaluation metric in image segmentation 

studies. In the present study, we include the multi-class Dice loss function to overcome 

class-imbalance problem (Roy et al., 2019; Roy et al., 2017), which is formulated as:

Ldice  = −
2∑x pl(x)gl(x)

∑x pl
2(x) + ∑xgl

2(x)
.

The anatomical context encoding loss is used to incorporate anatomical information in 2D 

CNNs so that the network focuses on specific brain structures present in the input of 3D 

image block’s center slice:

Lsec  = − 1
c ∑i = 1

c yi ⋅ log p yi + 1 − yi ⋅ log 1 − p yi ,

where C is the number of classes of brain structures, yi is the ground truth that a specific 

brain structure is present or not in the input of 3D image block’s center slice, and p(y) is the 

predicted probability of the presence of that specific brain structure. This loss is adopted to 

learn the anatomical context as illustrated in Fig. 1-(c).

Both Lce and Ldice loss functions are applied to the skull stripping module for skull stripping 

as LNskull, and fused structural segmentation prediction as LN brain. Therefore, the overall 

loss is formulated as:

Ltotal = Lceskull + Ldiceskull + Lcebrain + Ldice brain + λLsec,

where λ = 0.1 is a weighting factor as suggested in (Zhang et al., 2018).
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F. Implementation Details

Our 2D CNN network takes a 3D image volume as multiple channels of 256 × 256 × (2s + 

1) as inputs, all in coronal view. We employed a learning rate scheduling “poly” that is 

updated at each iter step as lr =  baselr  × 1 −  iter 
  iter total

power 
 (Chen et al., 2017), where 

baselr is the initial learning rate. We set power to 0.9 as suggested in (Zhang et al., 2018). 

We trained our model in two stages as detailed in ablation studies. In the first stage, we 

chose an initial learning rate of 0.01 and 0.02 for segmenting coarse-grained structures and 

fine-grained structures, respectively. In the second stage, we set the initial learning rate to 

0.01 for both tasks. Both pre-trained and fine-tuned model were trained for 100 epochs. In 

both the stages, we utilized the SGD optimizer with a momentum of 0.9 and a weight decay 

rate of 1 × 10−4. We used batch size of 6 to use all available GPU memory of a Titan XP 

GPU. The dropout rate of 0.1 was applied to each densely connected block (Srivastava et al., 

2014). All experiments were performed on a single NVIDIA TITAN XP GPU with 12GB of 

RAM. It took ~9 seconds to obtain both brain structure segmentation and skull-stripping 

results from an MRI scans of 256 × 256 × 256 on a NVIDIA TITAN XP GPU.

Experimental Datasets and settings

A. Imaging datasets

We evaluated our method based on three public datasets with manually labelled coarse-

grained or fine-grained brain structures, as detailed following.

(i) 2012 Multi-Atlas Labelling Challenge (MALC): This dataset contains MRI T1 

scans from 30 subjects with manual annotations for the whole brain, including 27 coarse-

grained structures and 134 fine-grained structures (Landman and Warfield, 2012). In studies 

of segmenting coarse-grained brain structures we focused on all available coarse-grained 

brain structures, and in studies of segmenting fine-grained brain structures we focused on 

133 fine-grained structures following BrainColor protocol (Klein et al., 2010). This 

challenge dataset also provides a list of 15 training subjects and a list of 15 testing subjects. 

The same training and testing data setting was used in our experiments to train and evaluate 

deep learning segmentation models.

Based on the 2012 MALC training scans, we generated an augmented training data set. 

Particularly, we applied deformable registration to warp the training images and their 

corresponding segmentation labels to twenty 1.5 T MR images, randomly selected from 

Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset (Petersen et al., 2010). In 

total, 300 warped images and segmentation label images were obtained as the augmented 

training dataset.

(ii) Mindboggle-101: This dataset contains MRI T1 scans from 101 healthy subjects 

with 63 manual annotated brain structures (Klein and Tourville, 2012). In the present study, 

we randomly split the dataset into training (60%), validation (10%), and test (30%) sets. The 

best validation model was utilized for testing.
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(iii) Schizophrenia Bulletin (SchizBull) 2008: This dataset is part of the Child and 

Adolescent Neuro Development Initiative (CANDI) dataset, consisting of MRI T1 scans 

from 103 subjects with 32 manual labeled brain structures (Kennedy et al., 2012). In the 

present study, we randomly split the data into training (60%), validation (10%) and test 

(30%) set. The best validation model was utilized for testing.

In our experiments, all the images were resampled into an isotropic volume of 1mm3 by 

“mri_convert” of FreeSurfer (Fischl, 2012). No other preprocessing procedures were applied 

to these images. The binary brain masks obtained from FreeSurfer preprocessing are used as 

ground truth brain regions for training and evaluation in skull stripping stage. We carried out 

ablation studies to evaluate how different components of our method contribute to the 

segmentation based on three benchmark datasets.

B. Ablation studies

A baseline of the present study was an improved version of QuickNAT (Roy et al., 2019) 

with sc-SE blocks (Roy et al., 2018), referred to as QuickNAT V2, which was built upon the 

same Dense U-Net structure as ACEnet. In the ablation studies, the batch size of different 

deep learning models was set to use all available GPU memory of a Titan XP GPU.

We first evaluated if the pixel-wise cross-entropy loss with the class weights could improve 

the segmentation performance, in conjunction with different settings of the anatomical 

context encoding module and the spatial context encoding module. As proposed in 

QuickNAT (Roy et al., 2019), frequencies of voxel-wise segmentation labels of the training 

can be used as class weights in the pixel-wise cross-entropy loss. The class weight ω(x) of a 

pixel x is computed as:

ω(x) = ∑lI(S(x) = l)median(f)
fl

+ ω0 ⋅ l( ∇S(x) > 0),

where f denotes a vector of frequencies of all voxel-wise segmentation labels, l denotes a 

specific segmentation label, and fl denotes its frequency in the training data, l is an indicator 

function, S is the ground truth segmentation label map, ∇ is 2D gradient operator, and 

ω0 = 2 ⋅ median(f)
fl

.

We then investigated the effectiveness of 1) anatomical context encoding module, 2) spatial 

context encoding module, and 3) skull stripping module. Particularly, we adopted the 

anatomical context encoding module in six models with different inputs as well as with and 

without the skull stripping module on three benchmark datasets. We studied various spatial 

context learned from inputs of 1) single 2D image slice, 2) a stack of multiple 2D image 

slices, and 3) two parallel encoders with inputs of single 2D image slice and a stack of 2D 

image slices respectively, and the two sets of encoded output features were concatenated 

after their specific bottleneck blocks. We incorporated the spatial context with and without 

skull stripping module to evaluate how the skull stripping module affects the overall 

segmentation performance.
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To comprehend how the sc-SE blocks modulate image features learned by densely 

connected blocks of CNNs in ACEnet, we generated feature maps and attention maps for 

each encoder and each decoder to visualize attention maps and image features before and 

after the sc-SE blocks (Roy et al., 2018; Schlemper et al., 2018). Since all the input and 

output image features of the encoders and decoders are multi-channel features, we obtained 

absolute values of image features averaged out across channels to visualize image features 

learned by different network blocks. Since the spatial-wise and channel-wise attention 

blocks integratively modulate the image features and the channel-wise attention is 

characterized by a vector, we generated spatial-wise attention maps and did not visualize the 

channel-wise attention vectors.

We investigated how the parameter s in the spatial context encoding module affects the 

segmentation performance, and we also evaluated networks built with different values of s 
using the end-to-end training setting with the presence of the anatomical context encoding 

module and skull stripping module.

Moreover, we investigated the effectiveness of the end-to-end training and two-stage training 

strategies. For the two-stage setting, we trained our model by utilizing only fused semantics 

outputs (Fig. 1-(e)) without skull stripping module (Fig. 1-(d)) in the first stage; in the 

second stage we incorporated the pre-trained weights obtained in the first training stage in 

the proposed architecture and fine-tuned the whole network with the skull stripping module 

as an auxiliary task. In this ablation study, the end-to-end model was trained with the same 

number of total epochs (200 epochs) as the two-stage training strategy

C. Comparison with state-of-the-art competing methods

We directly compared our method with state-of-the-art competing deep learning methods on 

the three datasets with the same model training and test settings, including SD-Net (Roy et 

al., 2017), 2D U-Net (Ronneberger et al., 2015), QuickNAT V2 (Roy et al., 2018), and 3D 

U-Net (Çiçek et al., 2016). All these methods were implemented with the same network 

architectures as reported in their corresponding papers, except that 256 filters were used in 

the 3D U-Net instead of 1024 for reducing the computational cost.

We also reported image segmentation performance of MO-Net (Dai et al., 2019), SLANT 

(Huo et al., 2019), 3DQuantized-Unet (Paschali et al., 2019), and DeepNAT (Wachinger et 

al., 2018) that were evaluated on the 2012 MALC dataset for segmenting either coarse-

grained or fine-grained brain structures with the same training and testing images, expect 

SLANT models which were trained on a larger training dataset.

D. Quantitative evaluation metrics

The image segmentation performance was evaluated on the testing data using Dice Score, 

Jaccard Index, and Hausdorff distance between the ground truth and automatically 

segmented brain structures (Hao et al., 2014; Zheng et al., 2018). Two-side Wilcoxon signed 

rank tests were adopted to compare ACEnet and QuickNAT V2 in terms of Dice scores of 

individual brain structures.
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Results

A. Ablation Studies on Loss Function, Anatomical Context, Spatial Context, and Skull 
Stripping

ACEnet’s backbone is a U-Net architecture, consisting of 4 densely connected blocks for 

both the encoder and the decoder, the exactly same architecture used in QuickNAT V2 (Roy 

et al., 2018) and serving as the baseline in our experiments. All encoder, bottleneck, and 

decoder dense blocks contain the sc-SE module (Roy et al., 2018). Table 1 summarizes 

segmentation performance for segmenting coarse-grained brain structures on the 2012 

MALC testing data obtained by deep learning models with different settings of the loss 

function, anatomical context encoding module, and spatial context encoding module. The 

segmentation models built with the pixel-wise cross-entropy loss without the class weights 

had better performance than their counterparts with the class weights in the pixel-wise cross-

entropy loss function for the baseline models (top two rows), the baseline models with 

anatomical context (middle two rows), and the models with both spatial and anatomical 

context (bottom two rows). In all following experiments, the pixel-wise cross-entropy loss 

without the class weights was used. The results summarized in Table 1 also indicated that 

the anatomical context encoding module improved the segmentation performance for the 

baseline models.

Fig. 2 shows representative spatial-wise attention maps of the sc-SE blocks and maps of 

image features before and after modulation by the sc-SE blocks for segmenting coarse-

grained brain structures on the 2012 MALC data set. Specifically, image features of a 

randomly selected image slice (top row) were used as input to densely-connected blocks to 

generate new image features that were subsequently modulated by the sc-SE blocks (their 

spatial-wise attention maps are shown on the middle row) to yield modulated image features 

(bottom row). Although the attention maps had varied spatial patterns at different encoders 

and decoders, they increased contrasts between background and brain tissues of the feature 

maps, which subsequently improved the segmentation performance as supported by the 

quantitative results summarized in Table 1 and Table 2.

Table 2 summarizes segmentation performance of deep learning models built with the 

anatomical context encoding module in conjunction with different settings of the spatial 

context encoding module and the skull stripping module. These results indicated that the 

combination of the anatomical context encoding module, the spatial context encoding 

module, and the skull stripping module achieved the best segmentation performance on 

SchizBull 2008, 2012 MALC (133 structures), and Mindboggle-101 data sets. The parallel 

encoders with inputs of single 2D image slice and a stack of 2D image slices could further 

improve the segmentation performance on the dataset of 2012 MALC (27 structures) and 

achieved the best performance in conjunction with the skull stripping module. However, the 

parallel encoders did not improve the fine-grained brain structure segmentation.

To investigate how the parameter s in the spatial context encoding module affects the 

segmentation performance, we evaluated deep learning models built with different values of 

s using the end-to-end training setting with the presence of the anatomical context encoding 

module and the skull stripping module. As summarized in Table 3, the best performance for 
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both the coarse-grained segmentation and fine-grained segmentation on the 2012 MALC 

dataset were achieved with s = 5. This value was adopted in all following experiments for 

the coarse-grained and fine-grained segmentation studies.

B. Ablation Study on Training Strategies

Table 4 summarizes segmentation performance of the deep learning models trained using 

different training strategies. These results indicated that the end-to-end model yielded better 

results than the model without the skull stripping module obtained in the first stage, and the 

model obtained in the second stage obtained the best performance. We adopted the two-stage 

training strategy in all following experiments.

C. Model Complexity

We compared model complexity between baseline (Roy et al., 2018) and models with our 

proposed modules (all included the Context Encoding Module) based on images of 256 × 

256. As summarized in Table 5, the baseline model with an input of single image slice had 

3.551 × 106 parameters, and the Context Encoding Module added 4.38 × 105 (an increase of 

12.3%) parameters to the baseline model. Since the skull stripping module shares the first 

three decoders with the backbone’s decoders, it added 2 × 104 (an increase of 0.05%) 

parameters to a model with the Context Encoding Module.

An input of the stacked image volumes (s = 5) had 1.52 × 105 more (an increase of 3.8%) 

parameters than the input of single image slice (s = 0). The parallel encoders increase the 

model complexity substantially, with an increase of 41.7% and 36.5% in the number of 

parameters compared with the models with s = 0 and s = 5 respectively. However, their 

segmentation performance did not increase with the number of parameters, except on the 

2012 MALC dataset for segmenting coarse-grained brain structures, as indicated by the 

results summarized in Table 2.

Overall, the model, with the anatomical context encoding module, the skull stripping 

module, and the spatial context encoding module (a stack of image slices with s = 5) 

obtained the best segmentation performance at a computation cost of 16.6% increase in the 

number of parameters compared with the baseline model.

D. Comparison with Competing Methods for Segmenting Coarse-grained Brain 
Structures

Tables 6 and 7 summarize segmentation performance obtained by competing methods under 

comparison for segmenting coarse-grained brain structures on the 2012 MALC dataset and 

the SchizBull 2008 dataset, respectively. As summarized in Table 6, ACEnet obtained a 

mean Dice Score of 0.891, an improvement of 1.7% compared with the second best method, 

i.e., QuickNAT V2. The data augmentation further improved our method though the 

improvement was moderated. As summarized in Table 7, ACEnet also obtained the best 

segmentation performance on the SchizBull 2008 dataset with an improvement of 2.2% 

compared with the second-best method, i.e., QuickNAT V2. Interestingly, the methods built 

upon 2D CNNs obtained better performance than those build upon 3D CNNs for segmenting 

coarse-grained brain structures.
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Table 8 summarizes image segmentation performance measured by Dice Score, Jaccard 

Index, and Hausdorff Distance obtained by the top-two deep learning models, i.e., 

QuickNAT V2 and ACEnet on both the 2012 MALC dataset with 27 structures and the 

SchizBull 2008 dataset. These results demonstrated that ACEnet performed consistently 

better than QuickNAT V2 in terms of Dice score, Jaccard score, and Hausdorff Distance. 

The results of skull stripping were promising with Dice scores greater than 0.987.

Representative segmentation results are visualized in Fig. 3 with zoomed-in regions to 

highlight differences among results obtained by the methods under comparison. As 

illustrated by the results on the left column, ACEnet obtained visually better segmentation 

results than QuickNAT V2 for segmenting the left lateral ventricle on the MALC dataset. 

The results shown on the second left column indicated that our method had better 

performance than QuickNAT V2 for segmenting bilateral amygdala on the SchiBull 2008 

dataset.

As shown in Fig. 4 and Fig. 5, statistical comparisons on Dice Scores of individual 

structures also indicated that our method had significantly better performance than 

QuickNAT V2 for segmenting most brain structures on the 2012 MALC dataset and 

SchiBull dataset (p <0.05, two-sided Wilcoxon signed rank test). Overall, two-sided 

Wilcoxon signed rank tests indicated that our method performed significantly better than 

QuickNAT V2 for segmenting the coarse-grained brain structures in terms of Dice score on 

both the MALC and SchiBull datasets with p values of 5.61 × 10−6 and 7.95 × 10−7, 

respectively.

E. Comparison with Alternative Methods with 2D or 3D CNNs for the Fine-grained 
Segmentation

Tables 9 and 10 summarize segmentation performance obtained by competing methods 

under comparison for segmenting fine-grained brain structures on the 2012 MALC dataset 

and the Mindboggle-101 dataset, respectively. As summarized in Table 9, ACEnet obtained a 

mean Dice Score of 0.762, an improvement of 9.6% compared with the second best method 

with 2D CNNs, i.e., QuickNAT V2. The data augmentation further improved our method 

and achieved segmentation accuracy close to those obtained by the methods built upon 3D 

CNNs. It is worth noting that the best model, i.e., SLANT 27, was trained on a larger 

training dataset and a larger augmentation dataset. As summarized in Table 10, ACEnet 

obtained the best segmentation performance on the Mindboggle-101 dataset with a Dice 

score of 82.5% and an improvement of 4.2% compared with the second-best method, i.e., 

3D U-Net, and an improvement of 5.8% compared with QuickNAT V2.

Table 11 summarizes image segmentation performance measured by Dice Score, Jaccard 

Index, and Hausdorff Distance obtained by the top-two deep learning models built upon 2D 

CNNs, i.e., QuickNAT V2 and ACEnet on both the 2012 MALC dataset with 133 structures 

and the Mindboggle-101 dataset. These results demonstrated that ACEnet performed 

consistently better than QuickNAT V2 in terms of Dice score, Jaccard score, and Hausdorff 

Distance. Specifically, ACEnet obtained an improvement of 9.6% and 5.8% compared with 

QuickNAT V2 in terms Dice score on the 2012 MALC dataset with 133 structures and the 
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Mindboggle-101 dataset, respectively. The results of skull stripping were promising too with 

Dice scores greater than 0.976.

Representative segmentation results for segmenting the fine-grained brain structures are 

visualized in Fig. 3 (right two columns) with zoomed-in regions to highlight differences 

among results obtained by the methods under comparison, indicating that ACEnet obtained 

visually better segmentation results than QuickNAT V2 for segmenting cortical areas on 

both the 2012 MALC dataset and the Mindboggle-101 dataset. As illustrated in Fig. 6 and 

Fig. 7, statistical comparisons on Dice scores of individual structures have also indicated that 

our method had significantly better performance than QuickNAT V2 for segmenting most of 

the brain structures on both the 2012 MALC and Mindboggle-101 datasets (p<0.05, two-

side Wilcoxon signed rank test). Overall, two-side Wilcoxon signed rank tests indicated that 

our method performed significantly better than QuickNAT V2 for segmenting the fine-

grained brain structures in terms of Dice score on both the MALC and Mindboggle-101 

datasets with p values of 3.22 × 10−24 and 7.58 × 10−12, respectively.

Discussions

We propose a new deep learning method, Anatomy Context-Encoding network (ACEnet), to 

segment brain structures from 3D MRI head scans using 2D CNNs enhanced by 3D spatial 

and anatomical context information. Experimental results based on three benchmark datasets 

have demonstrated that our method could achieve better segmentation accuracy than state-

of-the-art alternative deep learning methods for segmenting coarse-grained brain structures 

and comparable performance for segmentation fine-grained brain structures. Furthermore, 

the skull stripping module and the two-stage training strategy also obtained promising 

performance. The deep learning segmentation models built by our method could segment an 

MRI head scan of 256 × 256 × 256 within ~9 seconds on a NVIDIA TITAN XP GPU, 

facilitating real-time applications.

We have compared our method with state-of-the-art brain image segmentation methods built 

upon 2D CNNs and 3D CNNs with a focus on those built upon 2D CNNs for computational 

efficiency. Particularly, we directly compared our method with SD-net (Roy et al., 2017), 2D 

Unet (Ronneberger et al., 2015), QuickNAT V2 (Roy et al., 2018), and 3D Unet (Çiçek et 

al., 2016). We evaluated these methods based on 3 publicly available datasets, including the 

2012 MALC dataset with 27 and 133 brain structures, the Mindboggle dataset, and the 

SchizBull dataset. Based on these datasets, we evaluated the competing deep learning 

methods for segmenting coarse-grained and find-grained brain structures, respectively. The 

2012 MALC dataset also provides training and testing lists to facilitate comparisons among 

image segmentation methods evaluated based on the same training and testing lists. Based 

on the 2012 MALC dataset we also indirectly compared our method with MO-Net (Dai et 

al., 2019), Seg-Net (de Brebisson and Montana, 2015), SLANT (Huo et al., 2019), 

DeepNAT (Wachinger et al., 2018), and 3DQuantized-Unet (Paschali et al., 2019). 

Comparison results summarized in Tables 6 and 7 demonstrated that ACEnet obtained the 

best segmentation performance among all methods under comparison, including those build 

upon 3D CNNs, for segmenting coarse-grained brain structures. Comparison results 

summarized in Tables 9 and 10 demonstrated that ACEnet obtained promising performance, 
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better than those obtained by the alternative methods built upon 2D CNNs and comparable 

to those obtained by the methods built upon 3D CNNs, such as SLANT 27. However, 

ACEnet is computationally more efficient than SLANT27 that was trained on a larger 

training dataset.

Our method is built upon QuickNAT V2 with three proposed modules. First, our method has 

a spatial context encoding module to encode 3D spatial context information of consecutive 

image slices as a multi-channel input. This module uses 2D convolutional layers to extract 

3D spatial context information for computational efficiency. Ablation studies indicated that 

this module could improve the segmentation performance for both the coarse-grained and 

fine-grained brain structure segmentation tasks, supported by quantitative evaluation results 

summarized in Tables 1, 2, 3, and 4 and visualization results shown in Fig. 3.

Second, our method has an anatomical context encoding module to guide 2D CNNs to focus 

on brain structures present in the center image slices under consideration. This module 

consists of an attention factor to encode the anatomical information, learned by optimizing 

an anatomical context encoding classification loss to identify the presence of specific brain 

structures in the center image slices. This anatomical context encoding module improves the 

brain structure segmentation in two aspects. First, the anatomical context information acts as 

an attention factor that provides a global anatomical prior to squeeze the intensity ambiguity 

between structures with similar appearances. Different from training separate CNNs for 

segmenting different brain structures (Huo et al., 2019), the attention factor facilitates a 

single segmentation model to adaptively encode anatomical information for individual image 

slices. Second, the anatomical context information also serves as a regularizer to guide the 

2D CNNs to focus on brain structures present in the center image slices under consideration, 

rather than all brain structures to be segmented. Such a regularizer could potentially make 

the segmentation more robust, especially for the fine-grained brain structure segmentation as 

only a small number of brain structure are present in individual image slices and therefore 

yield a classification problem with unbalanced training samples. The ablation studies in 

conjunction with the representative spatial-wise attention maps and image feature maps 

before and after modulation by the sc-SE blocks shown in Fig. 2 all indicated that the sc-SE 

blocks and the anatomical context encoding module effectively improved the image 

segmentation performance.

Finally, our method has a skull stripping module as an auxiliary task to guide 2D CNNs to 

focus on brain structures rather than non-brain structures. The ablation studies indicated that 

this skull-stripping module could improve the brain structure segmentation performance no 

matter whether the end-to-end or the two-stage training strategies was used to training the 

segmentation. The experimental results also indicated that the two-stage training strategy 

could improve the segmentation results compared with the end-to-end training, consistent 

with findings in prior studies (Ren et al., 2015).

The present study has following limitations. First, we did not tune the hyperparameters of 

the proposed method exhaustively due to high computational cost. Instead, we tuned the 

hyperparameters by fixing some of them, which may lead to inferior performance. Second, 

we used simple data augmentation method to augment the training data. The results of 
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SLANT indicated that multi-atlas image segmentation can be used to augment the training 

data, albeit computationally expensive (Huo et al., 2019). We will adopt deep learning based 

image registration methods to improve the computational efficiency of multi-atlas image 

segmentation methods to augment the training data (Li and Fan, 2017, 2018, 2020) in our 

future studies. Third, we compared our method indirectly with some competing methods 

based on the 2012 MALC dataset. Although most of the evaluations were carried out on the 

same training and testing data (except SLANT), the comparison results should be interpreted 

with a caveat that their performance is hinged on training strategies including data 

argumentation.

Conclusions

Anatomy Context-Encoding network (ACEnet) provides a computationally efficient solution 

for both the coarse-grained and fine-grained brain structure segmentation tasks. Our method 

could be potentially applied to other image segmentation studies, such as segmentation of 

white matter hyperintensities and brain tumors (Li et al., 2018; Zhao et al., 2018).
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Highlights

• A fast and accurate image segment method for brain structures

• Anatomical and 3D spatial contexts are encoded in 2D CNNs

• An auxiliary task improves the overall segmentation performance
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Fig. 1. 
A schematic flowchart of Anatomy Context-Encoding network. (a) A Dense-UNet 

backbone. (b) A Spatial Context Encoding Module with a 3D image volume as its input. (c) 

An Anatomical Context Encoding Module contains a context encoder to capture anatomical 

context. (d) A Skull Striping Module to enforce the network to specifically focus on the 

brain. Particularly, the spatial encoding module captures 3D features from the input using 

2D CNNs. The context encoder captures anatomical context to highlight brain structure-

dependent variation by optimizing an Anatomical Context Encoding Loss. The spatial and 

anatomical semantics (e) and skull stripping features (d) are fused by an element-wise 

multiplication operation to generate accurate brain structure segmentation result.

Li et al. Page 18

Med Image Anal. Author manuscript; available in PMC 2022 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig 2. 
Visualization of (a) input feature maps, (b) spatial-wise attention maps and (c) output feature 

maps learned from encoders and decoders of ACEnet for segmenting coarse-grained brain 

structures on the 2012 MALC data set. Intensity values of all the feature maps and spatial 

attention maps were normalized into the range of 0 to 1. The first input features were the 

input image slices.
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Fig. 3. 
Representative input image slices, ground truth, and outputs of QuickNAT V2 and ACEnet 

for segmenting coarse-grained brain structures on the 2012 MALC dataset and the SchiBull 

2008 dataset (left two columns) and fine-grained brain structures on the 2012 MALC dataset 

and the Mindboggle 101 dataset (right two columns), respectively.
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Fig. 4. 
Box plot of Dice scores of 27 structures obtained by ACEnet (ours) and QuickNAT V2 on 

the 2012 MALC coarse-grained structure dataset with 15 TI MRI test scans. WM indicates 

White Matter and GM indicates Grey Matter. The star (⋆) symbol represents the statistical 

significance (p ≤ 0.05, two-side Wilcoxon signed rank test).
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Fig. 5. 
Box plot of Dice scores of 32 structures obtained by ACEnet (ours) and QuickNAT V2 on 

the SchizBull 2008 coarse-grained structure dataset with 30 TI MRI test scans. WM 

indicates White Matter and GM indicates Grey Matter. The star (⋆) symbol represents the 

statistical significance (p ≤ 0.05, two-side Wilcoxon signed rank test).
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Fig. 6. 
Box plot of Dice scores of 133 structures obtained by ACEnet (ours) and QuickNAT V2 on 

the 2012 MALC fine-grained structure dataset with 15 TI MRI test scans. In this plot we 

show 25 subcortical structures for visualization. WM indicates White Matter and GM 

indicates Grey Matter. The star (⋆) symbol represents the statistical significance (p ≤ 0.05, 

two-side Wilcoxon signed rank test).
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Fig. 7. 
Box plot of Dice scores of 62 structures obtained by ACEnet (ours) and QuickNAT V2 on 

Mindboggle-101 fine-grained structure dataset with 30 TI MRI test scans. The top and 

bottom plots show the segmentation performance on structures of the left and right 

hemispheres, respectively. The star (⋆) symbol represents the statistical significance (p ≤ 

0.05, two-side Wilcoxon signed rank test).
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Table 1.

Dice scores of ACEnet with different settings and its baselines on the 2012 MALC test data with 27 coarse-

grained segmentation structures. √ indicates presence of the entry, s is the consecutive image slices, Econtext: 

Contextual Encoding Module.

Inputs
Econtext Class Weight Batch size Dice Score

S=0 S=5

√ √ 10 0.851

√ 10 0.876

√ √ √ 8 0.870

√ √ 8 0.887

√ √ √ 6 0.867

√ √ 6 0.885
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Table 2.

Dice scores of ACEnet with different modules on three benchmark datasets. s is the number of consecutive 2D 

image slices stacked on top and bottom of the center slice. s=0 & s=5 indicates the presence of two parallel 

encoders with inputs of a single slice and a stack of multiple slices, respectively.

Datasets s=0 s=0 with skull 
stripping s=5 s=5 with skull 

stripping s=0 & s=5 s=0 & s=5 with 
skull stripping

2012 MALC (27 
structures)

0.887±0.065
0.888±0.062

0.885±0.065 0.885±0.065 0.888±0.066 0.890±0.062

SchizBull 2008 0.867±0.093 0.870±0.092 0.872±0.090 0.872±0.089 0.869±0.092 0.872±0.092

2012 MALC (133 
structures)

0.734±0.159 0.739±0.148 0.737±0.164 0.746±0.143 0.742±0.146 0.743±0.143

Mindboggle-101 0.792±0.079 0.799±0.078 0.815±0.075 0.820±0.076 0.795±0.077 0.797±0.077
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Table 3.

Segmentation performance (mean ± standard deviation of Dice Score) of our method on the 2012 MALC 

testing dataset with different values of slice number s in the spatial context encoding module.

2012 MALC (27 structures) 2012 MALC (133 structures)

S=1 0.885±0.063 0.741±0.148

S=3 0.885±0.069 0.743±0.145

S=5 0.885±0.065 0.746±0.143

S=7 0.883±0.080 0.741±0.149

S=9 0.884±0.068 0.744±0.147
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Table 4.

Segmentation performance (mean ± standard deviation of Dice Score) of our methods with different training 

strategies.

Datasets First Stage End-to-End Two Stages

2012 MALC (27 structures) 0.885±0.065 0.885±0.065 0.891±0.057

SchizBull 2008 0.872±0.090 0.872±0.089 0.881±0.074

2012 MALC (133 structures) 0.737±0.164 0.746±0.143 0.762±0.136

Mindboggle-101 0.815±0.075 0.820±0.076 0.825±0.074
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Table 5.

Model complexity. S is the number of consecutive 2D image slices stacked on top and bottom of the center 

slice. & indicates the presence of two parallel encoders which take both inputs of a single slice and a stack of 

2.5D stack of images.

Models baseline s=0 s=0 with skull 
stripping s=5 s=5 with skull 

stripping s=0 & s=5 s=0 & s=5 with 
skull stripping

Number of 
parameters

3.551 × 106 3.989 × 
106

3.991 × 106 4.141 × 
106

4.142 × 106 5.653 × 106 5.655 × 106
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Table 6.

Comparison of deep learning methods for segmenting coarse-grained brain structures based on the 2012 

MALC testing dataset, including segmentation accuracy measured by Dice score and the number of 

parameters in each model.

Methods CNNs Parameters Dice Score (mean ± standard deviation)

3D U-Net (Çiçek et al., 2016) 3D 6.444 × 106 0.859±0.082

SLANT8 (Huo et al., 2019) † 3D – 0.817±0.036

SLANT27 (Huo et al., 2019) † 3D – 0.823±0.037

MO-Net (Dai et al., 2019) † 3D – 0.838±0.049

3DQuantized-Unet (Paschali et al., 2019) † 3D 2.0 × 106 0.844±0.006

DeepNAT (Wachinger et al., 2018) † 3D 2.7 × 106 0.894

SD-Net (Roy et al., 2017) † 2D – 0.850±0.080

SD-Net (Roy et al., 2017) 2D 5.7 × 105 0.860±0.097

U-Net (Ronneberger et al., 2015) 2D 5.178 × 106 0.869±0.080

QuickNAT (Roy et al., 2019) 2D 3.551 × 106 0.874±0.067

QuickNAT V2 (Roy et al., 2018) 2D 3.551 × 106 0.876±0.067

ACEnet 2D 4.142 × 106 0.891±0.057

ACEnet* 2D 4.142 × 106 0.897±0.057

–indicates parameters are not reported in their respective papers

†
indicates segmentation performance obtained from their respective papers

*
indicates a model trained with data augmentation.
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Table 7.

Comparison of deep learning methods for segmenting coarse-grained brain structures on the SchizBull 2008 

testing dataset.

Methods CNNs Parameters Dice Score (mean ± standard deviation)

U-Net (Çiçek et al., 2016) 3D 6.444 × 106 0.857±0.097

SD-Net (Roy et al., 2017) 2D 5.7 × 105 0.856±0.098

U-Net (Ronneberger et al., 2015) 2D 5.178 × 106 0.862±0.096

QuickNAT V2 (Roy et al., 2018) 2D 3.551 × 106 0.862±0.095

ACEnet 2D 4.142 × 106 0.881±0.074
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Table 8.

Segmentation performance (mean ± standard deviation) of our methods and QuickNAT V2 on two coarse-

grained benchmark datasets. Skull Stripping is reported on Mean Dice Score for our model on testing data.

Datasets Performance measures QuickNAT V2 ACEnet

MALC (27 structures)

Dice 0.876±0.077 0.891±0.057

Jaccard 0.777±0.122 0.809±0.088

Skull-stripping (Dice) -- 0.987±0.012

Hausdorff Distance 4.156±0.620 3.965±0.553

SchizBull 2008

Dice (test) 0.862±0.095 0.881±0.074

Dice (validation) 0.862±0.084 0.880±0.087

Jaccard 0.766±0.131 0.796±0.122

Skull-stripping (Dice) -- 0.993±0.006

Hausdorff Distanc 4.347±0.453 4.150±0.413
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Table 9.

Comparison of deep learning methods for segmenting coarse-grained brain structures based on the 2012 

MALC testing dataset, including segmentation accuracy measured by Dice score and the number of 

parameters in each model.

Methods CNNs Parameters Dice Score (mean ± standard deviation)

3D U-Net (Çiçek et al., 2016) 3D 7.687 × 106 0.704±0.156

SLANT8 (Huo et al., 2019)† 3D – 0.768±0.011

SLANT27 (Huo et al., 2019)† 3D – 0.776±0.011

Seg-Net (de Brebisson and Montana, 2015)† 3D 3.056 × 107 0.725±0.163

SD-Net (Roy et al., 2017) 2D 5.7 × 105 0.628±0.205

2D U-Net (Ronneberger et al., 2015) 2D 5.178 × 106 0.688±0.156

QuickNAT V2 (Roy et al., 2018) 2D 3.551 × 106 0.689±0.161

ACEnet 2D 4.142 × 106 0.762±0.136

ACEnet* 2D 4.142 × 106 0.771±0.134

–indicates parameters are not reported from their respective papers

†
indicates segmentation performance obtained from their respective papers

*
indicates a model trained with data augmentation
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Table 10.

Comparison of deep learning methods for segmenting fine-grained brain structures on the Mindboggle-101 

testing dataset.

Methods CNNs Parameters Dice Score (mean ± standard deviation)

U-Net (Çiçek et al., 2016) 3D 7.687 × 106 0.790±0.079

SD-Net (Roy et al., 2017) 2D 5.7 × 105 0.754±0.089

U-Net (Ronneberger et al., 2015) 2D 5.178 × 106 0.767±0.086

QuickNAT V2 (Roy et al., 2018) 2D 3.551 × 106 0.777±0.082

ACEnet 2D 4.142 × 106 0.825±0.074
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Table 11.

Segmentation performance (mean ± standard deviation) of our methods and QuickNAT V2 on two fine-

grained benchmark datasets. Skull Stripping is reported on Mean Dice Score for our model.

Datasets Performance measures QuickNAT V2 ACEnet

MALC (133 structure)

Dice 0.689±0.161 0.762±0.136

Jaccard 0.547±0.176 0.633±0.162

Skull-stripping (Dice) -- 0.987±0.014

Hausdorff Distance 6.682±0.614 5.794±0.387

Mindboggle-101

Dice (test) 0.777±0.082 0.825±0.074

Dice (validation) 0.763±0.103 0.804±0.100

Jaccard 0.643±0.107 0.704±0.101

Skull-stripping (Dice) -- 0.976±0.024

Hausdorff Distance 6.523±0.382 6.454±0.456
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